当前位置:文档之家› 具有非局部初始条件的分数阶积分_微分方程解的存在性

具有非局部初始条件的分数阶积分_微分方程解的存在性

具有非局部初始条件的分数阶积分_微分方程解的存在性
具有非局部初始条件的分数阶积分_微分方程解的存在性

数值积分与微分方程

2.3 数值积分 2.3.1 一元函数的数值积分 函数1 quad 、quadl 、quad8 功能 数值定积分,自适应Simpleson 积分法。 格式 q = quad(fun,a,b) %近似地从a 到b 计算函数fun 的数值积分,误差为10-6。 若给fun 输入向量x ,应返回向量y ,即fun 是一单值函数。 q = quad(fun,a,b,tol) %用指定的绝对误差tol 代替缺省误差。tol 越大,函数计 算的次数越少,速度越快,但结果精度变小。 q = quad(fun,a,b,tol,trace,p1,p2,…) %将可选参数p1,p2,…等传递给函数 fun(x,p1,p2,…),再作数值积分。若tol=[]或trace=[],则用缺省值进行计算。 [q,n] = quad(fun,a,b,…) %同时返回函数计算的次数n … = quadl(fun,a,b,…) %用高精度进行计算,效率可能比quad 更好。 … = quad8(fun,a,b,…) %该命令是将废弃的命令,用quadl 代替。 例2-40 >>fun = inline(‘3*x.^2./(x.^3-2*x.^2+3)’); equivalent to: function y=funn(x) y=3*x.^2./(x.^3-2*x.^2+3); >>Q1 = quad(fun,0,2) >>Q2 = quadl(fun,0,2) 计算结果为: Q1 = 3.7224 Q2 = 3.7224 补充:复化simpson 积分法程序 程序名称 Simpson.m 调用格式 I=Simpson('f_name',a,b,n) 程序功能 用复化Simpson 公式求定积分值 输入变量 f_name 为用户自己编写给定函数()y f x 的M 函数而命名的程序文件名 a 为积分下限 b 为积分上限 n 为积分区间[,]a b 划分成小区间的等份数 输出变量 I 为定积分值 程序 function I=simpson(f_name,a,b,n) h=(b-a)/n; x=a+(0:n)*h; f=feval(f_name,x); N=length(f)-1;

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

微分积分公式(全集)

高中大学数学微分与积分公式(全集) (高中大学数学) 一、001 01101lim 0 n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? L L (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)limarctan 2 x x π →∞ = (6)lim tan 2 x arc x π →-∞ =- (7)limarccot 0x x →∞ = (8)lim arccot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x : tan x x : arcsin x x : arctan x x : 2 11cos 2 x x -: ()ln 1x x +: 1x e x -: 1ln x a x a -: ()11x x ? +-?: 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式

⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃() 2 1arccot 1x x '=-+⒄()1x '= ⒅ '= 六、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 七、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π? ?+=++??? ??? ? ? (5) ()() cos cos 2n n ax b a ax b n π? ?+=++??? ??? ? ?

分数阶微积分发展现状及展望教学文稿

分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计 算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当 代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、 图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专 业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历 史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的 基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达 (L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数 f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文 章使他成为分数阶微积分理论的实际级创始人。1974年,Oldham与Spanier出版了第一本关于分数阶微积分理论的专著。 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,但是从近几十年,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内

分数阶微分方程数值解的一种逼近方法.

