当前位置:文档之家› 汽车电气化的关键技术先进的汽车动力传动系统

汽车电气化的关键技术先进的汽车动力传动系统

汽车电气化的关键技术先进的汽车动力传动系统
汽车电气化的关键技术先进的汽车动力传动系统

混合动力汽车关键技术.

电动汽车概论课程报告----混合动力汽车关键技术

摘要 混合动力电动汽车(HEV)的核心是混合动力驱动系统。HEV系统具有高度的复杂性, 混合动力系统设计的关键是系统结构的选择、整车能量管理策略的开发和系统参数的确定。功率分配是系统能量管理策略研究的关键, 随着研究的深人, 自适应控制、模糊逻辑控制、神经元网络控制等方法也得到了有效的运用。文中对子系统的关键技术及整车试验方法和评价体系的建立等方面进行了讨论. 关键词:混合电动汽车电池管理驱动系统逆变器

ABSTRACT Hybrid electric vehicle (HEV) is the core of the hybrid drive system. HEV system with high complexity, hybrid system design is the key to the choice of the structure of the system, the vehicle energy management strategy of development and the system of parameters. Power allocation system energy management strategy is the key. With the deep research, adaptive control, fuzzy logic control, neural network control method is also effectively used. In this paper, the technology and subsidiary system vehicle test method and evaluation system of the establishment are discussed in the paper. Key words:Hybrid electric vehicle battery management drive system inverter

汽车传动系统详细讲解

汽车传动系统详细讲解 以前我们介绍过汽车车身尺寸的意义和汽车心脏发动机的基本构造,然而汽车要行驶在道路上必须先使车轮转动,要如何将发动机的动力传送到车轮并使车轮转动?负责传递动力让汽车发挥行驶功能的装置就是传动系统,汽车没有了它就会成为一台发电机或坐人的空壳,并且还是一台烧钱的机器了。 在基本的传动系统中包含了负责动力连接的装置、改变力量大小的变速机构、克服车轮之间转速不同的,和联结各个机构的传动轴,有了这四个主要的装置之后就能够把发动机的动力传送到轮子上了。 一、动力连接装置 1. 离合器:这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。 汽油发动机车辆在运行时,发动机需要持续运转。但是为了满足汽车行驶上的需求,车辆必须有停止、换档等功能,因此必须在发动机的外连动之处,加入一组机构,以视需求中断动力的传递,以在发动机持续运转的情形之下,达成让车辆静止或是进行换档的需求。这组机构,便是动力连接装置。一般在车辆上可以看到的动力连接装置有离合器与扭力转换器等两种。

离合器这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。如图所示,飞轮机构与发动机的输出轴固定在一起。在飞轮的外壳之中,以一圆盘状的弹簧连接压板,其间有一摩擦盘与输入轴连接。 当离合器踏板释放时,飞轮内的压板利用弹簧的力量,紧紧压住摩擦板,使两者之间处于没有滑动的连动现象,达成连接的目的,而发动机的动力便可以通过这一机构,传递至,完成动力传递的工作。 而当踩下踏板时,机构将向弹簧加压,使得弹簧的外围翘起,压皮便与摩擦板脱离。此时摩擦板与飞轮之间已无法连动,即便发动机持续运转,动力并不会传递至及车轮,此时,驾驶者便可以进行换档以及停车等动作,而不会使得发动机熄火。 2. 扭力转换器:这组机构被装置在发动机与自动之间,能够将发动机的动力平顺的传送到自动。在扭力转换器中含有一组离合器,以增加传动效率。 当汽车工业继续发展,一般消费者开始对于控制油门、剎车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用机构来简化操作过程。扭力转换器便是在这样的情形之下被导入汽车产品的,成就了全新的使用感受。 扭力转换器导入,改变了人们驾驶汽车的习惯!扭力转换器取代了传统的机械式离合器,被安装在发动机与自动之间,能够将发动机的动力平顺的传送到自动。 从图中可以清楚地看到,扭力转换器的离作方式与离合器之间截然不同。在扭力转换器之中,左侧为发动机动力输出轴,直接与泵轮外壳连接。而在扭力转换器的左侧,则有一组涡轮,透过轴与位于右侧的变速系统连接。导轮与涡轮之间没有任何直接的连接机构,两者均密封在扭力转换器的外壳之中,而扭力转换器之内则是充满了黏性液体。 当发动机低速运转时,整个扭力转换器会同样低速运转,泵轮上的叶片会带动扭力转换器内的黏性液体,使其进行循环流动。但是由于转速太低,液体对于

