当前位置:文档之家› 二次函数专题训练(正方形的存在性问题)含答案

二次函数专题训练(正方形的存在性问题)含答案

二次函数专题训练(正方形的存在性问题)含答案
二次函数专题训练(正方形的存在性问题)含答案

1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.

(1)求抛物线的解析式.

(2)若点P在直线BD上,当PE=PC时,求点P的坐标.

(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.

2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为

(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.

3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M作M D∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F

(1)求二次函数y=ax2+bx﹣3的表达式;

(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;

(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.

4.(2015贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.

(1)求抛物线的解析式;

(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;

(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

5. (2016辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点

B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.

6.(2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式;

(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;

(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.

二次函数专题训练(正方形的存在性问题)参考答案

1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.

(1)求抛物线的解析式.

(2)若点P在直线BD上,当PE=PC时,求点P的坐标.

(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.

【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),

∴,∴,∴抛物线的解析式为y=x2+2x﹣3;

(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;

∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),

∴E(﹣1,0),

设直线BD的解析式为y=mx+n,

∴,∴,∴直线BD的解析式为y=﹣2x﹣6,

设点P(a,﹣2a﹣6),

∵C(0,﹣3),E(﹣1,0),

根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,

PC2=a2+(﹣2a﹣6+3)2,

∵PC=PE,

∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,

∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,

∴P(﹣2,﹣2),

(3)如图,作PF⊥x轴于F,

∴F(﹣2,0),

设M(d,0),

∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),

∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,

∴|d+2|=|d2+2d﹣3|,

∴d=或d=,

∴点M的坐标为(,0),(,0),(,0),(,0).

2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.

【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,

∴抛物线解析式为y=﹣x2+2x+6,

∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);

(2)如图1,过F作FG⊥x轴于点G,

设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,

∵∠FBA=∠BDE,∠FGB=∠BED=90°,

∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),

∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,

当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时

F点坐标为(﹣3,﹣);

综上可知F点的坐标为(﹣1,)或(﹣3,﹣);

(3)如图2,设对角线MN、PQ交于点O′,

∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,

∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,

设Q(2,2n),则M坐标为(2﹣n,n),

∵点M在抛物线y=﹣x2+2x+6的图象上,

∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,

∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).

3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F

(1)求二次函数y=ax2+bx﹣3的表达式;

(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;

(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.

【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,

得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;

(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).

如图,设点M坐标为(m,m2﹣2m﹣3),其中m>1,

∴ME=|﹣m2+2m+3|,

∵M、N关于x=1对称,且点M在对称轴右侧,

∴点N的横坐标为2﹣m,

∴MN=2m﹣2,

∵四边形MNFE为正方形,

∴ME=MN,

∴|﹣m2+2m+3|=2m﹣2,

分两种情况:

①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),

当m=时,正方形的面积为(2﹣2)2=24﹣8;

②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),

当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;

综上所述,正方形的面积为24+8或24﹣8.

(3)设BC所在直线解析式为y=px+q,

把点B(3,0)、C(0,﹣3)代入表达式,

得:,解得:,

∴直线BC的函数表达式为y=x﹣3,

设点M的坐标为(t,t2﹣2t﹣3),其中t<1,

则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),

∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.

∵MD=MN,∴|t2﹣3t|=2﹣2t,

分两种情况:

①当t2﹣3t=2﹣2t时,解得t1=﹣1,t2=2(不符合题意,舍去).

②当3t﹣t2=2﹣2t时,解得t3=,t2=(不符合题意,舍去).

综上所述,点M的横坐标为﹣1或.

4.(2015贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.

(1)求抛物线的解析式;

(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;

(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.

分析:(1)根据待定系数法,可得函数解析式;

(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案;

(3)根据正方形的性质,可得P、Q点坐标,根据待定系数法,可得函数解析式.

解答:解:(1)将A、B点坐标代入函数解析式,得,解得,

抛物线的解析式y=x2﹣2x﹣3;

(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,

M点的坐标为(1,﹣4),M′点的坐标为(1,4),

设AM′的解析式为y=kx+b,

将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,

联立AM′与抛物线,得

,解得,

C点坐标为(5,12).S△ABC=×4×12=24;

(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形,

由ABPQ是正方形,A(﹣1,0)B(3,0),得

P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),

将A点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a=,

抛物线的解析式为y=(x﹣1)2﹣2,

②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将

A点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,

解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,

综上所述:y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ为正方形.

5. (2016辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B

坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD. (1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.

分析(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;

(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;

(3)设对角线MN、PQ交于点O′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.

解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,

得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.

∵y=﹣x2+2x+6=﹣(x﹣2)2+8,

∴点D的坐标为(2,8).

(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.

∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,

∴△F′BO∽△BDE,∴.

∵点B(6,0),点D(2,8),

∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=?OB=3,∴点F′(0,3)或(0,﹣3).

设直线BF的解析式为y=kx±3,则有0=6k+3或0=6k﹣3,解得:k=﹣或k=,

∴直线BF的解析式为y=﹣x+3或y=x﹣3.

