当前位置:文档之家› 传感器的万用表检测

传感器的万用表检测

传感器的万用表检测
传感器的万用表检测

冷却水温度传感器的检测

1、结构和电路

冷却水温度传感器安装在发动机缸体或缸盖的水套上,与冷却水接触,用来检测发动机的冷却水温度。冷却水温度传感器的内部是一个半导体热敏电阻(图 1(a)),它具有负的温度电阻系数。水温越低,电阻越大;反之,水温越高,电阻越小(图 1(b))。

水温传感器的两根导线都和电控单元相连接。其中一根为地线,另一根的对地电压随热敏电阻阻值的变化而变化。电控单元根据这一电压的变化测得发动机冷却水的温度,和其他传感器产生的信号一起,用来确定喷油脉冲宽度、点火时刻等。冷却水温度传感器与电控单元的连接如图 2所示。

2、冷却水温度传感器的检测

(1)冷却水温度传感器的电阻检测

A、就车检查

点火开关置于OFF位置,拆卸冷却水温度传感器导线连接器,用数字式高阻抗万用表Ω档,按图 3所示测试传感器两端子(丰田皇冠3.0为THW和E

北京切诺基为B和A)间的电阻值。其电阻

2

值与温度的高低成反比,在热机时应小于1kΩ。

B、单件检查

拔下冷却水温度传感器导线连接器,然后从发动机上拆下传感器;将该传感器置于烧杯内的水中,加热杯中的水,同时用万用表Ω档测量在不同水温条件下水温传感器两接线端子间的电阻值,如图 4所示。将测得的值与标准值相比较。如果不符合标准,则应更换水温传感器。

(2)冷却水温度传感器输出信号电压的检测

装好冷却水温度传感器,将此传感器的导线连接器插好,当点火开关置于“ON”位置时,从

间测试传感器输出电水温传感器导线连接器“THW”端子(丰田车)或从ECU连接器“THW”端子与E

2

压信号(对北京切诺基是从传感器导线连接器“B”端子或从ECU导线连接器“2”端子上测量与接地端子间电压)。丰田车THW与E

端子间电压在80℃时应为0.25-1.OV。所测得的电压值应随冷却水温

2

成反比变化。当冷却水温度传感器线束断开时,如从ECU导线连接器端子“2”(北京切诺基)上测试电压值,当点火开关打开时,应为5V左右。

进气歧管绝对压力传感器的检测

进气歧管绝对压力传感器用于D型汽油喷射系统。它在汽油喷射系统中所起的作用和空气流量传感器相似。进气歧管绝对压力传感器根据发动机的负荷状态测出进气歧管内绝对压力(真空度)的变化,并转换成电压信号,与转速信号一起输送到电控单元(ECU),作为确定喷油器基本喷油量的依据。在当今发动机电子控制系统中,应用较为广泛的有半导体压敏电阻式、真空膜盒传动式两种。

一、半导体压敏电阻式进气歧管绝对压力传感器的检测

1、结构原理

半导体压敏电阻式进气歧管绝对压力传感器(图 1)由压力转换元件(硅膜片)和把转换元件输出信号进行放大的混合集成电路组成。压力转换元件是利用半导体的压阻效应制成的硅膜片。硅膜片的一侧是真空室,另一侧导入进气歧管压力,所以进歧管内绝对压力越高,硅膜片的变形越大,其变形量与压力成正比。附着在薄膜上的应变电阻的阻值则产生与其变形量成正比的变化。利用这种原理,可把进气歧管内压力的变化变换成电信号。

2、半导体压敏电阻式进气歧管压力传感器的检测

(1)皇冠3.0轿车2JZ-GE发动机用半导体压敏电阻式进气歧管绝对压力传感器的检测。

皇冠3.O轿车2JZ-GE发动机用半导体压敏电阻式进气歧管绝对压力传感器与ECU的连接电路如图 2所示。

A、传感器电源电压的检测

点火开关置于“OFF”位置,拔下进气歧管绝对压力传感器的导线连接器,然后将点火开关置

于“ON”位置(不起动发动机),用万用表电压档测量导线连接器中电源端V

CC 和接地端E

2

之间的电

压如图 3,其电压值应为4.5-5.5V。如有异常,应检查进气歧管绝对压力传感器与ECU之间的线路是否导通。若断路,应更换或修理线束。

B、传感器输出电压的检测将点火开关置于“ON”位置(不起动发动机),拆下连接进气歧管绝对压力传感器与进气歧管的真空软管(图 4)。在ECU导线连接器侧用万用表电压档测量进气歧管绝对压力传感器PIM-E

2

端子间在大气压力状态下的输出电压(图 5),并记下这一电压值;然后用真空泵向进气歧管绝对压力传感器内施加真空,从13.3kPa(100mmHg)起,每次递增13.3kPa(100mmHg),

一直增加到66.7kpa(500mmHg)为止,然后测量在不同真空度下进气歧管压力传感器(PIM-E

2

端子间)的输出电压。该电压应能随真空度的增大而不断下降。将不同真空度下的输出电压下降量与标准值相比较,如不符,应更换进气歧管压力传感器。皇冠3.0轿车2JZ-GE发动机和丰田HIACE小客车2RZ-E 发动机进气歧管压力传感器的标准输出电压值如所示。

表 1 进气歧管绝对压力传感器的真空度与输出电压的关系

北京切诺基轿车用半导体压敏电阻式进气歧管绝对压力传感器与ECU的连接如图 6所示。传感器与ECU有三根导线相连:ECU向传感器供电的电源线(输入传感器的电压为4.8-5.1V),传感器的信号输出线和传感器的接地线。在发动机怠速运转时,进气歧管的真空度高(绝对压力低),传感器的电阻值大,如图 7所示,传感器输出1.5-2.1V的低电压信号;当节气门全开时,歧管真空度低(绝对压力高),传感器电阻小,传感器输出3.9-4.8V的高电压信号。

A、传感器电源电压的检测

用万用表电压档测试ECU线束端子6的电压值。当点火开关接通(ON)时,该电压应为5V±0.5V;再用万用表测试传感器端子C电压值,其电压值也应为5V±0.5V。如不符,则为传感器电源线断路或连接器接触不良。

B、传感器、输出电压信号值的检测

用万用表的电压档测试传感器端子B的输出电压。当点火开关接通(ON)而发动机未起动时,传感器的输出电压值应为4-5V;当发动机在热机空档怠速运转时,输出电压应降到1.5-2.1V。此时,如从ECU线束侧1端子处测试,其电压值也应是上述数值;如不符,则为传感器信号连线断路或连接器接触不良。

C、测试传感器的接地情况

用万用表Ω档,从传感器的端子A处,测试其接地电阻。如电阻值不为零或电阻值较大,多数为导线断线或ECU插接件连接不良,应予修理或更换线束。

D、测试ECU传感器地线的接地情况

用万用表Ω档测试ECU传感器地线(端子4)与ECU电源地线(端子11或12)间的电阻值及ECU电源地线(端子11或12)与发动机地线接柱(发动机接地线在气缸体右侧机油尺管的安装螺栓上)之间的电阻值。若它们之间的电阻值均为0Ω或<1Ω,传感器地线接地良好;若电阻值>1Ω或更大,则传感器地线接地不良,应查明原因并予以排除。若ECU传感器地线与ECU电源地线间断路,且查不出原因,则应更换ECU。

二、真空膜盒式进气歧管绝对压力传感器的检测

1、结构和工作原理

真空膜盒传动的可变电感式进气歧管绝对压力传感器(图 8)主要由膜盒、铁心、感应线圈和电子电路等组成。膜盒是由薄金属片焊接而成,其内部被抽成真空,外部与进气歧管相通。外部压力变化将使膜盒产生膨胀和收缩的变化。置于感应线圈内部的铁芯和膜盒联动。感应线圈由两个绕组构成(图 9),其中一个与振荡电路相连,产生交流电压,在线圈周围产生磁场,另一个为感应绕组,产生信号电压。当进气歧管压力变化时,膜盒带动铁心在磁场中移动,使感应线圈产生的信号电压随之变化。该信号电压由电子电路检波、整形和放大后,作为传感器的输出信号送至ECU。

