当前位置:文档之家› 信号与系统大作业之通信系统仿真

信号与系统大作业之通信系统仿真

信号与系统大作业之通信系统仿真
信号与系统大作业之通信系统仿真

信号与系统大作业之通信系统仿真

【背景知识】

复用是通信系统中出于提高信息传输的速率以及节约资源的考虑,用一条高速的信道来传递许多低速信道汇集的信息,从而实现多路信息同时传输,提高效率。从发展的过程来看,通信系统主要经历了频分/时分/码分三个过程,开始是应用于模拟通信的FDM,后来由于出现了重要的PCM(脉冲编码调制)技术,TDM开始应用于数字通信,再到现在的CDM,以及光通信中的WDM,复用技术已经成为了通信领域不可缺少的一部分。

【仿真内容】

FDMA部分

【基本原理】

FDMA的基本流程:

信号→调制→信道→解调

由于FDMA采用的是通过分配不同的频带来实现信号的多路传输,因而可以通过Flourier变换的频移性质来搬移频谱,这是线性调制的主要思想。

频移性质:

其中F(·)代表Flourier变换。

FDM有很多种调制方法,如标准调幅(AM)、抑制载波双边带调制(DSB-SC)、单边带调制(SSB)和残留边带调制(VSB)等。

标准调幅的方法最简单,是用一个有直流分量(满足)的载波传递信号,解调时采用包络检波即可。但是这样的载波本身就占用了一部分发射功率,是一种浪费。同时由于调制后的信号有低频分量,从而为了防止频谱混叠,载波的频率必须高于二倍的调制信号频率。

抑制载波双边带调制的方法主要是使直流分量为0。这样可以使调制后的信号在零频附近为0,而且不至于造成直流功率的浪费。但是此时不能进行包络检波,所以只能采用同步解调的方法。即再乘同频同相的载波信号,再通过低通滤波得到原信号的1/2倍。这是由

决定的。

单边带和残留边带的思想基本一致。即信号调制后,上下边带是对称的,携带完全相同的信息,因而只要传输一个边带即可。对于单频的信号,由

将cos项称为同相分量,sin项称为正交分量,则只要有相移的网络即可产

生单边带的信号。类似可以证明,对于多频率分量的信号,只要有宽带的相移网络,对于正频率相移,负频率相移,即希尔伯特变换,也可以实现信号的单

边带传输。残留边带只是出于滤波器的不理想性而进行的让步,即满足传递函数在载频附近有互补特性的信号,也可以通过相干解调而无失真得到调制信号。

【仿真过程】

产生调制信道解调显示

上图为仿真系统的框图。自左到右分别为产生模块——调制并滤波模块——平稳高斯白噪声信道(AWGN)模块——滤波并解调模块——显示模块。

下面分模块说明有关设置:

上面零阶抽样保持的时间统一成0.001s(1ms)。

【产生模块】三个信号分别为4Hz 正弦,0.5Hz方波,1Hz锯齿波

【调制模块】三个载波分别为40Hz,60Hz,80Hz,用DSB(双边带)调制。【滤波模块】

考虑到正弦波的理论频谱为共轭对称的两个单频冲激,再由乘载波后的频谱搬移效应,第一个子信道用的滤波器通带为(35~45)*2*pi rad/s。

再看第二子信道,传的是0.5Hz的方波,由于方波的频谱只有奇次谐波,而且谐波的振幅随着频率增加以~1/(n^2)的规律衰减,所以只考虑到9次谐波,滤波器通带设定为(55~65)*2*pi rad/s。

第三子信道传的是1Hz的锯齿波。锯齿波的频谱只有正弦分量,而且谐波的振幅是以1/n规律衰减的。所以考虑到10次谐波。滤波器通带设定为

(79~91)*2*pi rad/s。

以上同一个子信道用同样的滤波器(带通)以实现匹配。

【AWGN模块】

模块设置见下图。

【解调模块】用和调制模块对应的频率进行相关解调即可。

【实验数据】

【波形分析】

子信道1波形:

由正弦波传输的结果来看,波形无显著的失真,而且注意到由于噪声的影响波形在振幅上有变化,而且有明显的时延。解调后信号的幅值与理论计算得到的幅值(0.5)基本一致。

子信道2波形:

由于滤波器的作用,只保留了1~9倍频的奇次谐波,因而波形有明显的改变,此外,在不连续点出现了Gibbs现象。波形同样有明显时延。解调后信号的幅值与理论计算得到的幅值(0.5)基本一致。

子信道3:

波形的周期没有改变,只是由于高频分量被舍去,波形发生了畸变,且在不连续点有Gibbs现象。信道传输中有明显时延。解调后信号的幅值与理论计算得到的幅值(0.5)基本一致。

【频谱分析】

如上图,加入Spectrum Scope部分,并加入零阶保持电路,时间为0.005s。子信道1频谱:

调制前

调制后

解调后

可以看出,原信号的频谱集中在4Hz左右,而调制后,信号的频谱被搬移到了36~44Hz的频带中。而解调后信号又出现了在4Hz左右的频率分量。这与理论分析相符合。

子信道2频谱:

调制前

调制后

调制后

可以看出,由于滤波器的作用,解调后的信号失去了原来的高频分量,因而造成了波形的畸变。

子信道3频谱:

调制前

调制后

解调后

可以看出,和矩形波一样,解调后失去了高频的分量,因而产生了波形的畸变。

总信道的频谱:

