当前位置:文档之家› 构造等腰三角形解题方法论

构造等腰三角形解题方法论

构造等腰三角形解题方法论
构造等腰三角形解题方法论

构造等腰三角形解题方法论

山东沂源县徐家庄中心学校

256116 左效平

等腰三角形是一种特殊的三角形,它的性质和判定在计算和证明中有着广泛的应用.当图形中无显性的等腰三角形时,可根据条件和图形的特征,适当添加辅助线,如延长线,平行线等等,直接构造等腰三角形或判定三角形是等腰三角形,后利用等腰三角形的性质,破解问题.

1.延长线段法直接构造等腰三角形

例1 如图1,已知在△ABC中,AD平分∠BAC,∠B=2∠C.

求证:

AB+BD=AC.

图 1

分析:延长AB到点E,使得BE=BD,只需证明

△ADE≌△ADC,结论得证.

证明:

延长AB到点E,使得BE=BD,连接DE,

因为BE=BD,

所以∠ABC=2∠E.

因为∠ABC=2∠C,

所以∠C=∠E.

所以

DAE DAC

E C

DA DA

∠=∠

?

?

∠=∠

?

?=

?

所以△ADE≌△ADC,

所以AC=AE.

因为AE=AB+BE,

所以AB+BD=AC.

点评:延长较长的线段,使得延长线段等于较短的线段,从而把折线段的和转化为共线线段的和,设法证明构造的新线段与所求和线段相等即可.这是证明这类问题的一种常用方法要熟练掌握.

例2 如图2,已知在△ABC中,AB=AC,∠A=90°,BD平分∠ABC.

求证:BC=AB+AD.

图 2

分析:注意等腰直角三角形锐角为45°.

证明:

延长AB到点E,使得AE=AD,连接DE,

因为AE=AD,AB=AC,∠A=90°,

所以∠C=∠E=45°.

所以

EBD CBD

E C

DB DB

∠=∠

?

?

∠=∠

?

?=

?

所以△BDE≌△BDC,

所以BC=BE.

因为BE=AB+AE,

所以BC=AB+AD.

点评:熟记等腰直角三角形锐角为45°是解题的重要因素.

2.延长线段法先判断等腰三角形后证不等式

例3 如图3,已知,在△ABC中,AD是边BC上的中线,DE平分∠ADB,DF平分∠ADC,连接EF. 求证:EF<

BE+CF.

图 3

分析:延长ED到点G,使得ED=DG,则DF是三角形EFG的中线,根据DE平分∠ADB,DF平分∠ADC,可以得到DF⊥EG,从而判断三角形EFG是等腰三角形,把EF迁移到 FG的位置上,利用三角形全等的

八下解题技巧专题:共顶点的等腰三角形

解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD. ◆类型二共顶点的等边三角形

3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想. 参考答案与解析

1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

初中数学解题模型专题讲解4---角平分线 垂直构造等腰三角形

初中数学解题模型专题讲解 专题4 角平分线模型 模型模型 3 3 角平分线角平分线角平分线++垂线构造等腰三角形垂线构造等腰三角形 如图,P 是∠MON 的平分线上一点,AP⊥OP 于 P 点,延长 AP 交ON 于点 B。 结论:△AOB 是等腰三角形。 模型证明模型证明:: 由已知可得AP⊥OP,BP⊥OP,OP=OP,∠POA=∠POB ∴△POA≌△POB ∴OA=OB ∴△AOB 是等腰三角形 模型分析 构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等 的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线 和三线合一联系了起来。 模型实例 如图,已知等腰直角三角形 ABC 中,∠A=90°,AB=AC,BD 平分∠ABC, CE⊥BD,垂足为 E。求证:BD=2CE。

证明:如图延长BA 、CE 交于 ∠ABE=∠CBE ,BE=B ∴RT △BEF ≌RT △BEC ∴CE=EF ∴CF=2CE 又∵∠ADB=∠CDE ∠DCE+∠CDE=∠ ∴∠ADB=∠F 又AB=AC ∴RT △BAD ≌RT △CAF ∴BD=CF ∴BD=2CE. 模型练习 1.如图,在△ABC 中,BE 求证:∠2=∠1+∠C。 证明:如图延长AD 交BC 交于点F 则有: BE=BE BEC DCE+∠F=90° CAF BE 是角平分线,AD⊥BE,垂足为 D。 于点F 则有