2、传感器输出信号电压值的检测

由于这种传感器(早期波许D-Jetronic系统用)是利用12V电源完成变压作用的,所以拔下插座就无法检查传感器的好坏。检测时,将万用表(电压档)的表笔分别插入导线连接器与两端子接触(图 10),测量其输出电压。测量方法如下:在不动插座的情况下闭合点火开关(ON),将万用表表笔与Vs、E端子接触。在开放真空管道、加上大气压的情况下,电压值约为1.5V,而在用嘴巴对真空管道吸气的情况下,电压值应从1.5V起向降低方向变化;发动机怠速运转时,电压值约为0.4V,而当发动机转速升高时,此电压值也升高。

爆震传感器的检测

1、爆震传感器的结构和工作原理

爆震传感器是发动机电子控制系统中必不可少的重要部件,它的功用是检测发动机有无爆震现象,并将信号送入发动机ECU。常见的爆震传感器有两种,一种是磁致伸缩式爆震传感器,另一种是压电式爆震传感器。磁致伸缩式爆震传感器的外形与结构如图 1、图 2所示,其内部有永久磁铁、靠永久磁铁激磁的强磁性铁心以及铁心周围的线圈。其工作原理是:当发动机的气缸体出现振动时,该传感器在7kHz左右处与发动机产生共振,强磁性材料铁心的导磁率发生变化,致使永久磁铁穿过铁心的磁通密度也变化,从而在铁心周围的绕组中产生感应电动势,并将这一电信号输入ECU。

压电式爆震传感器的结构如图 3所示。这种传感器利用结晶或陶瓷多晶体的压电效应而工作,也有利用掺杂硅的压电电阻效应的。该传感器的外壳内装有压电元件、配重块及导线等。其工作原理是:当发动机的气缸体出现振动且振动传递到传感器外壳上时,外壳与配重块之间产生相对运动,夹在这两者之间的压电元件所受的压力发生变化,从而产生电压。ECU检测出该电压,并根据其值的大

小判断爆震强度。

2、爆震传感器检测

丰田皇冠3.0轿车2JZ-GE型发动机爆震传感器与ECU的连接电路如图 4所示。

(1)爆震传感器电阻的检测

点火开关置于“OFF”位置,拔开爆震传感器导线接头,用万用表Ω档检测爆震传感器的接线端子与外壳间的电阻,应为∞(不导通);若为0Ω(导通)则须更换爆震传感器。

对于磁致伸缩式爆震传感器,还可应用万用表Ω档检测线圈的电阻,其阻值应符合规定值(具体数据见具体车型维修手册),否则更换爆震传感器。

(2)爆震传感器输出信号的检查

拔开爆震传感器的连接插头,在发动机怠速时用万用表电压档检查爆震传感器的接线端子与搭铁间的电压,应有脉冲电压输出。如没有,应更换爆震传感器。

进气温度传感器的检测

1、结构和电路

进气温度传感器通常安装在空气滤清器之后的进气软管上或空气流量计上,还有的在空气流量计和谐振腔上各装一个,以提高喷油量的控制精度。如图 1所示,进气温度传感器内部也是一个具有负温度电阻系数的热敏电阻,外部用环氧树脂密封。它和ECU的连接方式与水温传感器相同。图2所示为进气温度传感器与ECU的连接电路。

2、进气温度传感器的检测

(1)进气温度传感器的电阻检测

进气温度传感器的电阻检测方法和要求与冷却水温度传感器基本相同。单件检查时,点火开关置于“OFF”,拔下进气温度传感器导线连接器,并将传感器拆下;如图 3所示,用电热吹风器、红外线灯或热水加热进气温度传感器;用万用表Ω档测量在不同温度下两端子间的电阻值,将测得的电阻值与标准数值进行比较。如果与标准值不符,则应更换。

(2)进气温度传感器的输出信号电压值检测

端子(图 2(a))间或进气温度传感器连接当点火开关置于“ON”位置时,ECU的THA端子与E

2

器THA与E

端子间的电压值在20℃时应为0.5-3.4V。

2

曲轴位置传感器的检测

曲轴位置传感器是发动机电子控制系统中最主要的传感器之一,它提供点火时刻(点火提前角)、确认曲轴位置的信号,用于检测活塞上止点、曲轴转角及发动机转速。曲轴位置传感器所采用的结构随车型不同而不同,可分为磁脉冲式、光电式和霍尔式三大类。它通常安装在曲轴前端、凸轮轴前端、飞轮上或分电器内。

一、磁脉冲式曲轴位置传感器的检测

1、磁脉冲式曲轴位置传感器的结构和工作原理

(1)日产公司磁脉冲式曲轴位置传感器

该曲轴位置传感器安装在曲轴前端的皮带轮之后,如图 1所示。在皮带轮后端设置一个带有

细齿的薄圆齿盘(用以产生信号,称为信号盘),它和曲轴皮带轮一起装在曲轴上,随曲轴一起旋转。在信号盘的外缘,沿着圆周每隔4°有个齿。共有90个齿,并且每隔120°布置1个凸缘,共3个。安装在信号盘边沿的传感器盒是产生电信号信号发生器。信号发生器内有3个在永久磁铁上绕有感应线圈的磁头,其中磁头②产生120°信号,磁头①和磁头③共同产生曲轴1°转角信号。磁头②对着信号盘的120°凸缘,磁头①和磁头③对着信号盘的齿圈,彼此相隔了曲轴转角安装。信号发生器内有信号放大和整形电路,外部有四孔连接器,孔“1”为120°信号输出线,孔“2”为信号放大与整形电路的电源线,孔“3”为1°信号输出线,孔“4”为接地线。通过该连接器将曲轴位置传感器中产生的信号输送到ECU。

发动机转动时,信号盘的齿和凸缘引起通过感应线圈的磁场发生变化,从而在感应线圈里产生交变的电动势,经滤波整形后,即变成脉冲信号(如图 2所示)。发动机旋转一圈,磁头②上产生3个120°脉冲信号,磁头①和③各产生90个脉冲信号(交替产生)。由于磁头①和磁头③相隔3°曲轴转角安装,而它们又都是每隔4°产生一个脉冲信号,所以磁头①和磁头③所产生的脉冲信号相位差正好为90°。将这两个脉冲信号送入信号放大与整形电路中合成后,即产生曲轴1°转角的信号(如图 3所示)。

产生120°信号的磁头②安装在上止点前70°的位置(图 4),故其信号亦可称为上止点前70°信号,即发动机在运转过程中,磁头②在各缸上止点前70°位置均产生一个脉冲信号。

(2)丰田公司磁脉冲式曲轴位置传感器

丰田公司TCCS系统用磁脉冲式曲轴位置传感器安装在分电器内,其结构如图 5所示。该传感器分成上、下两部分,上部分产生G信号,下部分产生Ne信号,都是利用带有轮齿的转子旋转时,使信号发生器感应线圈内的磁通变化,从而在感应线圈里产生交变的感应电动势,再将它放大后,送入ECU。

Ne信号是检测曲轴转角及发动机转速的信号,相当于日产公司磁脉冲式曲轴位置传感器的1°信号。该信号由固定在下半部具有等间隔24个轮齿的转子(N0.2正时转子)及固定于其对面的感应线圈产生(如图 6(a)所示)。

当转子旋转时,轮齿与感应线圈凸缘部(磁头)的空气间隙发生变化,导致通过感应线圈的磁场发生变化而产生感应电动势。轮齿靠近及远离磁头时,将产生一次增减磁通的变化,所以,每一个轮齿通过磁头时,都将在感应线圈中产生一个完整的交流电压信号。N0.2正时转子上有24个齿,故转子旋转1圈,即曲轴旋转720°时,感应线圈产生24个交流电压信号。Ne信号如图 6(b)所示,其一个周期的脉冲相当于30°曲轴转角(720°÷24=30°)。更精确的转角检测,是利用30°转角的时间由ECU再均分30等份,即产生1°曲轴转角的信号。同理,发动机的转速由ECU依照Ne信号的两个脉冲(60°曲轴转角)所经过的时间为基准进行计测。