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

车辆动力传动系统

车辆动力传动系统国内外概况及发展趋势 1.发展现状 坦克车辆传动系统大体走过了定轴式机械传动、液力传动(或液力机械传动)、综合传动三个发展阶段。到目前为止,西方国家主要是美国、德国和英国现装备的第三代主战坦克采用综合传动装置约占装备车总数的45%。 带闭锁离合器的液力变矩器、多自由度行星变速机构、液压或复合的无级转向、电液自动操纵等多功能模块集成的液力机械综合传动装置,不仅是当前军用履带车辆的最佳传动型式,而且是21世纪初出现的新一代坦克车辆的基本传动型式,构成今后一段相当时期内坦克车辆综合传动的主流。 此外,电传动是坦克车辆传动技术又一发展方向。坦克电传动研究的开始时间是很早的,但目前正在研究中的坦克电传动和早期的电传动,在技术上有很大的不同。现代电传动技术的发展实在电机技术和电机控制技术以及机电一体化设计和综合控制、动力电池组管理与应用等一系列现代技术集成发展的结果。 表所示为几种典型的系列化综合传动装置,履带式和轮式。比较有代表性的传动系统如图所示。20世纪80年代初期,美国开始了重型战斗车辆“先进的整体式推进系统(AIPS)”的研制,使动力舱体积现在已缩小到总体积的26%~30%,传递功率达到1100~1200kW。(此段落为集中典型的传动系统介绍,补充图中所示各传动系统的较详细资料。) 2001年,美国完成了基于M113的20t级电传动演示样车的研究。样车采用一台186kW的6缸直列柴油机,通过传动比为1:4.28的增速箱与一台600V的180kW交流发电机连接,为电传动平台提供电能。原理样车装配480V铅酸蓄电池组,每个主动轮配置一个220kW油冷高速感应电动机。车辆最高速度为96km/h,加速时间0~56km/h只需要9s(列装的最新型M113A3为27s),车辆燃料消耗率为3.1km/L,最大行驶范围达1120km,从错误!未找到引用源。显示了其电传动驱动系统的布置情况。 从上世纪80年代中期开始,与磁电机公司合作开发出“伦克EMT1100传动

一、项目名称低能耗插电式混合动力乘用车关键技术及其产业

一、项目名称 低能耗插电式混合动力乘用车关键技术及其产业化 二、推荐意见 我单位认真审阅了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均符合国家科学技术奖励工作办公室的推荐要求。 该项目围绕我国重大科技与战略性新兴产业需求,在国家863计划和三部委新能源汽车产业技术创新工程项目资助下,立足于插电式混合动力乘用车关键技术的自主创新,在全新的插电式混合动力系统产品结构方案、智能能量管理及驾驶品质控制、电池管理系统三大核心技术领域均有重大原始创新和突破,获得51项发明专利授权(包括3项国际发明专利);实现了插电式混合动力乘用车产品能效的全面超越、驾驶性能的高品质和运行的安全可靠;从根本上改变我国在乘用车领域长期跟随国外技术的局面,实现了大批量规模化生产,取得了显著的经济效益和社会效益;项目技术水平达到国内领先、国际先进水平,对推动汽车工业技术进步具有非常重要的意义。2016年获得中国汽车工业科学技术奖一等奖。 对照国家科学技术进步奖授权条件,推荐该项目申报国家科学技术进步奖一等奖。 三、项目简介 该项目属于交通运输学科节能与新能源汽车技术领域。发展新能源汽车是解决能源危机和环境污染的战略举措,也是从汽车大国迈向汽车强国的必由之路。插电式混合动力乘用车(以下简称PHEV)结合了混合动力与纯电动车的优势,成为国内外竞相研发和推广的车型。为从根本上改变我国在此领域长期跟随国外技术的局面,该项目提出了一种全新的插电式混合动力系统产品结构方案,实现了能效的全面超越、驾驶性能的高品质和运行的安全可靠。主要创新点如下: 1.机电耦合装置是决定混合动力系统性能的基础。首次提出串并联构型机电耦合电驱变速箱(以下简称EDU)技术,不同于日本丰田、德国大众的新型混合动力系统机电耦合方案,通过同轴布置双电机、双离合器、同步器变速,实现发动机、ISG电机和驱动电机3个动力源的自由组合,具备最佳转矩协同和解耦特性,获得了3项国际发明专利授权。在此基础上,通过优化的能量管理开发的PHEV产品能耗低于丰田普锐斯Ⅲ、本田雅阁9、大众高尔夫GTE等国际代表性PHEV产品。 2.混合动力系统多状态的平滑切换是决定整车驾驶品质的关键。通过多阶段同步器退挡与进挡控制、3个动力源转速协调控制和转矩恢复控制、以及同步器与离合器半结合点自学习控制等控制策略,实现了PHEV整车精准平顺的档位切换,以及纯电、串/并联混合驱动等模式的智能选择与切换,满足了客户对新能源汽车驾驶乐趣和舒适性的需求。