从总信道的频谱中可看出,由于滤波器及频分复用的特点,频谱没有出现混叠,信号可以独立传输于各自的频带,因而实现了FDM。

TDMA部分

【基本原理】

与频分复用的方式不同,时分复用是采用不同信号在不同时隙传输的方式。时分复用实现的重要的理论基础是Nyquist采样定理,即对于带限信号,若以大于等于2f m的(f m为带限信号的最大频率范围)频率进行采样,则可根据样值序列无失真地恢复原信号。各路信号在时域上是分离的,但是在频域上是混叠的,这与FDM刚好相反。

对于TDM系统而言,比起FDM有以下优点:

(1)用数字电路作为信号的汇合与分路,比起FDM的模拟方式更可靠。

(2)在非线性信道中,会产生交调失真(即信号间可能互相调制),从而产生高次谐波,造成路际串话,而TDM没有此缺点。

但是TDM的准确解调要求收发端的严格同步,并且信道中时钟的相位抖动也受到限制。因此要加同步信号。在实际通信系统中,时间信号按一定次序组成帧结构。

TDM的数字通信系统,是通过先复合成基群再通过数字复接技术汇合成更高速的信号的,群根据传输速度分1~4次群。随着对比特率要求的不断提升,四次群以上用SDH标准,是全球统一的同步数字复接系列。

【仿真过程】

产生复用汇合解复用输出结果

其中Multiplex和Demultiplex为系统TDMA的Subsystem。

Multiplex框图

Demultiplex框图

参数设置:由于系统传输信号的最高频率为4Hz,因此采样频率不能低于8Hz,取采样频率为100Hz,采样时间0.01s。

Pulse Generator参数设置如下:

【实验数据】

【波形分析】

汇合后的波形

解复用后得出的波形

可以看出,解复用后得出的波形与原波形很相近。

注意:Multiplex和Demultiplex模块实际上用的是同样的使能信号,都是使得输入的信号在不同时隙输出,因而门控脉冲必须保持同步,具体到本部分中就是将两者的使能信号pulse波都同步到simulation time上去。【拓展思考1】

将波形放大可以发现,波形实际上是由一个个台阶构成的。实际上这就是脉冲编码调制(PCM)的一种具体表现。

脉冲编码调制本质上就是用脉冲作为载波,对模拟信号进行调制。实际上本次实验得出的信号并不是最终恢复的模拟信号,必须经过重建才能得到真正的信号。由于采用抽样保持电路,故存在因平顶抽样造成的孔径失真(抽样保持电路本质上等同于冲激响应为矩形脉冲的系统,卷积后各频率项出现sinc函数因

子),收端必须采用频率响应为sinc函数之倒数的滤波器进行频谱补偿。

下面通过分析较为简单的正弦波的频谱来分析孔径失真。

下图为正弦波频谱及抽样后的正弦波的频谱。如果为理论冲激抽样,那么会有,其中为抽样的周期,为抽样的频率。

这里抽样频率约为1/0.03=33.3Hz。所以可以看到频谱在33Hz,66Hz左右处都有双边带。但可以看出振幅有明显的衰减,这实际上是sinc函数引起的衰减,sinc函数是抽样保持电路中保持的环节引入的,实际上是冲激响应为矩形脉冲对应的频谱。

正弦波频谱

抽样后信号的频谱

【拓展思考2】

对于PCM而言,分为抽样/量化/编码三个环节,本次实验中仅做到了抽样的环节,但是实际上影响PCM信号带宽的是量化环节。下面简要讨论量化对带宽产生的影响。量化会产生量化噪声,而显然对于给定的过载电压,编码位数越

高量化噪声越小,对于实际的通信系统而言,控制量化噪声也就意味着编码位数(对于二进制就是比特数)是有下限的,而采样频率是一个固定的值,因此比特率有下限,根据数字基带传输的Nyquist抽样定理的无码间串扰条件,有

,其中R s为波特率,对应到二进制就是比特率()。

为了控制信噪比,量化的函数f(x)(也成为压缩特性)应取为对数的。但理想的对数压缩是不可实现的(有负无穷点),因而采用折线近似。国际上通用的两种对数压缩特性为A律和μ律(详见曹志刚《现代通信原理》第五章5.8节)。

CDMA部分

【基本原理】

与FDM和TDM在时域和频域上做的变换不同,CDM实际上是在码域上进行的复用。码分复用采用一组正交的码字来携带特定信息,所谓正交是互相关为0。通过特定的方式可以产生具有很强自相关和很弱互相关的序列(如m序列),从而可以传输特定的信息。由于这些序列的码元宽度远小于基带信号的码元宽度,

因而具有比较大的带宽,因而基带信号与这些码组相乘的时候频域上是

展宽的,这些码也成为扩频码。如果基带信号直接乘正交码组称为直接扩频。当然还有更多的方式,比如跳频(FH)、跳时(TH)等,这里不赘述了。

扩频技术是通信领域一项重大的发明。从理论上,根据Shannon先生有扰信道的容量上限公式,

(其中S/N为信噪比)可以发现,如果扩展了W,那么对SNR的要求就会降低,这在很多不能保证高信噪比的信道中(如卫星通信)中是十分必要的。同时扩频之后的信号还有抗多径衰落、抗干扰、保密性强等特点。

【仿真过程】

第一部分:信源非语音信号

仿真的框图见下图。

CDMA的模块仿真需要较多的参数设置,分录于仿真框图下面。

信号产生模块

扩频码产生模块接收模块

信源模块:三个模块只有initial seed不同以对应不同的随机序列。分别为61,59,67.