G信号用于判别气缸及检测活塞上止点位置,相当于日产公司磁脉冲式曲轴位置传感器120°信号。 G信号是由位于Ne发生器上方的凸缘转轮(No.1正时转子)及其对面对称的两个感应线圈(G

1感应线圈和G

2

感应线圈)产生的。其构造如图 7所示。其产生信号的原理与Ne信号相同。G信号也用作计算曲轴转角时的基准信号。

G

1、G

2

信号分别检测第6缸及第1缸的上止点。由于G

1

、G

2

信号发生器设置位置的关系,当产

生G

1、G

2

信号时,实际上活塞并不是正好达到上止点(BTDC),而是在上止点前10°的位置。图 8

所示为曲轴位置传感器G

1、G

2

、Ne信号与曲轴转角的关系。

2、磁脉冲式曲轴位置传感器的检测

以皇冠3.0轿车2JZ-GE型发动机电子控制系统中使用的磁脉冲式曲轴位置传感器为例说明其

检测方法,曲轴位置传感器电路如图 9所示。

(1)曲轴位置传感器的电阻检查

点火开关OFF,拔开曲轴位置传感器的导线连接器,用万用表的电阻档测量曲轴位置传感器上各端子间的电阻值(表 1)。如电阻值不在规定的范围内,必须更换曲轴位置传感器。

表 1 曲轴位置传感器的电阻值

(2)曲轴位置传感器输出信号的检

拔下曲轴位置传感器的导线连接器,当发动机转动时,用万用表的电压档检测曲轴位置传感

器上G

1-G

-、

G

2

-G

-

、Ne-G

-

端子间是否有脉冲电压信号输出。如没有脉冲电压信号输出,则须更换曲轴位

置传感器。

(3)感应线圈与正时转子的间隙检查

用厚薄规测量正时转子与感应线圈凸出部分的空气间隙(图 10),其间隙应为0.2-0.4mm。若间隙不合要求,则须更换分电器壳体总成。

二、光电式曲轴位置传感器

1、光电式曲轴位置传感器的结构和工作

(1)日产公司光电式曲轴位置传感器的结构和工作

日产公司光电式曲轴位置传感器设置在分电器内,它由信号发生器和带缝隙和光孔的信号盘组成(图 11)。信号盘安装在分电器轴上,其外围有360条缝隙,产生1°(曲轴转角)信号;外围稍靠内侧分布着6个光孔(间隔60°),产生120°信号,其中有一个较宽的光孔是产生对应第1缸上止点的120°信号的,如图 12所示。

信号发生器固装在分电器壳体上,主要由两只发光二极管、两只光敏二极管和电子电路组成(图 13)。两只发光二极管分别正对着光敏二极管,发光二极管以光敏二极管为照射目标。信号盘位于发光二极管和光敏二极管之间,当信号盘随发动机曲轴运转时,因信号盘上有光孔,产生透光和遮光的交替变化,造成信号发生器输出表征曲轴位置和转角的脉冲信号。图 14所示为光电式信号发生器的作用原理。

当发光二极管的光束照射到光敏二极管上时,光敏二极管感光而导通;当发光二极管的光束被遮挡时,光敏二极管截止。信号发生器输出的脉冲电压信号送至电子电路放大整形后,即向电控单元输送曲轴转角1°信号和120°信号。因信号发生器安装位置的关系,120°信号在活塞上止点前70°输出。发动机曲轴每转2圈,分电器轴转1圈,则1°信号发生器输出360个脉冲,每个脉冲周

期高电位对应1°,低电位亦对应1°,共表征曲轴转角720°。与此同时,120°信号发生器共产生6个脉冲信号。

(2)“现代SONATA”汽车用光电式曲轴位置传感器的结构和工作

“现代SONATA”,汽车光电式曲轴位置传感器的工作原理与日产公司光电式曲轴位置传感器相似,其信号盘的结构稍有不同,如图 15所示。对于带有分电器的汽车,传感器总成装于分电器壳内;对于无分电器的汽车,传感器总成安装在凸轮轴左端部(从车前向后看)。信号盘外圈有4个孔,用来感测曲轴转角并将其转化为电压脉冲信号,电控单元根据该信号计算发动机转速,并控制汽油喷射正时和点火正时。信号盘内圈有一个孔,用来感测第1缸压缩上止点(在有些SONATA车上,设有两孔,用来感测第1、4缸的压缩上止点,目的是为了提高精度),并将它转换成电压脉冲信号输入电控单元,电控单元根据此信号计算出汽油喷射顺序。其输出特性如图 16所示。

曲轴位置传感器的线路连接如图 17所示。其内设有两个发光二极管和两个光敏二极管,当发光二极管照射到信号盘光孔中的某一孔时,光线便照射到光敏二极管上,使电路导通。

2、光电式曲轴位置传感器的检测

(1)曲轴位置传感器的线束检查

图 18所示为韩国“现代SONATA”汽车光电式曲轴位置传感器连接器(插头)的端子位置。检查时,脱开曲轴位置传感器的导线连接器,把点火开关置于“ON”,用万用表的电压档(图 19)测量线束侧4#端子与地间的电压应为12V,线束侧2#端子和3#端子与地间电压应为4.8-5.2V,用万用表的电阻档测量线束侧1#端子与地间应为0Ω(导通)。

(2)光电式曲轴位置传感器输出信号检测

用万用表电压档接在传感器侧3#端子和1#端子上,在起动发动机时,电压应为0.2-1.2V。在起动发动机后的怠速运转期间,用万用表电压档检测2#端子和1#端子电压应为1.8-2.5V。否则应更换曲轴位置传感器。

曲轴位置传感器的检测

三、霍尔式曲轴位置传感器的检测

霍尔式曲轴位置传感器是利用霍尔效应的原理,产生与曲轴转角相对应的电压脉冲信号的。它是利用触发叶片或轮齿改变通过霍尔元件的磁场强度,从而使霍尔元件产生脉冲的霍尔电压信号,经放大整形后即为曲轴位置传感器的输出信号。

1、霍尔式曲轴位置传感器的结构和工作

(1)采用触发叶片的霍尔式曲轴位置传感器

美国GM公司的霍尔式曲轴位置传感器安装在曲轴前端,采用触发叶片的结构型式,如图 20所示。在发动机的曲轴皮带轮前端固装着内外两个带触发叶片的信号轮,与曲轴一起旋转。外信号轮外缘上均匀分布着18个触发叶片和18个窗口,每个触发叶片和窗口的宽度为10°弧长;内信号轮外缘上设有3个触发叶片和3个窗口,3个触发叶片的宽度不同,分别为100°、90°和110°弧长,3个窗口的宽度亦不相同,分别为20°、30°和10°弧长。由于内信号轮的安装位置关系,宽度为100°

弧长的触发叶片前沿位于第1缸和第4缸上止点(TDC)前75°,90°弧长的触发叶片前沿在第6缸和第3缸上止点前75°,110°弧长的触发叶片前沿在第5缸和第2缸上止点前75°。

如图 21所示,霍尔信号发生器由永久磁铁、导磁板和霍尔集成电路等组成。内外信号轮侧面各设置一个霍尔信号发生器。信号轮转动时,每当叶片进入永久磁铁与霍尔元件之间的空气隙时,霍尔集成电路中的磁场即被触发叶片所旁路(或称隔磁),如图 21(a)所示。这时不产生霍尔电压;当触发叶片离开空气隙时,永久磁铁2的磁通便通过导磁板3穿过霍尔元件(图 21(b)),这时产生霍尔电压。将霍尔元件间歇产生的霍尔电压信号经霍尔集成电路放大整形后,即向ECU输送电压脉冲信号(图 22)。外信号轮每旋转1周产生18个脉冲信号(称为18X信号),1个脉冲周期相当于曲轴旋转20°转角的时间,ECU再将1个脉冲周期均分为20等份,即可求得曲轴旋转1°所对应的时间,并根据这一信号,控制点火时刻。该信号的功用相当于光电式曲轴位置传感器产生1°信号的功能。内信号轮每旋转1周产生3个不同宽度的电压脉冲信号(称为3X信号),脉冲周期均为120°曲轴转角的时间,脉冲上升沿分别产生于第1、4缸、第3、6缸和第2、5缸上止点前75°作为ECU判别气缸和计算点火时刻的基准信号,此信号相当于前述光电式曲轴位置传感器产生的120°信号。

