当前位置:文档之家› 06-midas边界条件建立

06-midas边界条件建立

06-midas边界条件建立

06-定义边界条件

MIDAS/Civil 里包含多种边界表现形式。这里介绍的比较常用的一般支撑、节点弹性支撑、面弹性支撑、刚性连接等边界条件的定义方法。

一般支撑是应用最广的边界条件,选择要施加一般支撑的节点,选择约束自由度方向即完成一般支撑的定义。节点弹性支撑的定义方法同一般支撑,不同的是在定义约束的自由度方向要输入约束刚度。

面弹性支撑不仅可以针对板单元来定义弹性支撑条件,而且可以对梁单元、实体单元来定义面弹性支撑。这种支撑条件在模拟结构与土体的连接条件时应用比较广。需要输入的参数地基弹性模量,这个可以在地质勘查报告中查

得。图1所示为面弹性支撑定义对话框。

对于弹性连接和刚性连接涉及的都是两个节

点间的连接情况。对于弹性连接选择连接的自由度

方向和该方向的刚度参数就可以了,弹性连接的方

向是按照连接的两个节点间的局部坐标系方向来

定义的(如图2)!刚性连接是强制从属节点的某些

自由度从属于主节点(如图3所示)。

图1 面弹性支撑定义

输入基床系数

图2 弹性连接局部坐标系 图3 刚性连接对话框 指定主节

点,与选择

的从属节

点建立刚

性连接。

弹性力学试题

第一章绪论 1、所谓“完全弹性体”是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)和(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法?(C)

A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞和键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D ) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。 13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D ) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1 τ2 τ3 τ4 τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

边界条件的设置

第二章:边界条件 这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。 §2.1 为什么边界条件很重要 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。 §2.2 一般边界条件 有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构 背景边界:所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。 有耗边界:如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与

弹性力学试题

第一章绪论 1、所谓“完全弹性体”就是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识就是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都就是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的就是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)与(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围与精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围与精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力与位移分析要用什么分析方法?(C) A、材料力学 B、结构力学

C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞与键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都就是体力。(√) 11、下列外力不属于体力的就是(D) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它就是质量力。 13、在弹性力学与材料力学里关于应力的正负规定就是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1τ2 τ3τ4τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

电磁场的边界条件

1)麦克斯韦方程组可以应用于任何连续的介质内部。 2)在两种介质界面上,介质性质有突变,电磁场也会突变。 3)分界面两边按照某种规律突变,称这种突变关系为电磁场的边值关系或边界条件。 4)推导边界条件的依据是麦克斯韦方程组的积分形式。 一、边界条件的一般形式 1、B 的边界条件: 2、D 的边界条件 结论:电位移矢量 在不同媒质分界面两侧的法向分量不连续,其差值等于分界面上自由电荷面密度。 3. H 的边界条件 h ?→S ?n -n 2 μ 1μ 2 B 1B n 11220 B dS B dS ??+?=120 B n B n ??-?=210 lim S h D H l H l J sl slh t →???-?=?-??2t t S H H J ?-=12()S n H H J ??-=21,S H l H l J s l n s ??-?=?=?()C s D H dl J dS t ?=+??? 2 μ1μ2H n 1H h ?→l s 12()S n H H J ?-=12()D D n σ -?=? 2ε 1ε 2 D 1 D n 0 h ?→S ?n -n 12n n D D σ ?-=0S B dS ?=? 12()0 n B B ?-=21n n B B ?=S D dS q =?? ? ?

式中: S J 为介质分界面上的自由电流面密度。 结论:磁场强度 D 在不同媒质分界面两侧的切向分量不连续,其差值等于分界面上的电流面密度S J 4.E 的边界条件 结论:电场强度E 在不同每只分界面两侧的切向分量连续。 二、理想介质是指电导率为零的媒质,0=γ 2)在理想介质内部和表面上,不存在自由电荷和自由电流。 结论:在理想介质分界面上,E 、H 矢量切向连续; 在理想介质分界面上,B 、D 矢量法向连续。 三、理想导体表面上的边界条件 1)理想介质是指电导率为无穷大的导体, 12t t E E ?=12()0 n E E ??-= 2ε 1 ε 2 E n 1E 2 θ 1θ 0h ?→l s l S B E dl d S t ??=-??? ?12()0 n E E ?-=?12t t E E =0 s J =0 ρ=12t t H H =? 12n n D D =12()0 n D D ?-=?12()0 n B B ?-=12n n B B =?12()0n H H ?-=