中继器(Relay)环节

注意单极性转化为双极性需要设置阈值电压。实质是把0~1变为-1~1。Relay~Relay5设置相同。Relay6~Relay8(接收模块)的设置为:

注意由于接收端滤波的作用,使得接收端中继器前的信号不再是理想的矩形脉冲,故阈值电压要做相应的调整以使得恢复的信号接近原信号。下面就是滤波后的波形,可见信号经过滤波之后变得不再理想,但经过施密特触发器环节,仍可恢复原信号。

扩频码产生环节参数设置见下图:

由于扩频码的周期是码元周期的1/50,所以扩频达到50倍。

AWGN信道设置同FDMA。

数字滤波器的设置相同,都如下图。由于扩频码的宽度是原码元宽度的1/50,故滤除高频分量的时候可以滤到采样频率的1/20,即0.05。

【实验数据】

【波形分析】

扩频码的波形

扩频后(直接扩频)的波形

第一路信号的原波形(上)与接收端波形(下)

第二路信号的原波形(上)与接收端波形(下)

第三路信号的原波形(上)与接收端波形(下)

通过观察扩频码的波形可以发现,扩频码是一组频率远高于原码组的码字,目的是为了给码元组加上标记,利用正交性可以在接收端用相同的码字来检测。通过观察原波形和接收端的波形可以发现,除了少许噪声,波形基本相符。这也证明了码分多路复用技术是可行的。

【拓展思考】

关于码字极性的讨论。

实验要求中写明要用中继器来将码字变成双极性。这点应该从码字的正交性谈起。正交性是指函数空间的内积为零,但单极性的0-1序列是不可能满足这个条件的(积分恒正)。所以要将单极性码字转化为双极性,才能构造正交序列。

第二部分:信源为语音信号

【关于wav文件的编码规则】

WAV文件作为最经典的Windows多媒体音频格式,应用非常广泛,它使用三个参数来表示声音:采样位数、采样频率和声道数。声道有单声道和立体声之分,取样频率一般有11025Hz(11kHz) ,22050Hz(22kHz)和

44100Hz(44kHz) 三种。

其文件大小的计算方式为:

WAV格式文件所占容量(KB) = (取样频率×量化位数×声道)×时间 / 8 对于单声道声音文件,采样数据为八位的短整数(short int 00H-FFH)。【仿真过程】

实验框图见下图:

各参数设置如下图:

阶梯量化模块

信号与系统仿真作业

nGDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 课程名称课程号学院(系)信息学院 专业班级 学生姓名学号 实验地点04002 实验日期 实验一连时间信号的MATLAB表示 和连续时间LTI系统的时域分析 一、实验目的 1.掌握MATLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性; 2.运用MATLAB符号求解连续系统的零输入响应和零状态响应; 3.运用MATLAB数值求解连续系统的零状态响应; 4.运用MATLAB求解连续系统的冲激响应和阶跃响应; 5.运用MATLAB卷积积分法求解系统的零状态响应。 二、实验原理 1. 连续信号MATLAB实现原理 从严格意义上讲,MATLAB数值计算的方法并不能处理连续时间信号。然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号。

MATLAB提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。 三、实验内容 1.实例分析与验证 根据以上典型信号的MATLAB函数,分析与验证下列典型信号MATLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot()。 (1) 正弦信号:用MATLAB命令产生正弦信号2sin(2/4) ππ+,并会出时间0≤t≤3的波形图。 程序如下: K=2;w=2*pi;phi=pi/4; t=0:0.01:3; ft=K*sin(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('正弦信号')

信号与系统作业作业答案

信号与系统作业作业答 案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第二章 作业答案 2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。 (1))()(2)(2)(3)(t e t e t y t y t y +'=+'+'' 2)0(=-y ,1)0(-='-y 解: 根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1,221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ?? ?=-=????-=--='=+=--31 12)0(2)0(2 12121C C C C y C C y 所以,03)(2≥-=--t e e t y t t zi (2))(2)()(6)(5)(t e t e t y t y t y -'=+'+'' 1)0()0(=='--y y 。 解: 根据微分方程,可知特征方程为: 0)3)(2(0652=++?=++λλλλ 所以,其特征根为: 3,221-=-=λλ 所以,零输入响应可设为:0)(3221≥+=--t e C e C t y t t zi

又因为 ???-==??? ?=--='=+=--3 4 132)0(1)0(21 2121C C C C y C C y 所以,034)(32≥-=--t e e t y t t zi 2–2 某LTI 连续系统的微分方程为 )(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求: (1) 系统的零输入响应)(t y zi ; (2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。 解: (1)根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1,221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ???=-=??? ?=--='=+=--43 22)0(1)0(2 12121C C C C y C C y 所以,034)(2≥-=--t e e t y t t zi (2) 可设零状态响应为:0)(221>++=--t p e C e C t y t x t x zs 其中p 为特解,由激励信号和系统方程确定。 因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p 。

信号与系统大作业

中北大学 信号与系统综合性报告 学院:仪器与电子学院 专业:电子科学与技术 学号姓名:王鹏 学号姓名:张艺超 学号姓名:郭靖锋 学号姓名:蔡宪庆 学号姓名: 指导教师: 张晓明 2019年5 月13 日