(完整版)汽车的传动系统原理及分类

汽车传动是汽车行驶的基础,汽车传动系统的作用将发动机输出的动力传递给驱动轮,使汽车产生运动。汽车传动系统由离合器、变速器、传动轴、减速器、差速器、半轴等组成,全轮驱动汽车还包括分动器。根据动力来源、传动方式汽车传动系统分为四种,为了更好的了解汽车传动系统,成都汽修学校编写本文为你介绍汽车传动原理及传动系统分类。 汽车传动原理 汽车传动原理:汽车动力系统提供动力,经传动系统把动力传给后面的驱动轮,传动系统配合动力系统实现汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 汽车传动系统分类 1、机械式传动系 机械式传动系结构简单、工作可靠,在各类汽车上得到广泛的应用。其基本组成情况和工作原理:发动机的动力经离合器、变速器、万向节、传动轴、主减速器、差速器、半轴传给后面的驱动轮。并与发动机配合,保证汽车在不同条件下能正常行驶。为了适应汽车行驶的不同要求,传动系应具有减速增扭、变速、使汽车倒退、中断动力传递、使两侧驱动轮差速旋转等具体作用。 2、液力传动系 液力传动系组合运用液力和机械来传递动力。在汽车上,液力传动一般指液传动,即以液体为传动介质,利用液体在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。动液传动装置有液力偶合器和液力变矩器两种。液力偶合器只能传递扭矩,而不能改变扭矩的大小,可以代替离合器的部分功能,即保证汽车平稳起步和加速,但不能保证在换档时变速器中的齿轮不受冲击。液力变矩器则除了具有液力偶合器的全部功能外,还能实现无

级变速,故目前应用得比液力偶合器广泛得多。但是,液力变矩器的输出扭矩与输入扭矩的比值范围还不足以满足使用要求,故一般在其后再串联一个有级式机械变速器而组成液力机械变速器以取代机械式传动系中的离合器和变速器。液力机械式传动系能根据道路阻力的变化自动地在若干个车速范围内分别实现无级变速,而且其中的有级式机械变速器还可以实现自动或半自动操纵,因而可使驾驶员的操作大为简化。但是由于其结构较复杂,造价较高,机械效率较低等缺点,目前除了高级轿车和部分重型汽车以外,一般轿车和货车很少采用。 3、静液式传动系 静液式传动系又称容积式液压传动系。主要由油泵、液压马达和控制装置等组成。发动机的机械能通过油泵转换成液压能,然后由液压马达再又转换为机械能。在图示方案中,只用一个水磨石马达将动力传给驱动桥主减速器,再经差速器、半轴传给驱动轮。另一方案是每一个驱动轮上都装一个水磨石马达。采用后一方案时,主减速器、差速器、和半轴等机械传动件都可取消静压式传动系由于机械效率低、造价高、使用寿命和可靠性不够理想,故目前只在某些军用车辆上开始采用。 4、电力式传动系 电力式传动系主要由发动机驱动的发电机、整流器、逆变装置(将直流电再转变为频率可变的交流电的装置)、和电动轮(内部装有牵引电动机和轮达减速器的驱动轮)等组成。电力式传动系的性能与静液式传动系相近,但电机质量比油泵和液压马达大得多,故目前只限于在超重型汽车上应用。 汽车传动系统的选择是否合理对汽车的动力性经济性的影响较大,汽车传动系统的研究和设计是实现汽车自动化控制、节能减排的核心,本文介绍了汽车传动原理以及传动系统分类,详细了解这些对于汽车性能的改进有很大的帮助。