《弹性力学》试题

《弹性力学》试题 一.名词解释 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空 1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。 2.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。 3.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件)。 4.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 5.平面问题的应力函数解法中,Airy应力函数 在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。 6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 7.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 8.利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学复习题(水工)要点

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

同济【弹性力学试卷】2008年期终考试A-本科

同济大学课程考核试卷(A 卷) 2008 — 2009 学年第 一 学期 命题教师签名: 审核教师签名: 课号:030192 课名: 弹性力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√ )、重考( )试卷 年级 专业 学号 姓名 得分 一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共30分,每小题2分) 1. 三个主应力方向必定是相互垂直的。( ) 2. 最小势能原理等价于平衡方程和面力边界条件。( ) 3. 轴对称的位移对应的几何形状和受力一定是轴对称的。( ) 4. 最大正应变是主应变。( ) 5. 平面应力问题的几何特征是物体在某一方向的尺寸远小于另两个方向的尺寸。( ) 6. 最大剪应力对应平面上的正应力为零。( ) 7. 弹性体所有边界上的集中荷载均可以按照圣维南原理放松处理边界条件。( ) 8. 用应力函数表示的应力分量满足平衡方程,但不一定满足协调方程。( ) 9. 经过简化后的平面问题的基本方程及不为零的基本未知量(应力、应变和位移)均为8 个。( ) 10. 运动可能的位移必须满足已知面力的边界条件。( ) 11. 实对称二阶张量的特征值都是实数。( ) 12. 对单、多连通弹性体,任意给出的应变分量只要满足协调方程就可求出单值连续的位 移分量。( ) 13. 若整个物体没有刚体位移,则物体内任意点处的微元体都没有刚体位移。( ) 14. 出现最大剪应力的微平面和某两个应力主方向成45度角。( ) 15. 对任意弹性体,应力主方向和应变主方向一致。( ) 二.分析题(共20分,每小题10分) 1.已知应力张量为()()2211e e e e σ?-+?+=b a b a ,0>>a b (1) 设与xy 平面垂直的任意斜截面的法向矢量为21sin cos e e n θθ+=,试求该斜截面上的正应力与剪应力。 (2) 求最大和最小剪应力值。

fluent边界条件设置

边界条件设置问题 1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。 Momentum 动量 thermal 温度 radiation 辐射 species 种类 DPM DPM模型(可用于模拟颗粒轨迹) multipahse 多项流 UDS(User define scalar 是使用fluent求解额外变量的方法) Velocity specification method 速度规范方法: magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区 Velocity magnitude 速度的大小 Turbulence 湍流 Specification method 规范方法

k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率 Intensity and length scale 强度和尺寸: 1湍流强度 2 湍流尺度=(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率 intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径 2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。压力进口条件还可以用于处理外部或者非受限流动的自由边界。 Gauge total pressure 总压supersonic/initial gauge pressure 超音速/初始表压constant常数 direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界

边界条件中湍流设置

在入口、出口或远场边界流入流域的流动,FLUENT 需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ● Spalart-Allmaras 模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m 和密度与分子粘性的适当结合, FLUENT 为修改后的湍流粘性计算边界值。 ● k-e 模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。 ● 雷诺应力模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. Kinetic Energy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I 定义为相对于平均速度u_avg 的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算: ()81Re 16.0-?'≡H D avg u u I

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

“弹性力学”期末试卷(2003).