1 设计题目时频域语音信号的分析与处理 2 设计目标对语音信号进行时频域分析和处理的基本方法 3 设计要求 1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中; 2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段; 3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱; 4)生成滤波后的语音文件,分析听觉效果。 4 理论分析 声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的 通过查阅资料显示,实际人声频率范围 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。声音可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。 5 实验内容及步骤 5.1 获取音频文件 5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频 件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频 5.2 音频的时域处理 5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时, 由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像 5.3 音频的频域处理 5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。 5.3.2 观察频域图,分析男女声特点。 5.4 噪声的去除 5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。 5.4.2 将去除噪声的数组转换成音频文件

信号与系统

信号与系统 单项选择题 1、 ( ) 1. D. x(t) 2. -x(t) 3. x(0) 4. -x(0) 2、设是带限信号, rad/s,则对进行均匀采样的最大间隔为( ) 1. 0.2s 2. 0.5s 3. 0.1s 4. 0.3s 3、下列信号中属于数字信号的是()。 1. 2. 3. 4. 4、设系统输入输出关系为y(t)=x(t)cos(t) ,则系统为()。 1.因果稳定

2.非因果稳定 3.因果不稳定 4.非因果不稳定 5、关于无失真传输的充要条件,下列叙述中正确的是()。 1.系统的幅频特性为常数 2.系统的相频特性与频率成正比 3. 4. 6、 1. 0 2. 1 3.无穷大 4.不存在 7、 1. 2. 1 3. 4.无法确定 8、关于数字频率,下列表达中错误的是() 1.数字频率的高频为π附近

2.数字频率的低频为0和2π附近 3.数字频率为模拟频率对采样频率归一化的频率 4.数字频率的单位为Hz 9、 1. 2. 3. 4. 10、关于三个变换之间的关系,下列叙述错误的是()。 1.若原信号收敛,虚轴上的拉氏变换就是傅里叶变换 2. s域的左半平面映射到z域的单位圆内部

3.从s域到z域的映射是单值映射 4. s域的右半平面映射到z域的单位圆外部 11、关于信号的分解,下列叙述正确的是() 1.傅里叶级数是一致性意义下的正交分解 2.任意普通信号可分解为冲激函数的叠加,可用卷积形式来描述 3.信号能分解为实分量和虚部分量,故可对信号进行滤波 4.由于信号的可分解性,故在时域中可用冲激响应来表征系统12、 1. 2 2. 4 3. -2 4. -4 13、 1. 2. 3. 4. 14、关于稳定性的描述,下列叙述中错误的是()。

信号与系统课程作业

一、题目 1.已知信号f(t)=sin(20πt)+sin(80πt),用如图所示的采样频率为fs=100Hz,大小为1的信号对其进行采 样,使用MATLAB编程, (1)绘制采样后的信号时域上的波形图; (2)对采样后的信号进行频谱分析,画出其幅度谱; (3)要从采样信号中恢复出原始信号f(t),在MATLAB中设计滤波器,画出滤波后的幅度谱; (4)将信号f(t)加载到载波信号s(t)=cos(500πt)上,画出调制后信号的波形图和幅度谱。 二、原理 1、信号的采样 “取样”就是利用从连续时间信号f(t)中“抽取”一系列离散样本值的过程。这样得到的离散信号称为取样信号。采样信号f(t)可以看成连续信号f(t)和取样脉冲序列s(t)的乘积。其中取样脉冲序列s(t)也称为开关函数。如果其各脉冲间隔时间相同,均为Ts,就称为均匀取样。Ts称为取样周期,fs=1/Ts 称为取样频率或取样率,ωs=2πfs=2π/Ts称为取样角频率。 如果f(t)?F(jω),s(t)?S(jω),则由频域卷积定理,得取样信号fs(t)的频谱函数为 本题的取样脉冲序列s(t)是周期为Ts=0.01s的冲激函数序列δTs,也就是冲激取样。而冲激序列δTs(这里T=Ts,Ω=2π/Ts=ωs)的频谱函数也是周期冲激序列,即

2、采样定理 所谓模拟信号的数字处理方法就是将待处理模拟信号经过采样、量化和编码形成数字信号,再利用数字信号处理技术对采样得到的数字信号进行处理。 一个频带限制在(0,fc)Hz的模拟信号m(t),若以采样频率fs≥2fc对模拟信号m(t)进行采样,得到最终的采样值,则可无混叠失真地恢复原始模拟信号m(t)。 其中,无混叠失真地恢复原始模拟信号m(t)是指被恢复信号与原始模拟信号在频谱上无混叠失真,并不是说被恢复信号与原始信号在时域上完全一样。由于采样和恢复器件的精度限制以及量化误差等存在,两者实际是存在一定误差或失真的。奈奎斯特频率:通常把最低允许的采样频率fs=2fc称为奈奎斯特频率。 3、信号的重构 设信号f(t)被采样后形成的采样信号为fs(t),信号的重构是指由fs(t)经过插处理后,恢复出原来的信号f(t)的过程。因此又称为信号恢复。 在采样频率ωs≥2ωm的条件下,采样信号的频谱Fs(jω)是以ωs为周期的谱线。选择一个理想低通滤 波器,使其频率特性H(jω)满足: ? ? ? > < = c c j H ω ω ω ω ω , , Ts ) ( 式中的ωc称为滤波器的截止频率,满足ωm≤ωc≤ωs/2。将采样信号通过该理想低通滤波器,输出信号的频谱将与原信号的频谱相同。因此,经过理想滤波器还原得到的信号即为原信号本身。 通过以上分析,得到如下的时域采样定理:一个带宽为ωm的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/ωm,该取样间隔又称为奈奎斯特(Nyquist)间隔,最低允许取样频率fs=2fm就是奈奎斯特频率。 使用matlab的sinc(x)的函数,sinc(x) 代表的是sin(pix)/(pix) 。 4、调制信号