(2)采用触发轮齿的霍尔式曲轴位置传感器

克莱斯勒公司的霍尔式曲轴位置传感器安装在飞轮壳上,采用触发轮齿的结构。同时在分电器内设置同步信号发生器,用以协助曲轴位置传感器判别缸号。北京切诺基车的霍尔式曲轴位置传感器如图 23所示,在2.5L四缸发动机的飞轮上有8个槽,分成两组,每4个槽为一组,两组相隔180°,每组中的相邻两槽相隔20°。在4.OL六缸发动机的飞轮上有12个槽,4个槽为一组,分成三组,每组相隔120°,相邻两槽也间隔20°。

当飞轮齿槽通过传感器的信号发生器时,霍尔传感器输出高电位(5V);当飞轮齿槽间的金属与传感器成一直线时,传感器输出低电位(0.3V)。因此,每当1个飞轮齿槽通过传感器时,传感器便产生1个高、低电位脉冲信号。当飞轮上的每一组槽通过传感器时,传感器将产生4个脉冲信号。其中四缸发动机每1转产生2组脉冲信号,六缸发动机每1转产生3组脉冲信号。传感器提供的每组信号,可被发动机ECU用来确定两缸活塞的位置,如在四缸发动机上,利用一组信号,可知活塞1和活塞4接近上止点;利用另一组信号,可知活塞2和活塞3接近上止点。故利用曲轴位置传感器,ECU 可知道有两个气缸的活塞在接近上止点。由于第4个槽的脉冲下降沿对应活塞上止点(TDC)前4°,故ECU根据脉冲情况很容易确定活塞上止点前的运行位置。另外,ECU还可以根据各脉冲间通过的时间,计算出发动机的转速。

2、霍尔式曲轴位置传感器的检测

霍尔式曲轴位置传感器的检测方法有一个共同点,即主要通过测量有无输出电脉冲信号来判断其是否良好。下面以北京切诺基的霍尔式曲轴位置传感器为例来说明其检测方法。

曲轴位置传感器与ECU有三条引线相连,如图 24所示。其中一条是ECU向传感器加电压的电源线,输入传感器的电压为8V;另一条是传感器的输出信号线,当飞轮齿槽通过传感器时,霍尔传感器输出脉冲信号,高电位为5V,低电位为0.3V;第三条是通往传感器的接地线。曲轴位置传感器接头如图 25所示。

(1)传感器电源、电压的测试

点火开关置于“ON”,用万用表电压档测量ECU侧7#端子的电压应为8V,在传感器导线连接器“A”端子处测量电压也应为8V,否则为电源、线断路或接头接触不良。

(2)端子间电压的检测

用万用表的电压档,对传感器的ABC三个端子间进行测试,当点火开关置于“ON”时,A-C 端子间的电压值约为8V;B-C端子间的电压值在发动机转动时,在0.3-5V之间变化,且数值显示呈脉冲性变化,最高电压5v,最低电压0.3V。如不符合以上结果,应更换曲轴位置传感器。

(3)电阻检测

点火开关置于“OFF”位置,拔下曲轴位置传感器导线连接器,用万用表Ω档跨接在传感器侧的端子A-B或A-C间,此时万用表显示读数为∞(开路),如果指示有电阻,则应更换曲轴位置传感器。

GM(通用)公司触发叶片式霍尔传感器的测试方法与上述相似,只是端子为4个,上止点信号(内信号轮触发)输出端与接地端为脉冲电压显示。

传感器简答题

1:简述金属电阻应变片的工作原理,主要测量电路种类及其应用情况 应变式传感器是利用金属的电阻应变效应,将测量物体变形转换成电阻变化的传感器。被广泛应用于工程测量和科学实验中。 一工作原理 (一)金属的电阻应变效应当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。如图2-1所示 设有一根长度为l、截面积为S、电阻率为ρ的金属丝,在未受力时,原始电阻为 (2-1) 当金属电阻丝受到轴向拉力F作用时,将伸长Δl,横截面积相应减小ΔS,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR。对式(2-1)全微分,并用相对变化量来表示,则有: (2-2) 式中的Δl/l为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×10-6mm/mm)。若径向应变为Δr/r,电阻丝的纵向伸长和横向收缩的关系用 泊松比μ表示为,因为ΔS/S=2(Δr/r),则(2-2)式可以写成 (2-3) 式(2-3)为“应变效应”的表达式。k0称金属电阻的灵敏系数,从式(2-3)可见,k0受两个因素影响,一个是(1+2μ),它是材料的几何尺寸变化引起的,另一个是Δρ/(ρε),是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则k0≈1+2μ,对半导体,k0 值主要是由电阻率相对变化所决定。实验也表明,在金属电阻丝拉伸比例极限内,电阻相对变化与轴向应变成正比。通常金属丝的灵敏系数k0=2左右。 (二)应变片的基本结构及测量原理 各种电阻应变片的结构大体相同,以图2-2所示丝绕式应变片为例,它以直径为0.025mm左右的合金电阻丝2绕成形如栅栏的敏感栅,敏感栅粘贴在绝缘的基底1上,电阻丝的两端焊接引出线4,敏感栅上面粘贴有保护用的覆盖层3。l称为应变片的基长,b称为基宽,l×b称为应变片的使用面积。应变片的规格以使用面积和电阻值表示,例如3×10mm2,120Ω。 用应变片测量受力应变时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据式(2-3),可以得到被测对象的应变值ε,而根据引力应变关系 б=Eε(2-4) 式中б——测试的应力;

曲轴位置传感器地万用表检测

曲轴位置传感器的万用表检测 曲轴位置传感器的检测 曲轴位置传感器是发动机电子控制系统中最主要的传感器之一,它提供点火时刻(点火提前角)、确认曲轴位置的信号,用于检测活塞上止点、曲轴转角及发动机转速。曲轴位置传感器所采用的结构随车型不同而不同,可分为磁脉冲式、光电式和霍尔式三大类。它通常安装在曲轴前端、凸轮轴前端、飞轮上或分电器。 一、磁脉冲式曲轴位置传感器的检测 1、磁脉冲式曲轴位置传感器的结构和工作原理 (1)日产公司磁脉冲式曲轴位置传感器 该曲轴位置传感器安装在曲轴前端的皮带轮之后,如图1所示。在皮带轮后端设置一个带有细齿的薄圆齿盘(用以产生信号,称为信号盘),它和曲轴皮带轮一起装在曲轴上,随曲轴一起旋转。在信号盘的外缘,沿着圆周每隔4°有个齿。共有90个齿,并且每隔120°布置1个凸缘,共3个。安装在信号盘边沿的传感器盒是产生电信号信号发生器。信号发生器有3个在永久磁铁上绕有感应线圈的磁头,其中磁头②产生120°信号,磁头①和磁头③共同产生曲轴1°转角信号。磁头②对着信号盘的120°凸缘,磁头①和磁头③对着信号盘的齿圈,彼此相隔了曲轴转角安装。信号发生器有信号放大和整形电路,外部有四孔连接器,孔“1”为120°信号输出线,孔“2”为信号放大与整形电路的电源线,孔“3”为1°信号输出线,孔“4”为接地线。通过该连接器将曲轴位置传感器中产生的信号输送到ECU。 发动机转动时,信号盘的齿和凸缘引起通过感应线圈的磁场发生变化,从而在感应线圈里产生交变的电动势,经滤波整形后,即变成脉冲信号(如图2所示)。发动机旋转一圈,磁头②上产生3个120°脉冲信号,磁头①和③各产生90个脉冲信号(交替产生)。由于磁头①和磁头③相隔3°曲轴转角安装,而它们又都是每隔4°产生一个脉冲信号,所以磁头①和磁头③所产生的脉冲信号相位差正好为90°。将这两个脉冲信号送入信号放大与整形电路中合成后,即产生曲轴1°转角的信号(如图3所示)。 产生120°信号的磁头②安装在上止点前70°的位置(图4),故其信号亦可称为上止点前70°信号,即发动机在运转过程中,磁头②在各缸上止点前70°位置均产生一个脉冲信号。