BD=BD ,∠ABD=∠ ∴RT △ADB ≌RT △FDB ∴∠2=∠BFD=∠1+∠ ∴∠2=∠1+∠C 2.如图,在△ABC 中,∠求证:BE= ?(AC-AB)。 ∠FBD FDB ∠C ∠ABC=3∠C,AD 是∠BAC 的角平分线,BE⊥AD AD 于点 E。

构造等腰三角形

构造等腰三角形练习题(无答案) 等腰三角形是指有两条边相等的三角形,其中相等的两边叫做腰,另一条边叫做底。尺规作图在平面内作等腰三角形,从已知的边来说可以分为以下几种情况:1、作任意等腰三角形。2、已知一边作等腰三角形。3、已知一腰作等腰三角形。4、已知底边作等腰三角形。5、已知底边和腰作等腰三角形。 1. 如图,线段OA 的一个端点O 在直线a 上,以OA 为一边画等腰三角形,并且使另一个顶点在直线a 上,这样的等腰三角形能画多少个? 2、在Rt ΔABC 中,∠C=90度,∠A=30度,若要在直线BC 或直线AC 上取一点P,使ΔABP 是等腰三角形,符合条件的点P 有 _____ 个。 3.在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形。 4.在纸上画出4个点,要求任意三个点组成的三角形都是等腰三角形,请问这四个点怎样放? 就一种情况吗? (若画5个点呢? ) 5.正方形上给定9个点,以这些点为顶点,能构成多少个等腰三角形? O A a C B A

6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图 中的格点,且使得△ABC为等腰三角形,则符合条件的点C有几个. 7.已知△ABC为等边三角形,在△ABC所在的平面内找一点P,使△PAB、△PBC、△PAC均为 等腰三角形;这样的点P有几个? PCD、△PAD均为等腰三角形;这样的点P有几个? D C

10.在平面直角坐标系中,点A(2,-2),点B(1,0),点P 在y 铀上,且△PAB 是等腰三角形,求P 的坐标. x y O A(2,-2) B(1,0) 11.平面直角坐标系中A(-2,0),B(1,3),P 是坐标轴上一点,△PAB 为等腰三角形,那么这样的P 点共有几个? x y O B(1,3) A(-2,0)

新人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法 ——形成精准思维模式,快速解题 ◆类型一利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线) 1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=1,则BC的长为________. 2.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB,求证:EB⊥AB. 二、构造等腰三角形 3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为() A.3 B.4 C.5 D.6 4.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.

◆类型二 巧用等腰直角三角形构造全等 5.如图,在△ABC 中,AC =BC ,∠C =90°,D 是AB 的中点,DE ⊥DF ,点E ,F 分别在AC ,BC 上.求证:DE =DF . ◆类型三 等腰(边)三角形中截长补短或作平行线构造全等 6.(2017·郑州校级月考)如图,过等边△ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,且P A =CQ ,连 接PQ 交AC 于点D .若△ABC 的边长为6,则 DE 的长为【方法8】( ) A .2 B .3 C .4 D .不能确定 7.如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于点D .求证:BC =AB +CD . 参考答案与解析 1.2 2.证明:过点E 作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =12 AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAE =∠F AE .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°,∴EB ⊥AB .

初二等腰三角形专题

等腰三角形专题复习 一、等腰三角形中的分类讨论 1、等腰三角形的周长为50, —条边长是12,则另两边分别是____________________ 4 、如图,在RT^ABC中,/ ACBW ,AB=2BC 在直线BC或AC上取一点P 使得△ PAB为等腰三角形,则符合条件的点P共有____________ 个。 5、已知0为等边△ ABD边BD的中点,AB=4, E、F分别为射线AB DA上一动点,且/ EOF=^ ,若AF=1,求BE的长 _________________ 。 二、构造等腰三角形解题一一截长补短法 6、如图,在△ ABC中,AD为角平分线,且AC=AB+BD求证丁代 2 <:. 7、如图,已知W.W 1 2V,AC平分/ MA N MEC-A N C

&如图,△ ABC为等腰三角形,EC=ED, P为BD的中点,求证:AE=2PE. 三、构造等腰三角形解题一一引平行线 9、如图,已知△ ABC是等边三角形,延长BC到D,延长BA到E,使AE=BD求证:EC=ED. 10、已知△ ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC延长BE交AC于F,求证:AF=EF. B