福师《信号与系统》在线作业一满分答案

福师《信号与系统》在线作业一 试卷总分:100 测试时间:-- 一、单选题(共25 道试题,共50 分。) 1. 周期矩形脉冲的谱线间隔与( )。 A. 脉冲幅度有关 B. 脉冲宽度有关 C. 脉冲周期有关 D. 周期和脉冲宽度有关 满分:2 分 2. 单位序列响应h(n)=2u(n)的系统是( )系统。 A. 因果及稳定 B. 非因果及稳定 C. 因果及非稳定 D. 非因果及非稳定 满分:2 分 3. 一个含有3个电容、2个电感和3个电阻的系统,以下叙述正确的是( )。 A. 一定是2阶系统 B. 一定是5阶系统 C. 至多是2阶系统 D. 至多是5阶系统 满分:2 分 4. f(t)的频宽是200Hz,那么f(-2t-6)的奈奎斯特频率为( )。 A. 400Hz B. 200Hz C. 800Hz D. 100Hz

满分:2 分 5. 激励为x(n)时,响应y(n)=x(n)sin(2πn/7+π/6)的系统是( )系统。 A. 线性且时不变 B. 非线性且时不变 C. 线性且时变 D. 非线性且时变 满分:2 分 6. 在变换域中解差分方程时,首先要对差分方程两端进行( )。 A. 傅立叶变换 B. 拉普拉斯变换 C. Z变换 D. 以上答案都不正确 满分:2 分 7. 一个含有5个电容、1个电感和2个电阻的系统,以下叙述正确的是( )。 A. 一定是3阶系统 B. 一定是6阶系统 C. 至多是3阶系统 D. 至多是6阶系统 满分:2 分 8. 信号f(t)=Acos(2000πt)+Bsin(200πt)的归一化功率等于( )。 A. A+B B. (A+B)/2 C. A*A+B*B D. (A*A+B*B)/2 满分:2 分 9. 信号f(t)=Sa(100t)+Sa(50t)的最低抽样率等于( )。 A. 100/π

信号与系统综合作业

13级 工程信号与系统大作业题目语音信号的采集与频谱分析 成绩 班级 学号 姓名 日期2015-06-22

语音信号的采集与频谱分析 【摘要】本设计采集了一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab 平台对语音信号加入噪声,进一步设计了一个的低通滤波器,然后对加噪的语音信号进行滤波处理。 【关键词】语音信号;时域特性;频域特性; 滤波器 1绪论 1.1题目介绍 利用本课程中关于信号处理的相关内容,进行简单的语音信号采集及频谱分析工作,已达到加深对本课程信号与系统相关知识的理解,熟悉matlab工具的目的,并初步建立系统设计的概念。 1.2具体要求 (1)自己语音采集 自己唱一首歌,利用相关工具采集并存储为MATLAB可处理格式。 (2)歌星语音采集 将自己翻唱歌曲原曲处理为matlab可处理格式。 注意:自己语音与歌星语音应具有可比性,曲目、伴奏、时长等应相同 (3)频谱分析 利用matlab软件对两段音乐分别进行频谱分析,分析特性。 2基本原理 2.1 语音信号概述 语言是人类创造的,是人类区别于其他地球生命的本质特征之一。人类用语言交流的过程可以看成是一个复杂的通信过程,为了获取便于分析和处理的语音信源,必须将在空气中传播的声波转变为包含语音信息并且记载着声波物理性质的模拟(或数字)电信号,即语音信号,因此语音信号就成为语音的表现形式或载体。 语音学和数字信号处理的交叉结合便形成了语音信号处理。语音信号处理建立在语音学和数字信号处理基础之上。 2.2数字滤波器原理 2.2.1数字滤波器的概念

数字滤波器的实质是用一有限精度算法实现的离散时间线性时不变系统,以完成对信号进行滤波处理的过程。它是数字信号处理的一个重要分支,具有稳定性好、精度高、灵活性强、体积小、质量轻等诸多优点。 2.2.2数字滤波器的分类 数字滤波器根据不同的分类标准可以将滤波器分成不同的类别。 (1)根据单位冲激响应h(n)的时间特性分类 无限冲激响应(IIR)数字滤波器 有限冲激响应(FIR)数字滤波器 (2)根据实现方法和形式分类 递归型数字滤波器 非递归型数字滤波器 快速卷积型 (3)根据频率特性分类 低通数字滤波器、高通数字滤波器、带通数字波器、带阻数字滤波器 3具体实现 3.1声音信号获取 使用软件COOK EDIT PRO进行声音信号采集。对于44100Hz、22050Hz、11025Hz三种不同采样率共进行三次采集。采集完毕后使用COOL EDIT PRO软件进行后期处理,加入背景音乐。原唱音乐通过网络获得 所有音乐信号通过COOL EDIT PRO处理,统一音量大小、起始位置、时间长度并转换为matlab 可处理格式。 3.2声音信号的读取与打开 MATLAB中,[x,Fs,bits]=wavread('DATA');用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。 wavplay(x,Fs); 用于对声音的回放。向量x则就代表了一个信号,也即一个复杂的“函数表达式”,也可以说像处理一个信号的表达式一样处理这个声音信号。