联立直线BF与抛物线的解析式得:①或②,

解方程组①得:或(舍去),∴点F的坐标为(﹣1,);

解方程组②得:或(舍去),∴点F的坐标为(﹣3,﹣).

综上可知:点F的坐标为(﹣1,)或(﹣3,﹣).

(3)设对角线MN、PQ交于点O′,如图2所示.

∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,

∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,

设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).

∵点M在抛物线y=﹣x2+2x+6的图象上,

∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,

解得:n1=﹣1,n2=﹣﹣1.

∴点Q的坐标为(2,﹣1)或(2,﹣﹣1).

6.(2016广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式;

(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;

(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.

(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;

(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.

解答解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,

∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;

(2)如图1,连接PC、PE,x=﹣=﹣=1,

当x=1时,y=4,∴点D的坐标为(1,4),

设直线BD的解析式为:y=mx+n,

则,解得,,∴直线BD的解析式为y=﹣2x+6,

设点P的坐标为(x,﹣2x+6),

则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,

∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,

解得,x=2,则y=﹣2×2+6=2,

∴点P的坐标为(2,2);

(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),

∵以F、M、G为顶点的四边形是正方形,

∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,

当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,

当2﹣a=﹣(﹣a2+2a+3)时,

整理得,a2﹣a﹣5=0,

解得,a=,

∴当以F、M、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数培优专项练习

学习必备 欢迎下载 1个单位,所得到的图象对应的二次函数关系式是 2)1(2-+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与 抛物线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(2 32 ++-=+-kx x k y k k 是二次函数, 则k 的值是______ 4.已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5. 抛物线 c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322--=x x y ,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(2 2+--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52 -+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 9.抛物线2 )13(-=x y 当x 时,Y 随X 的增大而增 大 10.抛物线42 ++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2 )3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为 12.若二次函数k ax y +=2 ,当X 取X1和X2(21x x ≠) 时函数值相等,则当X 取X1+X2时,函数值为 13.若函数2)3(-=x a y 过(2.9)点,则当X =4 时函数值Y = ★14.若函数k h x y ---=2 )(的顶点在第二象限则, h 0 ,k 0 15.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式? 16.将121222--=x x y 变为n m x a y +-=2)(的 形式,则n m ?=_____。 ★17. 已知抛物线在X 轴上截得的线段长为6.且顶点 的顶点到x 轴的距离是3, 那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-14 19.二次函数y=x 2 -(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9 20.若0 B.1a < C.1a ≥ D.1a ≤ 30.抛物线y= (k 2-2)x 2 +m-4kx 的对称轴是直线x=2,且它的最低点在直线y= - 2 1 +2上,求函数解析式。 31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 32.y= ax 2 +bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式 32.抛物线562 -+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。 (2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。求M 点坐标(得分点的把握) (3)在该抛物线的对称轴上是否存在点Q ,使得 △QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. 4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰 梯形,若存在,求出P 点的坐标;若不存在,请说明理由

二次函数的定义专项练习30题有答案

二次函数的定义专项练习30题(有答案) 1.下列函数中,是二次函数的有() 2y=③y=x(1﹣x)④y=﹣x(②1﹣2x)(1+2x)①y=1 A.1个B.2 个C.3个D.4 个 2.下列结论正确的是() 2.A是二次函数y=ax B.二次函数自变量的取值范围是所有实数C.二次方程是二次函数的特例 D.二次函数自变量的取值范围是非零实数 3.下列具有二次函数关系的是() A.正方形的周长y与边长x B.速度一定时,路程s与时间t C.三角形的高一定时,面积y与底边长x D.正方形的面积y与边长x )是二次函数,则m等于()4.若y=(2﹣m ±2 B.2 C.﹣2 D.不A.能确定 2)是二次函数,则m的值是((m+m)5.若y= B.m =2 C.m=﹣A.1或m=3 D.m =3 ±2m=1

222中,二次函数的个数为(x),y=(x﹣1)6.,下列函数y=3x﹣x,,y=x(﹣2)5个4个D..A.2个B.3个 C )7.下列结论正确的是( 二次函数中两个变量的值是非零实数A. xB.二次函数中变量的值是所有实数 2. C +bx+cy=ax的函数叫二次函数形如2 D .c的值均不能为零二次函数y=axa+bx+c中,b, )8.下列说法中一定正确的是( 2.A c为常数)一定是二次函数,函数y=ax(其中+bx+ca,b B.圆的面积是关于圆的半径的二次函数路程一定时,速度是关于时间的二次函数. C 圆的周长是关于圆的半径的二次函数.D 2)是二次函数的条件是(m﹣n)x+mx+n.函数9y=(n ≠n是常数,且m≠0 B.m、A.m、n是常数,且m 可以为任何常数m、nn≠0 D.C.m、n是常数,且 ).下列两个量之间的关系不属于二次函数的是(10 .速度一定时,汽车行使的路程与时间的关系 A .质量一定时,物体具有的动能和速度的关系 B .质量一定时,运动的物体所受到的阻力与运动速度的关系 C .从高空自由降落的物体,下降的高度与下降的时间的关系D )11.下列函数中,y是x二次函数的是(22 DC..A.y=x﹣1 B.1 y﹣=x+2x =xy210 y=x+﹣ 个函数:12.下面给出了6 222 y=y=;﹣②y=xy=x﹣3x;③;y=④(x⑥+x+1);⑤①y=3x.﹣1;)其中是二次函数的有(个D.4 C2A.1个B.个.3个 2)之间的关系是(t(g为常量),h13.自由落体公式与h=gt 以上答案都不对D.一次函数C.二次函数A.正比例函数 B. 的值一定是_________+kx+1是二次函数,那么k.﹣14.如果函数y=(k3 )