11、△ ABC为等边三角形,D为BC上任意一点,/ ADE=60,边ED与/ ACB外角的平分线交于点E. (1) 求证:AD=DE. (2) 若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给出证明, 若不成立,请说明理由。 12、如图,BD平分/ ABC交AC于点D, E为CD上一点,且AD=DE,EF// BC交BD于F,求证: AB=EF. 四、等腰三角形中的“三线合一” (一)利用等腰三角形的“三线合一”证题 AE=AC,EF// BC交AC于点F,求证:EC 平分/ DEF. 13、如图,AD是厶ABC的角平分线,且

构造等腰三角形解题的辅助线做法

构造等腰三角形解题的辅助线做法 吕海艳 等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。在许多几何问题中,通常需要构造等腰三角形才能使问题获解。那么如何构造等腰三角形呢一般有以下四种方法: (1)依据平行线构造等腰三角形; (2)依据倍角关系构造等腰三角形; (3)依据角平分线+垂线构造等腰三角形; (4)依据120°角或60°角,常补形构造等边三角形。 1、依据平行线构造等腰三角形 例1:如图。△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF. [点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。 " 证明:过E作EG∥AC交BC于G ∴∠1=∠ACB,∠2=∠F ∵AB=AC ∴∠B=∠ACB ∴∠1=∠B ∴BE=GE ∵BE=CF ∴GE=CF 在△EDG和△FDC中 ∠3=∠4 ∠2=∠F

( GE=CF ∴△EDG≌△FDC ∴DE=DF [评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。 2、依据倍角关系构造等腰三角形 例2:如图。△ABC中,∠ABC=2∠C,AD是∠BAC的平分线 求证:AB+BD=AB [点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等腰三角形,问题即可解决。 证明:延长CB至E,使BE=BA, 连接AE ( ∵BE=BA ∴∠BAE=∠E ∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E ∴∠C=∠E AC=AE ∵AD平分∠BAC ∴∠1=∠2 ∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA ∴EA=ED ∵ED=EB+BD,EB=AB,AC=AE ∴AC=AB+BD …

各种等腰三角形难题

各类等腰三角形难题 例1. 在⊿ABC中,AB=AC,且∠A=20°,在为AB上 一点,AD=BC,连接CD. 试求:∠BDC的度数. 分析:题中出现相等的线段,以此为突破口,构造 全等三角形. 解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧) 连接DE,CE. ∵AE=BA;AD=BC;∠DAE=∠B. ∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°. ∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC. ∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA=40°. 则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°. 例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°. 点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°. 试求∠DEB的度数.

本题貌似简单,其实不然. 解:过点E作BC的平行线,交AB于F,连接CF交BE于点 G,连接DG.易知⊿GEF,⊿GBC均为等边三角形. ∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°; ∵∠BCG=50°;∠CBD=60°. ∴∠BDC=50°=∠BCD,则BD=BC=BG;又∠ABE=20°. 故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°. 即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE. ∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°. 所以,∠DEB=30°. 例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分 别为 AB和AC上的点,且∠ABE=10°,∠ACD=20°. 试求:∠DEB的度数. 本题相对于上面两道来说,难度又增加了许多.且看我下面的解答.

一个可以从旋转角度(构造等边三角形)理解的好题及其解法(13)

题目 在凸四边形ABCD 中,60ABC ∠=?,AB BC =,30ADC ∠=?。 证明:222AD CD BD +=。 分析:待证结论让我们联想到勾股定理,需要通过添加辅助线将AD 、CD (作 为直角边)和BD (作为斜边)集中到一个直角三角形里。 图1 图2 证明1:如图1,过D 作DE DA ⊥,且使得ED CD =,连接AE 、CE 、AC 903060CDE ADE ADC ∠=∠-∠=?-?=? ∴CDE ?是等边三角形 ∴CE CD =,60DCE ∠=? 60ABC ∠=?,AB BC = ∴ABC ?是等边三角形 ∴AC BC =,60BCA ∠=? ∴ACE ACD DCE ACD BCA BCD ∠=∠+∠=∠+∠=∠ ∴ACE ?≌BCD ?(SAS ) ∴AE BD = 在Rt ADE ?中,222AD ED AE += ∴222AD CD BD += 评注:意外的是,添加辅助线后原图回到了一个经典(老)问题的图上—两个有公共顶点的等边三角形(不看AD ,试试?)!另外,也可以按如下方式作辅助线:如图2,过D 作DE DC ⊥,且使得ED AD =,连接CE 、AE 、AC (过程基本同证明1,不赘述)。 D B B D B D