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

48V混动系统关键技术

48V关键技术介绍 关于48V轻混构架及其控制功能开发,由于环境问题、能源危机问题的存在,汽车厂商一直在寻求更加节能环保的新型技术,近年来由于电池和电机技术的发展,促使了电动汽车的发展,由于电池能量密度等关键技术的限制使得电动汽车的续航里程无法满足实际需要。混合动力汽车技术就是在这种背景下产生的,结合电机的输出扭矩特点,与传统发动机配合工作,使传统发动机工作在最佳的工作区域,使得发动机的经性和排放水平得到较大的提高。48V混动系统,是在原低压系统的基础上发展起来的,克服了低压系统功率小电流过大的问题,48V 混动系统是目前最受汽车行业关注的系统。 48V混动结构有很多种,最简单的就是在原来传统车上直接添加启停系统,结构简单容易实现改装成本较低。系统通过BSG系统快速地启动发动机,也就消除了发动机在怠速工作时的油耗、排放与噪声,相当于降低汽车排量0.2-0.3L,可以节油10%左右,减少二氧化碳排放12%左右。车在怠速和起步时,仅靠电力驱动,当车速超过5Km/h时,汽油发动机才开始工作。不足的是当开启空调系统时,不能实现电力驱动。 BSG技术具有以下几个特点:1.降低燃油消耗和有害物排放。装备了 BSG 起动、停止系统的汽车能够在车辆停止的同时自动关闭发动机,当驾驶员踩下离合器踏板准备起步时再重新点火,此举能够降低大约 8%的燃油消耗和有害物质排放。发动机暖机起动所消耗的燃料大约相当于怠速运转 0.7s 消耗的燃料。因此,只要车辆停止时间超过1s,就可以通过该系统降低油耗和排放。2.应用成本低,对发动机原有结构改动小,易实现产业化。BSG 系统不仅能够最大限度地减少传动力汽车在短暂停车时因发动机空转而产生的油耗和废气、噪声污染,而且具有应用成本低、对发动机原结构改动小、易实现产业化等优点。因此,在未来一段时间内搭载该系统的汽车很有可能会大量涌现。3.该电机在电池组驱动下,仅需要几百毫秒时间,就可以让处于停止状态的发动机转速达到 3000r/min,由于电机功率足够强大,BSG系统带动发动机重新点火的成功率非常高,在车辆起步时,驾乘人员通常不会感受到任何延迟。BSG 汽车有4种基本工作模式:1.起动工况起动时,BSG 电机在短时间加速至怠速转速以上,然后汽油机才开始

燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计 1引言 燃料电池汽车是电动汽车的一种。 燃料电池发出的电,经逆变器、控制器等装置,给电动 机供电,再经传动系统、驱动桥等带动车轮转动 ,就可使车辆在路上行驶,燃料电池的能量转 换效率比内燃机要高 2-3倍。燃料电池的化学反应过程不会产生有害产物 ,因此燃料电池车 辆是无污染汽车。随着对汽车燃油经济性和环保的要求 ,汽车动力系统将从现在以汽油等化 石燃料为主慢慢过渡到混合动力 ,最终将完全由清洁的燃料电池车替代。 近几年来,燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制 造厂,如丰田、本田、通用、戴姆勒-克莱斯勒、日产和福特汽车公司已经开发了几代燃料电 池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。 目前,燃料电池轿车的样车正在 进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本 田的FCX Clarity 最高时速达到了 160 km/h[8];丰田燃料电池汽车 FCHV-adv 已经累计运行 了 360,000 km 的路试,能够在零下37度启动,一次加氢能够从大阪行驶到东京 (560公 里)。 在我国科技部的支持下,燃料电池汽车技术得到了迅速发展。 2007年,我国第四代燃料电池 轿车研制成功,该车最高时速达150 km/h,最大续驶里程319 km 。2008年,20燃料电池示范 汽车又 在北京奥运进行了示范运行。 2010年,包括上汽、奇瑞等国内汽车企业共有 196辆燃 料电池汽车在上海世博园区进行示范运行。 燃油绘济性 排放环保 l ;uel economic exhaust eih ironmen(al protection Internal combustion engine Shori peicxl Mid peitxl Long pei

图解汽车-汽车传动系统结构解析

出处:太平洋汽车网作者:陈启贞时间:2012-10-24 我们知道,发动机输出的动力并不是直接作用于车轮上来驱动汽车行驶的,而是需经过一系列的动力传递机构。那动力到底如何传递到车轮的?下面我们了解一下汽车传动系统是怎样工作的。 ● 动力是怎样传递的? 发动机输出的动力,是要经过一系列的动力传递装置才到达驱动轮的。发动机到驱动轮之间的动力传递机构,称为汽车的传动系,主要由离合器、变速器、传动轴、主减速器、差速器以及半轴等部分组成。 发动机输出的动力,先经过离合器,由变速器变扭和变速后,经传动轴把动力传递到主减速器上,最后通过差速器和半轴把动力传递到驱动轮上。 汽车传动系的布置形式与发动机的位置及驱动形式有关,一般可分为前置前驱、前置后驱、后置后驱、中置后驱四种形式。