华中科技大学土木工程与力学学院 《弹性力学》试卷 2003~2004学年度第一学期 一. 如图所示为两个平面受力体,试写出其应力边界条件。(固定边不考虑) x (a)(b) 二.已知等厚度板沿周边作用着均匀压力σx=σy= - q ,若O点不能移动或转动, 试求板内任意点A(x,y)的位移分量。 q x 三.如图所示简支梁,它仅承受本身的自重,材料的比重为γ, 考察Airy应力函 数:y Dx Cy By y Ax2 3 5 3 2+ + + = ? 1.为使?成为双调和函数,试确定系数A、B、C、D之间的关系; 2.写出本问题的边界条件。并求各系数及应力分量。

四. 如图所示一圆筒,内径为a ,外径为b ,在圆筒内孔紧套装一半径为a 的刚性圆柱体,圆筒的外表面受压力q 的作用,试确定其应力r σ,θσ。

五. 如图所示单位厚度楔形体,两侧边承受按 τ=qr 2(q 为常数)分布的剪应力作用。试利用应力函数 θθθφ2cos 4cos ),(4244r b r a r += 求应力分量。 O y 六. 设]27 4)3(1[),(22 32 2 a xy x a y x m y x F ---+=,试问它能否作为如图所示高为a 的等边三角形杆的扭转应力函数(扭杆两端所受扭矩为M)?若能,求其应力分 量。 (提示:截面的边界方程是3a x -=,3 323a x y ±= 。)

1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。 (√) (2)对于常体力平面问题,若应力函数),(y x ?满足双调和方程02 2 =???,那么由) ,(y x ?确定的应力分量必然满足平衡微分方程。 (√) (3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结 果会有所差别。 (×) (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 (×) (5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式: ??=dxdy y x F M ),(2,其中),(y x F 为扭转应力函数。 (×) (6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 (√) (7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 (√) (8)对于两种介质组成的弹性体,连续性假定不能满足。 (×) (9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。(√) (10)三个主应力方向一定是两两垂直的。 (×) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分) (1)弹性力学是研究弹性体受外界因素作用而产生的 应力、应变和位移 的一门学科。 (2)平面应力问题的几何特征是: 物体在一个方向的尺寸远小于另两个方向的尺寸 。 (3)平衡微分方程则表示物体 内部 的平衡,应力边界条件表示物体 边界 的平衡。 (4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 主平面 。 (5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 解的唯一性定律 。 (6)应力函数()4 2 2 4 ,cy y bx ax y x ++=Φ如果能作为应力函数,其c b a ,,的关系应该是 033=++c b a 。

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

abaqus中边界条件的设置

精品文档 ABAQU 模型中的6个自由度,其中的坐标中编号是 1.2.3而不是常用的X.Y.Z 。因为模 型的坐标 系也可以是主坐标系或球坐标系等。 边界条件的定义方法主要有两种, 这两种方法 可以混合使用: 自由度1 ( U1):沿坐标轴1方向上的平移自由度。 自由度2( U2):沿坐标轴2方向上的平移自由度。 自由度3( U3):沿坐标轴3方向上的平移自由度。 自由度4( UR1):沿坐标轴1上的旋转自由度。 自由度5( UR1):沿坐标轴2上的旋转自由度。 自由度 6(UR1) 沿坐标轴 3上的旋转自由度。 2、约定的边界条件类型 反对称边界条件,对称面为与坐标轴 2垂直的平面,即 U1= U3= UR2=0; ZASYMM 反对 称边界条件,对称面为与坐标轴 3 垂直的平面,即 U1= U2= UR3=0; PINNED 约束所有 平移自由 度,即 U1=U2=U3=0; ENCASTRE 约束所有自由度(固支边界条件) ,即 5= U2=U3=UR 仁UR2=UR3=0. 精品文档 XSYMM 对称边界条件,对称面为与坐标轴 YSYMM 对称边界条件,对称面为与坐标轴 ZSYMM 对称边界条件,对称面为与坐标轴 1 垂直的平面,即 2 垂直的平面,即 3 垂直的平面,即 U1= UR2= UR3=0; U2= UR1= UR3=0; XASYMM 反对称边界条件,对称面为与坐标轴 1垂直的平面,即U2= U3= UR 仁0; YASYMM

欢迎您的下载, 资料仅供参考! 致力为企业和个人提供合同协议,策划案计划书,学习资料等等 打造全网一站式需求

相关主题
文本预览
相关文档 最新文档