如何用万用表检测串口

如何用万用表检测串口 维修工作中,遇到需要测试串口有无问题,我们一般的测量方法是: 1.连接串口设备如鼠标或串口通讯设备后,看检测设备是否可正常使用,从而判断串并口的好坏。 2.用短路测试环接在串并口上,用操作系统自带的超级终端程序或其他的串口测试程序来测试串口的好坏。 这两种方法的缺点是需要特定的设备或程序,并且要进入系统后才可进行,我们经常遇到再用户现场没有这些测试条件时,就可以借助于万用表检测串口是否正常,可以减少测量时间、提高工作效率和判断故障的准确性。 以下是万用表检测主板串口的方法,在实际维修中经长时间的实践验证,判断方法是准确可靠的。再这里作为个人的维修经验与大家交流,对准确性不作绝对保证,大家可在实际工作中加以验证。 串口的测量方法: 测试环境: 接上电源线就可以测量,但主板上要有CPU和内存。 首先要知道串口的针脚排列顺序:所有的针式插头(公头)的排列的规则为:面对正面,大口向上,从左到右,从上到下。 9针25针针脚定义电压值(直流) 1脚:载波检测DCD -0.07~-0.15V

2脚:接受数据RXD -0.07~-0.15V 3脚:发出数据TXD -10V~-12V 4脚:数据终端准备好DTR -10V~-12V 5脚:系统地线SG 0V(接地) 6脚:数据准备好DSR -0.07~-0.15V 7脚:请求发送RTS -10V~-12V 8脚:清除发送CTS -0.07~-0.15V 9脚:振铃指示RI -0.07~-0.15V 注意:串口电压为负值 判断标准: A.3.4.7脚电压值应该基本相等,一般实际测得得电压为-11.10V左右,否则串口有故障。 B.1.2.6.8.9脚电压值应完全相等,一般实际测得得电压为-0.14V左右,稍有差别就可判断为串口故障。 C.5脚因为接地应必为0V,否则此针接地不良,串口工作必不正常。

发动机电控单元及传感器万用表检测

发动机电控系统传感器与执行单元万用表检测方法

发动机电控系统万用表检测的注意事项 (1)除在测试过程中特殊指明者外,不能用指针式万用表测试电脑和传感器,应使用高阻抗数字式万用表,万用表内阻应不低于1OKΩ。 (2)首先检查保险丝、易熔线和接线端子的状况,在排除这些地方的故障后再用万用表进行检查。 (3)在测量电压时,点火开关应接通(ON),蓄电池电压应不低于11V。 (4)在用万用表检查防水型连接器时,应小心取下皮套(图 1(a)),用测试表笔插入连接器检查时不可对端子用力过大(图 1(b))。检测时,测试表笔可以从带有配线的后端插入(图 2(a)),也可以从没有配线的前端插入(图 2(b))。 (5)测量电阻时要在垂直和水平方向轻轻摇动导线,以提高准确性。 (6)检查线路断路故障时,应先脱开电脑和相应传感器的连接器,然后测量连接器相应端子间的电阻,以确定是否有断路或接触不良故障。 (7)检查线路搭铁短路故障时,应拆开线路两端的连接器,然后测量连接器被测端子与车身(搭铁)之间的电阻值。电阻值大于1MΩ为无故障。 (8)在拆卸发动机电子控制系统线路之前,应首先切断电源,即将点火开关断开(OFF),拆下蓄电池极桩上的接线。 (9)连接器上接地端子的符号因车型的不同而不同,应注意对照维修手册辨认。 (10)测量两个端子间或两条线路间的电压时,应将万用表(电压档)的两个表笔与被测量的两个端子或两根导线接触(图 3(a))。 (11)测量某个端子或某条线路的电压时,应将万用表的正表笔与被测的端子或线路接触;而将万用表的负表笔与地线接触(图 3(b))。 (12)检查端子、触点或导线等的导通性,是指检查端子、触点或导线等是否通电而没有断开,可用万用表电阻档测量其电阻值的方法进行检查(图 4)。 (13)在测量电阻或电压时,一般要将连接器拆开,这样就将连接器分成了两部分,其中一部分称为某传感器(或执行部件)连接器;另一部分称为某传感器(或执行部件)导线束连接器或导线束一侧的某传感器(或执行部件)连接器(或连接器套)。例如,拆下喷油器上的连接器后,其中一部分称为喷油器连接器,另一部分则称为喷油器导线束连接器或导线一侧的喷油器连接器。在测量时,应弄清楚是哪一部分连接器。 (14)所有传感器、继电器等装置都是和电脑连接的,而电脑又通过导线和执行部件连接,

场效应管万用表检测

场效应管万用表检测 IGBT有三个电极, 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极 E(也称源极) 一、用指针式万用表对场效应管进行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。 (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。

万用表的检验方法

万用表内校作业准则 1.适用范围 本准则适用于万用表、电容表类量测仪器的内部校准。 2.校准用基准设备 外校合格并在有效期内的数字式万用表。 3.校准周期 六个月。 4.环境条件 4.1温度(20±8)℃,相对湿度(65±20)%。 4.2电源电压:220V±3%,(50±2)Hz。 4.3周围无影响工作的电磁场干扰和机械振动。 5.校准步骤 5.1被检定的万用表不应有妨碍读数和影响正常工作的机械损伤、显示缺陷; 接线柱、旋钮等无松动、破裂、接触不良;量程开关跳步清晰。 5.2开电源后,被检定的万用表零点应能自行调整。如指针式万用表平放时,指针与0位没有重合,需调整零位螺丝,直到重合为止,指针应无卡针和抖动现象。 5.3电阻,电容:直接用基准表与待校表分别测试所选择的电阻,电容,记录测试结果。电流,电压:分别按下图所示,连接基准表与待校表。 电流表 电压表 5.4按照待测仪器的具体量程相应地改变测试条件(例如更换不同值的电阻电容或调节电路改变基准表 的示值),记录两块表每次测试的结果。 5.5根据以下公式计算误差: △(%)=(U-V)/V×100 式中:U ---- 待测仪器示值; V ---- 基准仪器示值; 5.6 所有检定值的误差在±3%以内,判校准合格。

示波器内校作业准则 1.适用范围 本准则适用于数字式或模拟式示波器类量测仪器的内部校准。 2.校准用基准设备 外校合格并在有效期内的数字式示波器。 3.校准周期 六个月。 4.环境条件 4.1温度(20±8)℃,相对湿度(65±20)%。 4.2电源电压:220V±3%,(50±2)Hz。 4.3周围无影响工作的电磁场干扰和机械振动。 5.校准步骤 5.1插好示波器的电源线,打开电源开关,电源指示灯亮。示波器显示屏可以出现扫描线并可以保持稳 定后,调节亮度到适当的位置,调节聚焦控制,使扫描线最细。 5.2调节基线旋钮,使扫描线与水平刻度线平行。 5.3将微调/扩展控制开关旋钮顺时针旋到校准位置,为避免测量误差,在测量前应检查和校正探极。 (校正方法:将探极接到示波器的校正方波输出端、调整探极上校正孔的补偿电容,直到屏幕上显示的方波为平顶。) 5.4将伏/度选择开关、工作方式开关、扫描时间选择开关,根据被测信号的大小,需要和频率高低放 在适当位置上。 5.5将输入耦合开关置于“GND”位置,确定零电平的位置,再置于“AC”位置,由探极输入标准被测 信号源的信号,调节同步开关旋钮,使波形稳定,观察屏幕上信号波形在垂直方向显示的幅度,被测信号电压力V/DIV与显示度数的乘积;当使用10:1输入探极时,要将屏幕显示幅度值×10。 5.6将三次测量的标准被测信号源的信号读数取平均值与作为比对基准的示波器三次测量平均值比对, 如果偏差在正负5%内为合格。 6.测量中应注意的事项 6.1测量时,不要把仪表放置在附近有强磁场的地方使用。 6.2被测信号源提供的信号强度不能超过示波器各输入端规定的耐压值,防止烧坏示波器的放大器。6.3用示波器测出的交流电压值为峰-峰值