信号与系统习题答案

《信号与系统》复习题 1. 已知f(t)如图所示,求f(-3t-2)。 2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值) 3.已知f(5-2t)的波形如图,试画出f(t)的波形。 解题思路:f(5-2t)?????→?=倍 展宽乘22/1a f(5-2×2t)= f(5-t) ??→?反转f(5+t)??→?5 右移 f(5+t-5)= f(t) 4.计算下列函数值。 (1) dt t t u t t )2(0 0--?+∞ ∞-) (δ (2) dt t t u t t )2(0 --?+∞ ∞-) (δ (3) dt t t e t ?+∞ ∞ --++)(2)(δ

5.已知离散系统框图,写出差分方程。 解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○ ∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) 右○ ∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。 a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程 6.绘出下列系统的仿真框图。 )()()()()(10012 2t e dt d b t e b t r a t r dt d a t r dt d +=++ 7.判断下列系统是否为线性系统。 (2) 8.求下列微分方程描述的系统冲激响应和阶跃响应。 )(2)(3)(t e dt d t r t r dt d =+

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

哈工大测试大作业——信号的分析与系统特性——锯齿波

1 题目: 写出下列信号中的一种信号的数学表达通式,求取其信号的幅频谱图(单边谱和双边谱)和相频谱图,若将此信号输入给特性为传递函数为)(s H 的系统,试讨论信号参数的取值,使得输出信号的失真小。 (选其中一个信号) 000 2=tan ,=45,=1w 2K T s T π ααπ= =假设锯齿波的斜取周期,则圆周率,A=1 2 幅频谱和相频谱 00()(+nT )(

所以0001111 (t)=(sin(w t)+sin(2w t)+sin(3w t)+223 w π-…) 转换为复指数展开式的傅里叶级数: 0000000-20 2 1-0 --1 00-02222 0001= (t)e =e 11 =e e |11 = e (2) T jnw t T n jnw t jnw t jnw t jnw t c w dt T t dt t jnw jnw jnw n w n w w π-??-+? ???+-=? ? 其中 当n=0时,01 = =22 A c ,0=0? ; =1,2,3,n ±±±当… 时, 111 222n n c A n π=== , 1,2,32 =1,2,32 n n n π ?π?=??? ?-=---?? 等 等 用Matlab 做出其双边频谱 图 1锯齿波双边幅频谱 A = 1 T0 = 1

201403学期信号与系统作业一答案

201403学期信号与系统作业一答案第1题根据信号定义域的特点可分为连续时间信号和( )。 A、有限时间信号 B、离散时间信号 C、周期时间信号 D、非周期时间信号 答案:B 第2题根据信号的能量性质可分为能量信号和 ( )。 A、功率信号 B、能量信号 C、功率有限信号 D、能量有限信号 答案:A 第3题系统初始状态为零,仅由输入信号引起的响应称为 ( )。 A、零状态响应 B、零输入响应 C、全响应 D、半状态响应 答案:A 第4题一个LIT系统,当其初始状态为零时,输入为单位冲击函数所引起的响应称为( )。 A、单位阶跃响应 B、阶跃响应 C、冲击响应 D、单位冲击响应 答案:D

第5题如果信号功率有限,则称信号为 ( )。 A、功率有限信号 B、能量有限信号 C、功率无限信号 D、能量无限信号 答案:A 第6题阻止信号通过的频率范围称为 ( )。 A、非通带 B、通带 C、阻带 D、非阻带 答案:C 第7题将信号f(t)变换为( )称为对信号f(t)的平移。 A、f(t–t0) B、f(k–k0) C、f(at) D、f(-t) 答案:A 第8题理想低通滤波器是 ( )。 A、物理可实现的 B、非因果的 C、因果的 D、不稳定的 答案:B

第9题连续周期信号的傅氏变换是 ( )。 A、连续的 B、周期性的 C、离散的 D、与单周期的相同 答案:C 第10题下列叙述正确的是( )。 A、各种数字信号都是离散信号 B、各种离散信号都是数字信号 C、数字信号的幅度只能取1或0 D、将模拟信号抽样直接可得数字信号 答案:A 判断题 第11题 s平面的左平面映射到z平面单位圆的外部。() 正确 错误 答案:错误 第12题激励为零,仅由系统的初始状态引起的响应叫做系统的零输入响应。() 正确 错误 答案:正确 第13题当用傅氏级数的有限项和来近似表示信号时,在信号的断点处存在吉布斯现象。()正确

(完整版)信号与系统习题答案.docx

《信号与系统》复习题 1.已知 f(t) 如图所示,求f(-3t-2) 。 2.已知 f(t) ,为求 f(t0-at) ,应按下列哪种运算求得正确结果?(t0 和 a 都为正值)

3.已知 f(5-2t) 的波形如图,试画出f(t) 的波形。 解题思路:f(5-2t)乘a 1 / 2展宽 2倍f(5-2 × 2t)= f(5-t)

反转 右移 5 f(5+t) f(5+t-5)= f(t) 4.计算下列函数值。 ( 1) ( 2) ( t ) t 0 )dt t 0 u(t 2 (t t 0)u(t 2t 0 )dt ( 3) (e t t ) (t 2)dt 5.已知离散系统框图,写出差分方程。 解: 2 个延迟单元为二阶系统,设左边延迟单元输入为 x(k) ∑ 0 1 1) → 左○ :x(k)=f(k)-a *x(k-2)- a*x(k- x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) ∑ y(k)= b 2*x(k)- b 0*x(k-2) (2) 右○ : 为消去 x(k) ,将 y(k) 按( 1)式移位。 a 1*y(k-1)= b 2 * a 1*x(k-1)+ b * a 1*x(k-3) (3) a 0*y(k-2)= b 2 * a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2) 、( 3)、( 4)三式相加: y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b *[x(k)+ a 1 *x(k-1)+a *x(k-2)]- b *[x(k-2)+a 1*x(k-3)+a *x(k-4)] 2 0 0 0 ∴ y(k)+ a 1 *y(k-1)+ a *y(k-2)= b 2 *f(k)- b *f(k-2) ═ >差分方程