● 什么是前置前驱? 前置前驱(FF)是指发动机放置在车的前部,并采用前轮作为驱动轮。现在大部分轿车都采取这种布置方式。由于发动机布置在车的前部,所以整车的重心集中在车身前段,会有点“头重尾轻”。但由于车体会被前轮拉着走的,所以前置前驱汽车的直线行驶稳定性非常好。 另外,由于发动机动力经过差速器后用半轴直接驱动前轮,不需要经过传动轴,动力损耗较小,适合小型车。不过由于前轮同时负责驱动和转向,所以转向半径相对较大,容易出现转向不足的现象。 ● 什么是前置后驱? 前置后驱(FR)是指发动机放置在车前部,并采用后轮作为驱动轮。FR整车的前后重量比较均衡,拥有较好的操控性能和行驶稳定性。不过传动部件多、传动系统质量大,贯穿乘坐舱的传动轴占据了舱内的地台空间。

FR汽车拥有较好的操控性、稳定性、制动性,现在的高性能汽车依然喜欢采用这种布置行形式。 ● 什么是后置后驱? 后置后驱(RR)是指将发动机放置在后轴的后部,并采用后轮作为驱动轮。由于全车的重量大部分集中在后方,且又是后轮驱动,所以起步、加速性能都非常好,因此超级跑车一般都采用RR方式。

汽车动力传动系统参数优化匹配方法

1 机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法: 一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。 通常在给定汽车底盘参数、整车性能要求(如最大爬坡度max i ,最高车速m ax V ,正常行驶车速下百公里油耗Q ,原地起步加速时间t 等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩T emax ,及其转矩n M ,最大功率max e P 及其转速P n ,发动机最低油耗率min e g 和发动机排量h V 。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1) 目标函数F (x ) 目标函数为汽车行驶的能量效率最高。 (2) 设计变量X ],,,,[max h M p e em V n n P T X

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

发动机传动系统动力总成优化设计

发动机传动系统动力总成优化设计 摘要:发动机就相当于汽车的心脏,发动机与传动系统的匹配研究一直是关于 汽车行业的重大研究方向,二者之间的配合程度,直接影响整个车的动力和燃油 经济性。在车的布置设计中,对发动机传动系统传动轴角度的校核是一项重要工作。如果发动机传动轴初始工作角度选取不当,会使工作夹角很容易超出合理范围,造成传动轴零件的损坏,降低其使用寿命,使得整车的平顺变差。所以汽车 发动机与传动系的合理匹配,要根据车辆的使用条件和要求,通过改进发动机、 选择适当的传动系参数,最后使发动机的经常工作区尽量与理想工作区相吻合, 以达到整车动力性和燃油经济性的改善。为保证传动轴设计寿命和整车性能,在设计初期就应对各传动轴夹角进行校核。 关键词:发动机;传动轴夹角;参数化设计;动力优化 引言: 动力传动系统的弯曲共振是导致传动系统或动力总成的失效及车内振动噪声 大的重要原因之一。系统的约束方式和状态对其固有频率和振型有重要影响。针 对某轻卡在高速行驶工况出现的动力总成附件失效问题进行试验诊断,确定为动 力传动系统弯曲共振导致。通过研究不同约束方式对动力转动系弯曲模态的影响,建立最符合整车实际运行状态的弯曲模态识别步骤及方法。悬置系统设计理论人 体对低频振动比较敏感,在车辆前期开发过程中,对整车怠速工况下方向盘及座 椅的振动进行预估并进行优化控制对于整车厂尤为重要,也是悬置系统前期开发 设计时主要考虑的问题。 1 整车动力性能评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。动力性通常是汽车各种性能中最基本、最重要性能,主要由汽车的最高车速和汽车的加速时间以及汽车的最大爬坡度三方面的指 标来进行评价。最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到 的最高行驶车速;加速时间表示汽车的加速能力,汽车的上坡能力是用满载(或 某一载质量)时汽车在良好的路面上的最大爬坡度表示的。 2.悬置系统数学模型 发动机悬置系统可简化模型为:通过三个或四个三维的粘—弹性元件悬置支 承在车架上,具有六个自由度。建立动力总成质心坐标系,X轴与发动机曲轴线 平行并指向发动机前端,Z轴与气缸中轴线平行并垂直向上,Y轴按右手定则确定。动力总成空间刚体的6个自由度为沿动力总成质心坐标系x、y、z轴3个方 向的平动及绕x、y、z轴的转动角θx、θy、θz利用动力总成质量、转动惯量、质 心位置及悬置刚度参数,可求得系统的模态频率及振型。 2.1能量解耦理论动力总成 六自由度之间的振动一般是耦合的,施加在动力总成上的激励会激起系统的 多个模态,使发动机的振幅加大,共振频率带变宽。用系统在各阶振动时各自由 度方向振动能量占该阶振动总能量的百分比作为系统模态解耦的评价指标,用矩 阵形式表示,可得到系统的能量分布矩阵。系统以第j阶模态频率振动时的最大 能量为此值越大,代表系统的解耦程度就越高,有利于悬置系统获得良好的 隔振性能。 2.2弹性轴-扭矩轴理论 扭矩轴为当一扭矩作用在曲轴时,无约束刚体的实际旋转轴,扭矩轴的方向