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

传感器与检测技术试卷及答案

1.属于传感器动态特性指标的是(D ) A 重复性 B 线性度 C 灵敏度 D 固有频率 2 误差分类,下列不属于的是(B ) A 系统误差 B 绝对误差 C 随机误差 D粗大误差 3、非线性度是表示校准(B )的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B ) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A 工作频率宽 B 线性围宽 C 单位输入量引起的输出量大 D 允许输入量大 6 下列不属于按传感器的工作原理进行分类的传感器是(B) A 应变式传感器 B 化学型传感器 C 压电式传感器 D热电式传感器 7 传感器主要完成两个方面的功能:检测和(D) A 测量 B感知 C 信号调节 D 转换 8 回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A 多次测量 B 同次测量 C 正反行程 D 不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A 相对误差 B 绝对误差 C 引用误差 D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2 系统误差可消除,那么随机误差也可消除。(×) 3 对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4 平均值就是真值。(×) 5 在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 测量值是通过直接或间接通过仪表测量出来的数值。 测量误差是指测量结果的测量值与被测量的真实值之间的差值。

车用万用表检测案例

汽车万用表 1、汽车万用表的功能要求 在发动机电控系统故障的检测与诊断中,除经常需要检测电压、电阻和电流等参数外,还需要检测转速、闭合角、频宽比(占空比)、频率、压力、时间、电容、电感、温度、半导体元件等。这些参数对于发动机电控系统的故障检测与诊断具有重要意义。但是这些参数用一般数字式万用表无法检测,需用专用仪表即汽车万用表。汽车万用表一般应具备下述功能: (1)测量交、直流电压。考虑到电压的允许变动范围及可能产生的过载,汽车万用表应能测量大于40V的电压值,但测量范围也不能过大,否则,读数的精度下降。 (2)测量电阻。汽车万用表应能测量1MΩ的电阻,测量范围大一些使用起来较方便。 (3)测量电流。汽车万用表应能测量大于10A的电流,测量范围再小则使用不方便。 (4)记忆最大值和最小值。该功能用于检查某电路的瞬间故障。 (5)模拟条显示。该功能用于观测连续变化的数据。 (6)测量脉冲波形的频宽比和点火线圈一次侧电流的闭合角。该功能用于检测喷油器、怠速稳定控制阀、EGR电磁阀及点火系统等的工作状况。 (7)测量转速。 (8)输出脉冲信号。该功能用于检测无分电器点火系统的故障。 (9)测量传感器输出的电信号频率。 (10)测量二极管的性能。 (11)测量大电流。配置电流传感器(霍尔式电流传感夹)后,可以测量大电流。 (12)测量温度。配置温度传感器后可以检测冷却水温度、尾气温度和进气温度等。 目前国内生产的汽车万用表,如“胜利-98”、笛威TWAY9206、TWAY9406A 和EDA-230等型号的汽车万用表,都具有上述功能。有些汽车万用表,除了具有上述基本功能外,还有一些扩展功能。例如,EDA-230型汽车万用表在配用真空

使用万用表检测压力传感器的方法

压力传感器生产出来一般都要进行检测,有些客户拿到压力传感器时也习惯自己检测一下,但是客户一般没有系统的器件进行检测,一般都是用万用表进行简单检测。如何用万用表进行简单检测呢? 用万用表检测压力传感器只能进行简单的检测,检测结果也只供参考。大致可以进行三项检测,桥路的检测,主要检测传感器的电路是否正确,一般是惠斯通全桥电路,利用万用表的欧姆档,量输入端之间的阻抗、以及输出端之间的阻抗,这两个阻抗就是压力传感器的输入、输出阻抗。如果阻抗是无穷大,桥路就是断开的,说明传感器有问题或者引脚的定义没有判断正确。 零点的检测,用万用表的电压档,检测在没有施加压力的条件下,传感器的零点输出。这个输出一般为mV级的电压,如果超出了传感器的技术指标,就说明传感器的零点偏差超范围。加压检测,检单的方法是:给传感器供电,用嘴吹压力传感器的导气孔,用万用表的电压档检测传感器输出端的电压变化。如果压力传感器的相对灵敏度很大,这个变化量会明显。如果丝毫没有变化,就需要改用气压源施加压力。 通过以上方法,基本可以检测一个压力传感器的大致状况。如果需要准确的检测,就需要用标准的压力源,给传感器压力,按照压力的大小和输出信号的变化量,对传感器进行校准。并在条件许可的情况下,进行相关参数的温度检测。总之,压力传感器的检测是一个负责的任务,万用表可以进行一般的检测,在很多情况下可以适用,但是如果要求压力传感器严格的环境下使用就得进行系统的检测。 本文推荐产品:测温仪、数字万用表、钳形表、计数器、数显仪表 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

万用表检测的三个实例(干货)

万用表又称为复用表、多用表、三用表、繁用表等,是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。万用表按显示方式分为指针万用表和数字万用表。是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)等。万用表不仅可以用来测量被测量物体的电阻,交流电压还可以测量直流电压。甚至有的万用表还可以测量晶体管的主要参数以及电容器的电容量等。下面小编就举几个万用表的实例吧。 一、如何用万用表检测照明线路漏电故障 照明线路一旦出现漏电现象,不但浪费电能,而且还可能引起触电事故。漏电与短路的本质相同,只是事故发展程度不同而已,严重的漏电可能造成短路。因此,对照明线路的漏电,切不可掉以轻心,应经常检查线路的绝缘情况,尤其是发现漏电现象时,应及时查明原因,找出故障点,并予以消除。 照明线路漏电的主要原因是:一是导线或电气设备的绝缘受到外力损伤;二是线路经长期运行,导致绝缘老化变质;三是线路受潮气侵袭或被污染,造成绝缘不良。

首先,判断是否确实漏电。可用指针式万用表的R×10k档测测绝缘电阻的大小,或数字万用表置于交流电流档(此时相当于一个电流表),串联在总开关上,接通全部开关,取下所有负载(包括灯泡)。若有电流,则说明存在漏电现象。确定线路漏电后,可按以下步骤继续进行检查。 1、判断是相线与零线间漏电,还是相线与大地间漏电,或者二者兼而有之。方法是切断零线,若电流表指示不变,则是相线与大地漏电;若电流表指示为零,是相线与零线间漏电;电流表指示变小但不为零,则是相线与零线、相线与大地间均漏电。 2、确定漏电范围。取下分路熔断器或拉开断路器,若电流表指示不变,则说明总线漏电;电流表指示为零,则为分路漏电;电流表指示变小但不为零,则表明是总线、分路均有漏电。 3、找出漏电点。经上述检查,再依次断开该线路灯具的开关,当断开某一开关时,电流表指示返零,则该分支线漏电;若变小则说明这一分支线漏电外,还有别处漏电;若所有灯具开关断开后,电流表指示不变,则说明该段干线漏电。依次把事故范围缩小,便可进一步检查该段线路的接头、以及导线穿墙处等地点是否漏电。找到漏电点后,应及时消除漏电故障。负载端开始往前端一步步检测,查看工作是线路造成还是元件造成的,就可以判断出来了。排除短路故障点后,装接合格的熔丝再送电。