信号与系统的MATLAB仿真

信号与系统的MATLAB 仿真 一、信号生成与运算的实现 1.1 实现)3(sin )()(π±== =t t t t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=' '== ==πππ π ππ m11.m t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果: 1.2 实现)10() sin()(sin )(±== =t t t t c t f ππ m12.m t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数 plot(t,f); % 绘制sinc(t)的波形 运行结果: 1.3 信号相加:t t t f ππ20cos 18cos )(+= m13.m syms t; % 定义符号变量t f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+= m14.m syms t; % 定义符号变量t f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果: 1.5 信号相乘:)20cos()(sin )(t t c t f π?= m15.m t=-5:0.01:5; % 定义时间范围向量 f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

信号与系统作业题

1、 系统的数学模型如下,试判断其线性、时不变性和因果性。其中X (0-)为系统的初始状态。 (1)()()2f t y t e = (2)()()cos2y t f t t = (3)()()2y t f t = 解:(1)()()2f t y t e = ① 线性: 设 ()()()()1122, f t y t f t y t →→,则 ()()()()122212, f t f t y t e y t e == 那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t e e e +???? +→==,显然, ()()()1122y t a y t a y t ≠+,所以是非线性的。 ② 时不变性 设()()11,f t y t →则 ()()()() 10122110, f t t f t y t e y t t e -=-= 设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以是时不变的。 ③ 因果性 因为对任意时刻 t 1,()()121f t y t e =,即输出由当前时刻的输入决定,所以系统是因果的。 (2)()()cos2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos2,cos2y t f t t y t f t t == 那么 ()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+????, 显然()()()1122y t a y t a y t =+,所以系统是线性的。 ② 时不变性 设()()11,f t y t →则 ()()()()()1110100cos2, cos2y t f t t y t t f t t t t =-=-- 设()()102,f t t y t -→则()()()21010cos2y t f t t t y t t =-≠-,所以是时变的。 ③ 因果性 因为对任意时刻 t 1,()()111cos2y t f t t =,即输出由当前时刻的输入决定,所以系统是因果的。

信号与系统试题及答案

模拟试题一及答案 一、(共20分,每小题5分)计算题 1.应用冲激函数的性质,求表示式25()t t dt δ∞ -∞?的值。 2.一个线性时不变系统,在激励)(1t e 作用下的响应为)(1t r ,激励)(2t e 作用下的响应为)(2t r ,试求在激励1122()()D e t D e t +下系统的响应。 (假定起始时刻系统无储能)。 3.有一LTI 系统,当激励)()(1t u t x =时,响应)(6)(1t u e t y t α-=,试求当激励())(23)(2t t tu t x δ+=时,响应)(2t y 的表示式。(假定起始时刻系统无储能)。 4.试绘出时间函数)]1()([--t u t u t 的波形图。 二、(15分,第一问10分,第二问5分)已知某系统的系统函数为25 ()32 s H s s s +=++,试 求(1)判断该系统的稳定性。(2)该系统为无失真传输系统吗? 三、(10分)已知周期信号f (t )的波形如下图所示,求f (t )的傅里叶变换F (ω)。 四、(15分)已知系统如下图所示,当0

1)0('=-f 。试求: (1)系统零状态响应;(2)写出系统函数,并作系统函数的极零图;(3)判断该系统是否为全通系统。 六. (15分,每问5分)已知系统的系统函数()2 105 2+++=s s s s H ,试求:(1)画出直 接形式的系统流图;(2)系统的状态方程;(3)系统的输出方程。 一、(共20分,每小题5分)计算题 1.解:25()500t t dt δ∞ -∞=?=? 2.解: 系统的输出为1122()()D r t D r t + 3.解: ()()t t u t u t dt -∞?=?, ()()d t u t dx δ= ,该系统为LTI 系统。 故在()t u t ?激励下的响应126()6()(1)t t t y t e u t dt e ααα ---∞ =?=--? 在()t δ激励下的响应2 2 ()(6())6()6()t t d y t e u t e u t t dx αααδ--==-+ 在3()2()tu t t δ+激励下的响应1818 ()12()12()t t y t e e u t t αααδαα --=--+。 4 二、(10分)解:(1) 21255 ()32(2)(1)1,s s H s s s s s s s ++= = ++++∴=-=-2,位于复平面的左半平面 所以,系统稳定. (2) 由于6 ()(3)4) j H j j j ωωωω+= ≠+常数+(,不符合无失真传输的条件,所以该系统不能对 输入信号进行无失真传输。 三、(10分)

《信号与系统》学习报告

《信号与系统》学习报告 姓名: 班级: 学号:

一、概述 在从事科学研究过程中,科学家们借助一定的工具手段或通过一定的思维方式不断发现新现象、新事物,提出新理论、新观点。科学家们揭示事物内在规律的“过程”被学者们提炼、总结为了“科学研究方法”。 “科学研究方法”的存在有利于学术规范的形成,有利于各门学科的可持续发展。从科研角度来讲,科学研究方法的优劣直接影响着科学研究的效果和效率;从学术角度来讲,科学研究方法的理解有助于对该学科的深入探讨。 《信号与系统》这门课程在介绍信号与系统分析的基本知识和方法的同时,实际上反映了许多科学研究的思维方法和规律[1]。因此,通过对这门课的知识内容所用“科学研究方法”的讨论和分析,学习科学家们建立模型、分析问题的思维方式和手段是非常有必要的。 傅里叶变换与拉普拉斯变换是《信号与系统》这门课程的核心内容,也是处理数学问题和工程问题不可或缺的理论工具。本文主要分析在傅里叶变换及拉普拉斯变换的研究过程中所涉及的科学研究方法。 二、科学研究的方法 我们主要举例探讨以下三种科学研究方法或思想: (1)“变换”概念的引入:类比于空间变换、正交分解的思想; (2)“傅里叶变换”的引入:改变观察问题的参照系; (3)从傅里叶变换推广到拉普拉斯变换:将局部规律推广到全局。 三、在课本内容中的体现与应用 1.类比思想 有时人们说,科学的解释在于产生一种还原,将一个疑难的不熟悉的现象还原为我们已经熟悉的事实和原理[2]。比如玻尔的氢原子模型与行星绕日轨道、波动理论与水波的传播,将不熟悉的理论模型“类比于”某个熟悉的现象。在某些特定的情况下,“类比思想”能够帮助我们理解抽象、陌生的概念,是非常有价值的。 对于傅里叶变换、拉普拉斯变换和Z变换,所谓“变换”无论数学过程多么复杂,其本质都是正交变换,其核心就是一种信号可以用另一种信号作为基函数线性表示。这一概念可以类比为空间中的正交分解;变换的基函数可以类比为空间的基向量;变换过程中的积分

实验一信号与系统仿真实验

实验一 信号与系统仿真实验 希望同学们根据实验任务要求事先做好预习,上机实验完成后应写出相应的实验报告(要求附程序与仿真结果)。 一、 实验目的 了解MA TLAB 的基本使用方法和编程技术,以及Simulink 平台的建模与动态仿真方法 ,进一步加深对课程所学内容的理解。 二、 实验项目 1.信号的分解与合成,观察Gibbs 现象。 2.信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 3.信号的频谱分析,观察信号的频谱波形。 4.系统函数的形式转换。 5.用Simulink 平台对系统进行建模和动态仿真。 三、 实验仪器 计算机一人一台;安装Matlab/Simulink 数值仿真软件平台。 四、 实验内容 1、以周期为T ,脉冲宽度为12T 的周期性矩形脉冲为例研究Gibbs 现象。 提示:已知周期方波信号的傅里叶级数系数a k 的表达式如下: π ωπωωk T k a T T a T e a t x k m m k t jk k )sin(22)(101000==== ∑-= 试画出x (t )的波形图(分别取m 等于1,3,7,19,79,T =4T 1),观察Gibbs 现象,通过对不同m 取值的合成波形观察,体会有限项合成信号与原信号的不同,同时,理解函数能量大部分集中在傅里叶级数系数a k 的第一对零点之内的道理 2、求卷积并画图 (1)已知:)2()1()(1---=t u t u t x ,)3()2()(2---=t u t u t x 求:)()()(21t x t x t y *==?并画出其波形。 (2)已知某离散系统的输入和冲激响应分别为:]5,3,2,1,5,3,4,1[][=n x ,]2,4,0,4,2,4[][=n h 。求系统的零状态响应,并绘制出系统的响应图。 提示:求卷积可用),(21x x conv ;画图可用subplot 、plot 和stem 。 3、求频谱并画图

信号与系统第一次作业

《信号与系统》第一次作业 姓名: 学号: 1. 判断下列系统是否为线性系统,其中()y t 、[]y k 为系统的完全响应,(0)x 为系统初始状态,()f t 、[]f k 为系统输入激励。 (1)()(0)lg ()=y t x f t 解:在判断具有初始状态的系统是否线性时,应从三个方面来判断。一是可分解性,即系统的输出响应可分解为零输入响应与零状态响应之和。二是零输入线性,系统的零输入响应必须对所有的初始状态呈现线性特性。三是零状态线性,系统的零状态响应必须对所有的输入信号呈现线性特性。只有这三个条件都符合,该系统才为线性系统。 ()(0)lg ()=y t x f t 不具有可分解性,所以系统是非线性系统。 (2)[](0)[][1]=+-y k x f k f k 解:y[k]具有可分解性,零输入响应x(0)是线性的,但零状态响应f[k]f[k-1]是非线性的,所以系统是非线性系统。 2. 判断下列系统是否为线性非时变系统,为什么?其中()f t 、[]f k 为输入信号, ()y t 、[]y k 为零状态响应。 (1)()()()=y t g t f t 解:在判断系统的时不变特性时,不涉及系统的初始状态,只考虑系统的零状态响应。 系统零状态响应,g(t)f(t)满足均匀性和叠加性,所以系统是线性系统。 因为T{f(t-t0)}=g(t).f(t-to) 而 y(t-t0)=g(t-t0).f(t-t0) ≠T{f(t-t0)},故该系统为时变系统。 因此该系统为线性时变系统 (2)220 [][],(0,1,2,)+===∑k i y k k f i k 解:220[][],(0,1,2,)+== =∑k i y k k f i k 为线性时变系统。

相关主题
文本预览
相关文档 最新文档