图3 图4 证明2:如图3,过C 作CE CD ⊥,且使得CE AD =,连接DE 、BE 360360BCE ECD BCD ABC ADC BCD BAD ∠=?-∠-∠=?-∠-∠-∠=∠ BC BA = ∴BCE ?≌BAD ?(SAS ) ∴BE BD =,CBE ABD ∠=∠ ∴60DBE ABC ∠=∠=? ∴DBE ?是等边三角形 ∴ED BD = 在Rt DCE ?中,222CE CD ED += ∴222AD CD BD += 评注:明白作辅助线的初衷和目的后,问题解决将得心应手,也可以按如下方式作辅助线:如图4,过A 作AE AD ⊥,且使得AE CD =,连接DE 、BE (过程基本同证明2,不赘述)。 后记:1、证明1的图可以看成以CD 为边作等边三角形CDE ,证明2的图可以看成以BD 为边作等边三角形BDE ,你能理解为什么作等边三角形吗? 2、图1可以看成是将BCD ?绕点C 沿顺时针方向旋转60?到ACE ?,图3可以看成是将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,你能理解为什么旋转60?吗?其实,从旋转的视角来看待本题,过程将十分简洁:如图3,将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,连接DE ,易知DBE ?是等边三角形,故ED BD =, 由于D C E D B E C E B C D B A B C A D B C ∠=∠+∠+∠=∠+∠+∠603090=?+?=?(凹四边形),所以2 2 2 CE CD ED +=,从而2 2 2 AD CD BD +=。 相关题目如图,在ABC ?中,90ABC ∠=?,AB CB =,45DBE ∠=?D 、E 是AC 上两点。试证明:222 AD CE DE +=。 请务必督促孩子今晚进行独立思考,下午辅导课时在黑板上已抄过B B

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,已知:在中,,,. 求:BC 的长. 思路点拨:由条件,想到构造含角的直角三角形 总结反思: 举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 【变式2】

类型二:方程的思想方法 例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 思路点拨:由,再找出、的关系即可求出和的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。 【变式2 】C A

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。 思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD . 总结升华: 【变式1】如图,已知:,,于P . 求证:. 【变式2】如图,ADC ?和BCE ?都是等边三角形, 30=∠ABC , 求证:2 22BC AB BD +=

3. 类型五:利用勾理作长为 的线段 例1. 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为和1的直角三角形斜边长就是,类似地可作D C B A

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个动点, 且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC 交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

八年级数学 构造等腰三角形解题的辅助线常用做法

构造等腰三角形解题的辅助线常用做法 等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。在许多几何问题中,通常需要构造等腰三角形才能使问题获解。那么如何构造等腰三角形呢?一般有以下四种方法: (1)依据平行线构造等腰三角形; (2)依据倍角关系构造等腰三角形; (3)依据角平分线+垂线构造等腰三角形; (4)依据120°角或60°角,常补形构造等边三角形。 1、依据平行线构造等腰三角形 例1:如图。△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF. [点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。 证明:过E作EG∥AC交BC于G ∴∠1=∠ACB,∠2=∠F ∵AB=AC ∴∠B=∠ACB ∴∠1=∠B ∴BE=GE ∵BE=CF ∴GE=CF 在△EDG和△FDC中 ∠3=∠4 ∠2=∠F GE=CF

∴△EDG≌△FDC ∴DE=DF [评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。 2、依据倍角关系构造等腰三角形 例2:如图。△ABC中,∠ABC=2∠C,AD是∠BAC的平分线 求证:AB+BD=AB [点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等 腰三角形,问题即可解决。 证明:延长CB至E,使BE=BA, 连接AE ∵BE=BA ∴∠BAE=∠E ∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E ∴∠C=∠E AC=AE ∵AD平分∠BAC ∴∠1=∠2 ∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA ∴EA=ED ∵ED=EB+BD,EB=AB,AC=AE ∴AC=AB+BD [评注]:当一个三角形中出现了一个角是另一个角的2倍时,我们就可以通过转化倍角寻找等腰三角形。

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法 已知条件解法步骤 Rt△ABC 两 边两直角边(a,b) 由求∠A, ∠B=90°-∠A, 斜边,一直角边(如c,a) 由求∠A, ∠B=90°-∠A, 一边一直角边 和一锐角 锐角、邻边 (如∠A,b) ∠B=90°-∠A, ,

一 角 锐角、对边 (如∠A ,a) ∠B=90°-∠A , , 斜边、锐角(如c ,∠A) ∠B=90°-∠A , , 要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图, 坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.