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

培优二次函数辅导专题训练及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

初中二次函数计算题专项训练与答案

初中二次函数计算题专项训练及答案 :___________班级:________考号:_______ 1、如下图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点 的坐标为(3,4),B点在轴上. (1)求的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由. 2、如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆 心,AB为直径作⊙P与轴的正半轴交于点C。 (1)求经过A、B、C三点的抛物线对应的函数表达式。 (2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式。 (3)试说明直线MC与⊙P的位置关系,并证明你的结论。 3、已知;函数是关于的二次函数,求: (1)满足条件m的值。 (2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大? (3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小. 4、如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB 的直线为轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标; (2)求过A、D、C三点的抛物线的解析式及其对称轴L.

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

初中二次函数计算题专项训练及答案

初中二次函数计算题专项训练及答案 姓名:___________班级:________考号:_______ 1、如下图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点 的坐标为(3,4),B点在轴上. (1)求的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由. 2、如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆 心,AB为直径作⊙P与轴的正半轴交于点C。 (1)求经过A、B、C三点的抛物线对应的函数表达式。 (2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式。 (3)试说明直线MC与⊙P的位置关系,并证明你的结论。 3、已知;函数是关于的二次函数,求: (1)满足条件m的值。 (2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大? (3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小. 4、如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB 的直线为轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标; (2)求过A、D、C三点的抛物线的解析式及其对称轴L.

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

最新中考数学专题培优:二次函数综合应用(含答案)

2020年中考数学专题培优 二次函数综合应用(含答案) 一、解答题(共有7道小题) 1.如图,直线1y x =+与x 轴教育点A ,切经过点B(4,m)。点C 在y 轴负半轴上,满足OA=OC ,抛物线 () 20y ax bx c a =++≠经过A 、B 、C 三点,且与x 轴的另一交点为D 。 (1)球抛物线的解析式。 (2)在抛物线的对称轴上找一点P ,使PA+ PC 的和最小。求出点P 的坐标。 2.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形, 请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. 3.如图,已知二次函数 2 = + + y ax bx c 的图象与x 轴相交于A(-1,0),B(3,0)两点,与y 轴相交于点C(0,-3). y x C D B A O x y P B A C O

(1)求这个二次函数的表达式; (2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值; ②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标. 4.如图,在平面直角坐标系中,二次函数265=- + - y x x 的图象与x 轴交于A 、B 两点,与 y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)求点P ,C 的坐标; (2)直线l 上是否存在点Q ,使△PBQ 的面积等于△PAC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由. 5.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. y x M C A O B P H y x D B A l C P O x y P B A C O

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

2017二次函数应用题专题训练

作品编号:DG13485201600078972981 创作者:玫霸* 2017二次函数应用题专题训练 1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元. (1)当每吨售价为240元时,计算此时的月销售量; (2)求y与x的函数关系式(不要求写出x的取值范围); (3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 2.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯?

3.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇 远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克 香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香 菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每 天有6千克的香菇损坏不能出售. (1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =100 1 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳100 1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

培优 易错 难题二次函数辅导专题训练附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.已知抛物线26y x x c =-++. (1)若该抛物线与x 轴有公共点,求c 的取值范围; (Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ???,求c 的取值范围. 【答案】(I )9c -;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是21 74 c -<< 【解析】 【分析】 (1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可; (2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ???可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】 解:(I )∵抛物线2 6y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根。 240b ac ∴?=-,即264(1)0c -?-?.解得9c - (Ⅱ)根据题意,设()()1122,21,,21M x x N x x ++ 由2621 y x x c y x ?=-++?=+?,消去y ,得2410x x c -+-= ①. 由2 (4)4(1)1240c c ?=---=+>,得3c >-. ∴方程①的解为1222x x == ()()()()2 2 2 21212122121520(3)MN x x x x x x c ∴=-++-+=-=+???? 20(3)20c ∴+=,解得2c =- (Ⅲ)设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,且0, 0,m n m n >>≠, 2266m m c n n n c m ?-++=∴?-++=?,两式相减,得227()0n m m n -+-=,即()(7)0m n m n -+-= 7m n ∴+=,即7n m =- 2770m m c ∴-+-=,其中07m << 由0?,即2 74(1)(7)0c -?-?-,得214 c - .

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

相关主题
文本预览
相关文档 最新文档