用试灯与万用表检测发动机所有的传感器

用试灯与万用表检测发动机所有的传感器 电控燃油喷射发动机故障自诊断 一、自诊断系统的功能 现代汽车的电控系统都配备有自诊断系统,ECU 的自诊断系统主要用于检测电子控制系统各部件的工作情况。自诊断系统具有以下功能: ①检测电子控制系统的故障。 ②将故障代码存储在ECU 的存储单元中。 ③提示驾驶员ECU 已检测到故障,应谨慎驾驶。 ④启用故障保护功能,确保车辆安全运行。 ⑤协助维修人员查找故障,为故障诊断提供信息。 二、故障代码的读取与清除方法 1、准备工作: ①拉紧驻车制动,变速器置于空挡。 ②用直观检查法对发动机控制系统进行全面检查。 ③检查蓄电池电压,电压值应在11V 以上。 ④启动发动机,怠速运转,使发动机达到正常工作温度。 ⑤关闭所有电控系统和辅助设备。 ⑥检查发动机故障指示灯是否正常。 2、故障代码的读取与清除方法: ①静态读码的方法。打开点火开关,用跨接线短接诊断端子的TE l 和 E 1 ,根据“CHECK ”灯闪烁,读取故障代码。 ②动态读码的方法。关闭点火开关,用跨接线短接诊断端子的TE 2 和E l 。打开点火开关,“CHECK ”灯应快速闪烁。然后进行路试,车速不得低于10km /h 。路试之后,再用跨接线短接诊断端子的TE l 和 E 1 ,根据“CHECK ”灯闪烁规律读取故障代码。 ③故障代码的清除。在排除故障后,应清除故障码。 若某一电路出现超出规定范围的信号时,诊断系统就判定该信号线路出现故障。如果故障状态存在超过一定的时间,此故障代码就会储存在电控单元ECU 的随机存储器中。如果在一定时间内该故障状态不再出现,则电控系统把它判定为偶发性故障,发动机启动50 次故障不再出现,该偶发性故障代码就会自动消除。 电控燃油喷射系统主要元件的检测 电控系统由传感器、ECU、执行机构和线束组成。ECU 不断检测传感器的性能参数,经计算、处理后,再控制执行机构动作。若主要元件出现故障,可读取故障代码、确定故障部位和维修方法。 一、传感器的检测

数字万用表常用测试

数字万用表简单使用 一、电压的测量 数字多用表的一个最基本的功能就是测量电压。测试电压,通常是解决电路问题时第一步要做的工作。如果没有电压或电压过低、过高,在进一步检查之前,首先要解决电源问题。 交流电压的波形可能是正弦(正弦波)或非正弦(锯齿波、方波等)。许多数字多用表可以显示交流电压的“rms”(有效值)。有效值就是交流电压等效于直流电压的值。 许多的表有“平均值”(average responding)的功能,当输入一个纯正弦波时它可以给出有效值。这种表不能准确的测量非正弦波的有效值。具有真有效值功能(true-rms)的数字多用表可以精确的测量非正弦波的真有效值。 数字多用表测量交流电压的能力由被测信号的频率限制。大多数数字多用表可以精确测量50赫兹到500赫兹的交流电压。但数字多用表的交流测量带宽可到几百千赫兹。对于交流电压和电流来说,其频率范围应与数字多用表规格书一致。 1、直流电压的测量 ①将黑表笔插入COM插孔,红表笔插入V/Ω插孔。 ②将功能开关置于直流电压档V-量程范围,并将测试表笔连接到待测电源(测开路电压)或负载上(测负载电压降),红表笔所接端的极性将同时显示于显示器上。 ③察看读数,并确认单位

①如果不知被测电压范围.将功能开关置于最大量程并逐渐下降. ②如果显示器只显示“1”,表示过量程,功能开关应置于更高量程. ③“”表示不要测量高于1000V的电压,显示更高的电压值是可能的,但有损坏内部线路的危险. ④当测量高电压时,要格外注意避免触电. 2、交流电压的测量 ①将黑表笔插入COM插孔,红表笔插入V/Ω插孔。 ②将功能开关置于交流电压档V~量程范围,并将测试笔连接到待测电源或负载上.测试连接图同上.测量交流电压时,没有极性显示。 二、电流的测量 1、直流电流的测量 ①将黑表笔插入COM插孔,当测量最大值为200mA的电流时,红表笔插入mA插孔,当测量最大值为20A的电流时,红表笔插入20A插孔。 ②将功能开关置于直流电流档A-量程,并将测试表笔串联接入到待测负载上,电流值显示的同时,将显示红表笔的极性.

万用表检测电路

如何仅用万用表来检测集成电路 编者按:虽说集成电路代换有方,但拆卸毕竟较麻烦。因此,在拆之前应确切判断集成电路是否确实已损坏及损坏的程度,避免盲目拆卸。本文介绍了仅用万用表作为检测工具的不在路和在路检测集成电路的方法和注意事项。文中所述在路检测的四种方法(直流电阻、电压、交流电压和总电流的测量)是业余维修中实用且常用的检测法。这里,也希望大家提供其他实用的(集成电路和元器件)判别检测经验。 一、不在路检测 这种方法是在IC未焊入电路时进行的,一般情况下可用万用表测量各引脚对应于接地引脚之间的正、反向电阻值, 并和完好的IC进行比较。 二、在路检测 这是一种通过万用表检测IC各引脚在路(IC在电路中)直流电阻、对地交直流电压以及总工作电流的检测方法。这种方法克服了代换试验法需要有可代换IC的局限性和 拆卸IC的麻烦,是检测IC最常用和实用的方法。 1.在路直流电阻检测法 这是一种用万用表欧姆挡,直接在线路板上测量IC各

引脚和外围元件的正反向直流电阻值,并与正常数据相比较,来发现和确定故障的方法。测量时要注意以下三点: (1)测量前要先断开电源,以免测试时损坏电表和元件。 (2)万用表电阻挡的内部电压不得大于6V,量程最好用 R×100或R×1k挡。 (3)测量IC引脚参数时,要注意测量条件,如被测机型、与IC相关的电位器的滑动臂位置等,还要考虑外围电路元 件的好坏。 2.直流工作电压测量法 这是一种在通电情况下,用万用表直流电压挡对直流供电电压、外围元件的工作电压进行测量;检测IC各引脚对地直流电压值,并与正常值相比较,进而压缩故障范围,找出损坏的元件。测量时要注意以下八点: (1)万用表要有足够大的内阻,至少要大于被测电路电阻 的10倍以上,以免造成较大的测量误差。 (2)通常把各电位器旋到中间位置,如果是电视机,信号 源要采用标准彩条信号发生器。 (3)表笔或探头要采取防滑措施。因任何瞬间短路都容易损坏IC。可采取如下方法防止表笔滑动:取一段自行车用气门芯套在表笔尖上,并长出表笔尖约0.5mm左右,这既能使表笔尖良好地与被测试点接触,又能有效防止打滑,

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的围.本电路选择其工作在 -19℃ 至500℃ 围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

传感器检查及判断

电喷发动机传感器检测大全 日期: 2010-3-27 23:15:44浏览: 416来源: 学海网收集整理作者: 未知 在现代汽车上,传感器的使用越来越普遍,为了方便维修人员对发动机的检修,现将发动机上常见的十几种传感器的检测方法介绍如下。 进气歧管压力传感器 进气歧管压力传感器,是D型(速度密度型)燃油喷射系统中非常重要的传感器,其作用是将进气歧管内的压力变化转换成电压信号。控制电脑(ECU)依据该信号和发动机转速(由装在分电器内的发动机转速传感器提供的信号)来确定进入汽缸内的空气量。 1、安装部位与接线端子 由于歧管压力传感器内部有放大电路,故需要电源线、地线和信号输出线共三根导线,它们相应地在接线端子上有三个接线端,分别为电源端子(Vcc)、接地端子(E)和信号输出端子(PIM),三个端子通过导线连接器及导线与控制电脑ECU相连。 为了减少进气歧管压力传感器内部电子元器件的振动,它通常安装在车辆振动相对较小的位置上,并处于进气总管的上方,以防来自进气歧管的窜气侵入压力传感器。另外进气歧管压力传感器从下边接受进气管压力也可防止信号传感部分不受污染,因此,通过橡胶管从进气歧管靠近节气门处所采集的进气管气体,是从歧管压力传感器下端接入的。 2、单体检测 (1)外观检视 检视时,只需从进气歧管靠近节气门端找到橡胶软管,便可在汽车上找到歧管压力传感器。首先,在关闭点火锁的状态下,检查进气歧管压力传感器导线连接器的连接是否良好、橡胶软管是否脱落。然后启动发动机,查看橡胶软管有无密封不严和漏气现象。 (2)仪表测试 A、接通点火开关(ON位),用万用表的直流电压挡(DCV-20)测试接线端子Vcc与E2之间的电压值,该电压值即为ECU加在歧管压力传感器上的电源电压值,其正常值应为:4.5~5.5V之间,若该值不正确,则应检查蓄电池电压或导线间的连接情况,有时问题也可能出在控制电脑ECU上。 B、接通点火开关(ON位),并从进气歧管压力传感器上拔下真空橡胶软管,使进气歧管压力传感器的进气口与大气相通,此时测试接线端子输出电压信号(PIM与地线E2之间的电压值),其正常值为:3.3~3.9V之间,若输出电压过高或过低,均说明进气歧管压力传感器有故障,应予更换。 C、接通点火开关(ON位),拆下进气歧管压力传感器上的真空橡胶软管,用手持真空泵向歧管压力传感器进气口处施以不同的负压(真空度),边施压边测试接线端子输电压信号PIM与地线E2之间电压值。该电压值应随所施加负压的增长呈线性增长,否则,说明传感器内的信号检测电路有故障,应予以更换。例如皇冠3.0型轿车2JZ-GE发动机有关正常数据如下表所示:

万用表使用及检测

万用表使用及检测 一、交直流电流得测量根据测量电流得大小选择适当得电流测量量程与红表笔得插入“A”电流插孔,测量直流时,红表笔(插入电流插孔中)接触电压高一端,黑表笔接触电压低得一端,正向电流从红表笔流入万用表,再从黑表笔流出,当要测量得电流大小不清楚得时候,先用最大得量程来测量,然后再逐渐减小量程来精确测量。测量电流时得连接电路图(i为电流) 二、交直流电压得测量红表笔插入“V/Ω”插孔中,根据电压得大小选择适当得电压测量量程,黑表笔接触电路“地”端,红表笔接触电路中待测点。特别要注意, 数字万用表测量交流电压得频率很低(45~500Hz),中高频率

信号得电压幅度应采用交流毫伏表来测量。测量电压时得连接电路图(u为电压) 三、电阻得测量 电阻得测量比较简单红表笔插入“V/Ω”插孔中,黑表笔插入''插孔,根据电阻得大小选择适当得电阻档,红、黑两表笔分别接触电阻两端,观察读数即可。 特别就是,测量在路电阻时(在电路板上得电阻),应先把电路得电源关断,以免引起读数抖动。禁止用电阻档测量电流或电压(特别就是交流220V电压),否则容易损坏万用表。在路检测时注意电阻不能有并联支路。 电阻档选得比较大时(比如测量10M得电阻)应先将两支表笔短路,显示得值可能为1M。每次测量完毕需把测量结果减去此值,才就是实际电阻值(电阻档高时,误差会比较大)。四、短开路检测将功能、量程开关转到蜂鸣档位置,两表笔分别测试点,若有短路,则蜂鸣器会响。用此方法可以检测电路线路得通断情况。注意:蜂鸣器响并不一定表示两点间线路短路,若两点间电阻比较小(20Ω)也会响。 五、数字万用表电容检测方法 检测电容有专用得电容表来测量电容容量,如下图所示 专用电容表 也可用万用表测量 固定小电容器得检测

数字万用表使用和常用电子元器件的识别与检测

数字万用表使用和常用电子元器件的识别与检测 一、交直流电流的测量 根据测量电流的大小选择适当的电流测量量程和红表笔的插入“A”电流插孔,测量直流时,红表笔(插入电流插孔中)接触电压高一端,黑表笔接触电压低的一端,正向电流从红表笔流入万用表,再从黑表笔流出,当要测量的电流大小不清楚的时候,先用最大的量程来测量,然后再逐渐减小量程来精确测量。

二、交直流电压的测量 红表笔插入“V/Ω”插孔中,根据电压的大 小选择适当的电压测量量程,黑表笔接触电 路“地”端,红表笔接触电路中待测点。特 别要注意,数字万用表测量交流电压的频率 很低(45~500Hz),中高频率信号的电压 幅度应采用交流毫伏表来测量。 测量电压时的连接电路图(u为电压) 三、电阻的测量 电阻的测量比较简单红表笔插入“V/Ω”插孔中,黑表笔插入"com"插孔,根据电阻的大小选择适当的电阻档,红、黑两表笔分别接触电阻两端,观察读数即可。 特别是,测量在路电阻时(在电路板上的电阻),应先把电路的电源关断,以免引起读数抖动。禁止用电阻档测量电流或电压(特别是交流220V 电压),否则容易损坏万用表。在路检测时注意电阻不能有并联支路。电阻档选的比较大时(比如测量10M的电阻)应先将两支表笔短路,显示的值可能为1M。每次测量完毕需把测量结果减去此值,才是实际电阻值(电阻档高时,误差会比较大)。 四、短开路检测 将功能、量程开关转到蜂鸣档位置,两表笔分别测试点,若有短路,则蜂鸣器会响。

用此方法可以检测电路线路的通断情况。 注意:蜂鸣器响并不一定表示两点间线路短路, 若两点间电阻比较小(20Ω)也会响。 五、数字万用表电容检测方法 检测电容有专用的电容表来测量电容容量,如下 图所示 也可用万用表测量 固定小电容器的检测 1、检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表电阻档,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。 2、检测10PF~0.01μF固定电容器是否有充电现象,进而判断其好坏。万用表选用电阻挡。两只三极管的β值均为100以上,且穿透电流要些可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

霍尔传感器测量电路

霍尔传感器测量电路 咨尔元件的基本电路如图1所示。控制电流颠电源f供给,RE,为调节电阻, 调节控制电流的大小。程尔输出端接负载RF,RR可以是一般电阻,也可以是放大器 的 输入电阻或指示器内阻。在磁场与控制电流的作用下,负裁上就有电压输出。在实际 使用时,J或B或两者同时作为信号输入,而输出信号则正比于J或B或两者的乘积。 内于建立霍尔效应所需的时间很短(10 很高(几千兆赫>。 =、温度误差及其补偿 因此,拧制电流为交流时 (一)温度误差 档尔死件测量的关镀是霍尔效府,而霍尔元件是内半导体制成的,固半导体对温度 很敏 感,霍尔元件的载流于迁移率、屯阻率和霍尔系数都陨温度而变化,因而使霍尔元件 的特性参 数(如霍尔电势和输入、输出电阻等)成为温度的函数,导致霍尔传感器产生温度误差。 [二)温度误差的补偿 为了减小霍尔元件的温度误差,需要对基本测量电路进行温度补偿的改进,可以来 用的补 偿方法柯许多种,常用的合以下方艾博希电子法:采用恒流源提供控制电流,选择合 理的负载电阻进行补

偿,利用霍尔元件回路的串联或并联电阻进行补偿,也可以在输入凹路或输出回路中加入热敏 电阻进行温度误差的补偿。 采用温度补偿元件是一种最常见的补偿方法。图2所示为采用热敏电阻进行补偿 的几种补偿方法。图2(n)所示为输入回路补偿电路,锑化钥元件的霍d;输出随温度 升高 而减小的出素,被控制屯流的增加(热敏电阻的阻位随温度升高旧减小)所补偿。图2(b) 所示为输出回路补偿电路成载上得到的霍尔电势随温度J1高而减小的因素,被热敏电阻阻佰 减小所补偿。图2(c)所示为用正温度系数的热敏电阻进行补偿的电路。 在使用时,温度补偿元件最好和霍尔元件封在一起或靠证,使它们温度变化一致。 随着微电子技术的发展,日前霍尔元件多已集成化。集成霍尔九件有许多优点 小、灵敏度高、输出幅度大、NXP代理商温漂小且对电流稳定性要求低等。 集成霍尔元件可分为线性型和开关则两大类。前者是将霍尔冗件和恒流源、线性放大器 等做公‘个芯片卜,输出电压较高,使用非常方便,日前已得到广泛的应蝴,较典型的线性霍尔 元件有UGN35N等。八关型是将霍尔元件、稳压电路、放大器、施密特触发器、(xj门等电路 做在同一个心片上。当外加磁场强度超过规定的工作点时,()川1由高电阻状态变为 导通状

相关主题
文本预览
相关文档 最新文档