新能源汽车的驱动及传动系统 概述

新能源汽车的驱动及传动系统概述 (一)新能源之未来趋势 当今汽车行业,不管是基于全球眼光还是身在中国更为特殊更为年轻的汽车市场环境,如果谈车不谈电动汽车,就像谈手机不谈未来信息技术一样,都是看不到未来,不能把握住未来市场,毫无远见的。面对越来越大的环境污染压力,全球范围内都提倡甚至出台相关政策来降低汽车尾气的排放。就国内而言,按照我国电动汽车充电设施标准化总体部署,在国家标准委协调和支持下,由工业和信息化部、国家能源局组织,全国汽标委牵头,汽研中心、电力企业联合会和电器科学研究院共同起草了《电动汽车传导充电用连接装置第1部分:通用要求》、《电动汽车传导充电用连接装置第2部分:交流充电接口》、《电动汽车传导充电用连接装置第3部分:直流充电接口》三项国家标准;由国家能源局、工业和信息化部组织,电力企业联合会和汽研中心共同起草了《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》国家标准。该四项标准已2011年12月22日以“中华人民共和国国家标准公告2011年第21号”批准发布,2012年3月1日起实施。2012年12月,环境保护部发布了《关于实施国家第五阶段气体燃料点燃式发动机与汽车排放标准的公告》;电动汽车方面,2013年9月,工信部装备工业司发布《关于继续开展新能源汽车推广应用工作的通知》,从政策上给新能源汽车的发展尽量铺平了道路。所以,当今,新能源汽车尤其是电动汽车是大势所趋,是符合国家长远发展,行业技术突破的趋势的。 (二)电动汽车与传统内燃机汽车在结构上的对比 电动汽车以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。传统内燃机汽车以石油产品作为能源,通过在内燃机中燃烧释放出能量来产生动力,并由变速器实现驱动控制;而电动汽车采用蓄电池作为能源,由电动机来驱动并配以调速器进行速度控制。两者的最大区别在于动力系统和能源供应系统。最主要的改动是将燃油汽车的

混合动力汽车及关键技术综述

龙源期刊网 https://www.doczj.com/doc/794792473.html, 混合动力汽车及关键技术综述 作者:程艳 来源:《硅谷》2010年第01期 [摘要]随着能源和污染问题的日益严峻,对混合动力汽车的需求逐渐显现。因此,通过对混 合动力汽车的概念及含义、混合动力汽车的优点、混合动力汽车类型等方面的介绍,论述混合 动力汽车的关键技术。 [关键词]混合动力汽车辅助动力单元关键技术控制策略 中图分类号:TP2文献标识码:A文章编号:1671-7597(2010)0110164-01 面临环境污染和能源枯竭的双重威胁,包括美国、日本和欧洲在内的世界各大汽车生产国 己相继制定出日益严格的环境法规。传统汽车受到发动机自身技术发展的限制难以满足日益苛刻的法规要求,混合动力汽车的特性决定其在汽车发展过程中起着承上启下角色,是汽车近、中期发展的重点。 1 混合动力汽车概念 混合动力汽车是传统汽车向电动汽车转变的过渡产品。国际电工委员会(IEC)电动汽车技术委员会将混合动力汽车(HEV:Hybrid Electric Vehicle)定义为:有一种以上能量转换器提供驱动动力的混合型电动汽车,也可简单定义为将电力驱动和辅助动力单元(Auxiliary Power Unit, APU)合用到一辆车上。 2 混合动力汽车的优点 混合动力汽车较电动汽车和传统内燃机汽车有以下优点:①电池的容量减小,电动汽车自重过大的矛盾有所减缓;②辅助动力单元(APU)的选用,使混合动力汽车的续驶里程和动力性能可以达到当前内燃机的水平;③虽然辅助动力单元中的原动机会有一定的废气排放产生,但由于原动机主要工作在最佳工况点附近,比传统内燃机汽车在低速、怠速、加速及最高速时内燃机变 工况时的废气排放相比可达到超低排放水平;④制动能量回收系统可节省能量,同时提高制动系统的可靠性和延长制动器的使用寿命;⑤利用原动机输出的动力直接带动车内空调、暖风、制动空压机(或真空泵)、动力转向系统等,无需消耗电池组内有限的电能,保证了乘员的舒适性和 驾驶的轻便性;⑥在某些对汽车废气排放严格限制的地区(如商业中心、旅游区、居民小区等),混合动力汽车可以关闭APU,由纯电力驱动,成为零排放的电动汽车。 3 混合动力汽车的类型