构造等腰三角形解题的常见途径(新)

构造等腰三角形解题的常见途径 等腰三角形是研究几何图形的基础,因此在许多几何问题中,常常需要构造等腰三角形才能使问题获解,那么如何构造等腰三角形呢?一般说来有以下几种途径: 一、利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形. 例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延 长线于点E ,垂足为点F .求证:.AE =AP . 简析 要证.AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角形,故AE =AP . 例2 如图3 ,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB 、BC 于点 D 、 E .试猜想线段AD 、CE 、DE 的数量关系,并说明你的猜想 C A B E D O 图3 图4 F C D E B A M 图2 F B A C D P E 图1 ① D ② C D C ④ F C D

理由. 简析 猜想:AD +CE =DE .理由如下:由于OA 、OC 分别是∠BAC 、∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE . 例3 如图4,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC .求证:EF ∥AB . 简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB . 二、利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形. 例4 如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD . 简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD . 三、利用转化倍角,构造等腰三角形 E 图5 A B C D 图6 B F D E C A

解题技巧专题:共顶点的等腰三角形

北师版八年级数学下册 解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD.

◆类型二共顶点的等边三角形 3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.

参考答案与解析 1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

探究运用等边三角形解题的方法(宝石)

探究运用等边三角形解题的方法 初二(11)班王炳轩再有些几何题里,往往只给出了一个等腰三角形和几个角的度数,就要求求出一个毫不相干的角的度数,让很多同学没有思路,殊不知,如果添加适当的辅助线,构造出一个等边三角形就能将问题迎刃而解,下面让我们来通过一道例题探究一下吧! 例题. 如图,△ABC中,AC=BC,∠C=20°,M在线段AC上,N在BC 上,且∠BAN=50°,∠ABM=60°。 求:∠NMB度数? 证明:作∠NBD=60°,交AC于D,连接DN。 ∵∠C=20°,AC=BC ∴∠BAC=∠ABC=80°

∵∠NBD=60° ∴∠ABD=20° ∵∠BAC=80° ∴∠BAD=∠BAC=80° ∴AB=DB ∵∠BAN=50°,∠ABC=80° ∴∠ABN=∠BAN=50° ∴AB=BN ∵∠BAC=80°,∠ABM=60° ∴∠BMD=180°-80°-60°=40° ∴∠BMD=∠DBM=40° ∴DM=DB=DN ∵∠CDN=180°-∠ADB-∠BDN=40° ∴∠DMN=70° ∵∠BMD=40° ∴∠NMB=30° 思考过程 这道题给出了一个等腰三角形,同时也给出了三个角度。再看看题目的问题:求∠NMB,我想到了要通过大角减小角(∠DMN-∠NMB)的方式来求出∠NMB的度数。再观察△ABN,通过见到的计算就能得出他是一个等腰三角形,AB=BN,并且还能求出∠MBN=20°。这样一来我就发现,只要以BN为一边构造一个交AC的等边三角形,就能将

一组宝贵的相等线段AB=DN倒到AC上去,还能与∠NMB建立关系,是怎么回事呢? 且听我一一道来:作∠NBD=60°,交AC于D,连接DN。这时可以求出∠ABD=20°,得到△ABD是等腰三角形,又可以证出△BDN是等边三角形,还可以得到∠DBM。这时再观察与∠NMB有关的△BMD,它的一条边是BD,很快我们就能发现△BMD也是一个等腰三角形。而那对等边就和BD有关,是DM=BD。以为BD边在等边三角形△BDN中,所以MD又和DN相等,△MDN又是一个等腰三角形。这时候,就可以用文章开头提到的“大角减小角”(∠DMN-∠NMB)的方法来求角了,大角(∠DMN)等于70°,小角(∠NMB)等于40°,两个角一相减,就轻松得出了∠NMB。 总结 这道题是一道典型的利用等边三角形连接相等线段并求角的题目,从题目的条件中我们已经能得到很多角度,这时就需要我们仔细观察这些角度将已知和问题联系起来,再构造出辅助线。这是我们就会发现这条辅助线和另一条边只要再添一条线就能组成一个等边三角形。所谓的构造等边三角形不是一下子就构造出两条边,而是构造出一条边后再根据需要添加一条边。像这样的例题还有很多,在下一篇文章?再探究运用等边三角形集解题的方法?中,我们还会研究更多的例题。

相关主题
文本预览
相关文档 最新文档