纯电动汽车传动系统知识分享

第一章绪论 1.1 课题的目的意义: 1.1.1 纯电动汽车的背景 当前,我国电动汽车发展已经进入关键时期,既面临重大的发展机遇,也面临着严峻的挑战。我国电动汽车发展中还存在很多需要解决的问题,如核心技术还不具备竞争力,企业投入不足,政府的统筹协调能力还没有充分发挥等。总体上看来,我国电动汽车产业,起步不晚,发展不慢,但是由于传统汽车及相关产业基础相对薄弱、投入不足,差距仍然存在,中高端技术竞争压力越来越大,因此,必须加大攻坚力度,推动我国汽车产业向创新驱动转型,提高核心技术竞争力,确保我国汽车行业的可持续发展。 纯电动汽车使用电动机作为传动系统的动力源,缓解了能源紧缺的压力,实现了人们长期以来对汽车零尾气排放的期盼,传动系统作为汽车的核心组成部分,其技术创新是纯电动汽车发展的必经之路。 1.1.2 纯电动汽车的意义 近年来,关于纯电动汽车的研究主要集中在能量存储系统、电驱动系统和控制策略的开发研究三方面。 能量存储系统相当于纯电动汽车的发动机,是纯电动汽车电动机所需电能的提供者。目前,铅酸蓄电池是使用最为广泛的,但其充电速度较慢,使用寿命短,节能环保差。随着电动汽车技术的发展,其他电池正在渐渐取代着铅酸蓄电池。目前发展的新电源有纳硫电池、锂电池、镍镉电池、飞轮电池、燃料电池等,尽管这些新电源投入应用,但是短时间内还是无法解决纯电动汽车电源充电缓慢,电量存储低续航里程短的问题。 纯电动汽车整车控制策略的开发研究一直在紧锣密鼓的进行着,整车控制系统是纯电动汽车实现整车控制和管理的关键,是实现和提高整车控制功能和性能水平的一个重要技术保证。其核心技术主要体现在整车控制软件的架构设计、转矩控制策略以及对整车和各系统得能量管理上。尽管控制策略的开发研究一直没有间断,但是,系统开发较为复杂,进度较慢。

汽车传动系统——各类传动的结构图解

汽车传动系统——各类传动的结构图解 一.机械式传动系一般组成及布置示意图 1-离合器 2-变速器 3-万向节 4-驱动桥 5-差速器 6-半轴 7-主减速器 8-传动轴 图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。 二.发动机前置、纵置,前轮驱动的布置示意图 1-发动机 2-离合器 3-变速器 4-变速器输入轴 5-变速器输出轴 6-差速器 7-车速表驱动齿轮 8-主减速器从动齿轮 发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。 三.典型液力机械传动示意图

1-液力变矩器 2-自动器变速器 3-万向传动 4-驱动桥 5-主减速器6-传动轴 液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动。 四.静液式传动系示意图 1-离合器 2-油泵 3-控制阀 4-液压马达 5-驱动桥 6-油管 液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。主要由发动机驱动的油泵、液压马达和控制装置等组成。 五.混合式电动汽车采用的电传动

1-离合器 2-发电机 3-控制器 4-电动机 5-驱动桥 6-导线 电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮 (注:范文素材和资料部分来自网络,供参考。只是收取少量整理收集费用,请预览后才下载,期待你的好评与关注)

新能源汽车复习题

复习题 一、名词解释 1、电动汽车 2、再生回馈制动 3、电池比能量 4、混合动力汽车 5、燃料电池 6、充电倍率 二、简答题 1、超级电容器在汽车中有哪些应用? 2、电动汽车使用的动力电池可以分几类? 3、电动汽车对动力电池的要求主要有哪些? 4、混合动力电动汽车按结构分哪几类?画出结构图 5、SOC的定义和意义? 6、简述飞轮电池的工作过程的三个阶段 7、目前电动汽车的关键技术有哪些? 8、简述开关磁阻电机的工作原理。 9、简述混合动力汽车扭矩耦合技术,并举出两种扭矩耦合技术,画出其示意图。 10、简述并联式混合动力电动汽车的工作模式。 11、请说明质子交换膜燃料电池的三个关键问题 12、燃料电池汽车优、缺点是什么? 13、什么是可变压缩比发动机技术?为什么要采用变压缩比? 14、请列举出至少6种汽车节能技术。 三、阐述分析题 1、阐述转速耦合的并联式混合动力电驱动系统的工作原理。 转速特点:当任一元件转速一定,其他两元素转速代数和为定值,但其间的分配关系可任意改变,及转速解耦。 两个动力源的动力也可以通过速度耦合方式耦合在一起进行传动,如图9所示速度耦合特性可以描述为ωout=k1ωin1+k2ωin2 T out=T in1/k1=T in2/k2其中k1 和k2 是与实际设 计相关的常数典型的速度耦合器如图10、11所示,图中两种结构分别是带行星轮和带有浮动定子的电动机(也称为传动器)的耦合器行星轮是由太阳轮,齿圈和行星架三部分组成的速度就是通过耦合器中的太阳轮,齿圈以及行星齿轮的传动而输出的该常数 和取决于齿轮的半径和齿数。

图10中,发动机通过离合器和变速器为太阳轮提供动力变速器用来改变发动机的转速转矩特性,以满足牵引力的需求电动传动器通过环形齿轮副提供动力锁1和2分别用于锁定太阳齿轮和环形齿轮,以满足不同操作模式的要求它可以实现:(1)混合动力驱动:锁1和锁2都打开,太阳齿轮和环形齿轮都可以自由旋转,发动机和电机同时提供正向的转速和扭矩(正转矩)到驱动车轮(2)发动机单独驱动:锁2将齿圈与车架锁定,而锁1打开,此时只有发动机提供动力驱动车轮(3)电机单独驱动:锁1将太阳轮与车架锁定(发动机被关闭或离合器张开)而锁2打开,此时只有电动机提供动力驱动车轮(4)再生制动:锁1在锁定(发动机被关闭或离合器脱开),电动机开始发电(负转矩),车辆的部分能量被电力系统吸收(5)发动机给电池充电:当控制器给电机以反向转速时,发动机即可给电池充电。 带传动器的传动系统如图11所示,其结构与图10的类似锁1和2分别用于将定子与车架锁定和与转子锁定这种传动系统也可以实现上述所几种运行模式速度耦合混合动力传动系统的主要优点是,两个动力源的转速是分开的,因此,两个动力装置的速度可自由匹配 2、阐述纯电动汽车的结构组成。 纯电动汽车主要由电力驱动系统、电源系统、辅助系统、控制系统、安全保护系统等组成。车行驶时,由蓄电池输出电能(电流)通过控制驱动电动机运转,电动机输出的转矩经传动系统带动车轮前进或后退。 21电力驱动系统 纯电动汽车的电力驱动系统的构成简图如图4所示,主要由电子控制器、驱动电动机、电动机逆变器、各种传感器、机械传动装置和车轮等组成,其中最关键的是电动机逆变器,电动机不同,控制器也有所不同,控制器将蓄电池直流电逆变成交流电后驱动交流驱动电动机,电动机输出的转矩经传动系统驱动车轮,使电动汽车行驶。该系统的功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。 22电源系统 纯电动汽车的电源系统包括车载电源、能量管理系统和充电机等。它的功用是向电动机提供驱动电能、监测电源使用情况及控制充电机向蓄电池充电。 23辅助系统 纯电动汽车辅助系统主要包括辅助动力源、空调器、动力转向系统、导航系统、刮水器、收音机及照明和除霜装置等。辅助动力源主要由辅助电源和DC/AC转换器组成,其功用是向动力转向系统、空调及其他辅助设备提供电力。 2.4控制系统 EV的控制系统主要是对动力蓄电池组的管理和对驱动电动机的控制。EV的控制系统的主要作用有:将加速踏板、制动踏板机械位移的行程量转换为电信号,输入至中央控制单

相关主题
文本预览
相关文档 最新文档