分数阶微分方程数值解的一种逼近方法 By:Pankaj Kumar, Om Prakash Agrawal 摘要 本文提出了一类分数阶微分方程(FDEs)的数值解方案.在这种方法中,FDEs 被Caputo型分数阶导数所表现. Caputo型分数阶导数的属性可以让一个分数阶微分方程减弱为一个Volterra型积分方程. 这样做了之后,许多研究Volterra 型积分方程的数值方法也可以应用于寻找FDEs的数值解. 本文总时间被划分为一组小区间,在两个连续区间中,用二次多项式逼近未知函数. 这些近似被替换成转化的Volterra型积分方程由此获得一组方程. 这些方程的解提供了FDE的解. 这种方法被应用于解决两种类型的FDEs,线性和非线性. 用这里给出的方法得到的解能与解析解和其他方法的数值解较好的吻合. 同时结果说明这种数值方法是稳定的. 1.引言 本文讨论分数阶微分方程的数值解. 分数阶导数和分数阶积分近年来收到了广泛的关注. 在许多实际应用中,分数阶导数和分数阶积分为考虑的系统提供了更加精确地模型. 比如,分数阶导数已经被成功地运用到模拟许多粘性材料的依赖频率的阻尼行为.1980年之前,Bagley 和Torvik提出了这个领域已经被研究的工作的一个回顾,并且说明了半阶导数模型可以非常好地描述阻尼材料的频率以来. 另一些学者说明了分数阶导数和分数阶积分在电化学过程,电解质极化,有色噪声,粘性材料和混沌领域的应用. Mainardi,Rossikhin和Shitikova 提出了分数阶导数和分数阶积分在一般固体力学,特定粘弹性阻尼模型中的应用的调查. Magin提出了分数阶微积分在生物工程的三个关键部分的回顾. 分数阶导数和分数阶积分在其他领域的应用以及相关的数学工具和技巧还可以在许多其他文献上找到. 系统模型中分数阶导数的引进大多会导致分数阶微分方程的出现. 对某些特定的分数阶微分方程在通常系统条件下的解,已经有几种方法被找到. 这些方法包括,拉普拉斯变换,傅里叶变换,模态综合法和特征向量展开法,数值法以

积分微分方程word版

西南交通大学数值分析题库 用复化梯形公式计算积分 1 ()f x dx ?,要把区间[0,1]一般要等分 41 份才能保 证满足误差小于0.00005的要求(这里(2) () 1f x ∞ ≤) ;如果知道(2) ()0f x >,则 用复化梯形公式计算积分1 ()f x dx ? 此实际值 大 (大,小)。 在以1 0((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C = ∈?为内积的空间C[0,1] 中,与非零常数正交的最高项系数为1的一次多项式是 2 3 x 3. (15分)导出用Euler 法求解 (0)1y y y λ'=??=? 的公式, 并证明它收敛于初值问题的精确 解 解 Euler 公式 1 1,1, ,,k k k x y y h y k n h n λ -----------(5分) 1 011k k k y h y h y λλ ------------------- (10分) () 11(0)n n x n x y h e h n λλλ??=+=+→→ ?? ? 若用复化梯形求积公式计算积分1 x I e dx = ? 区间[0,1]应分 2129 等分,即要 计算个 2130 点的函数值才能使截断误差不超过 71 102 -?;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值 1.用Romberg 法计算积分 2 3 2 x e dx -? 解 []02()()2b a T f a f b -= += 9.219524346410430E-003 10221()222 b a a b T T f -+=+= 5.574989241319070E-003 10 022243 T T S -= = 4.360144206288616E-003 22T = 4.499817148069681E-003 21 122243 T T S -= = 4.141426*********E-003

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

全微分方程及积分因子

1.5 全微分方程及积分因子

一、全微分方程的定义及条件 则它的全微分为 是一个连续可微的函数设,),(y x U U =dy y U dx x U dU ??+??=如果我们恰好碰见了方程 0),(),(=??+??dy y y x U dx x y x U 就可以马上写出它的通积分 . ),(c y x U =

定义1使得 若有函数),,(y x U dy y x N dx y x M y x dU ),(),(),(+=则称微分方程) 1(,0),(),(=+dy y x N dx y x M 是全微分方程..),()1(c y x U =的通积分为此时如0 =+ydx xdy 0 )2()3(322=+++dy xy x dx y y x 0 )()(=+dy y g dx x f 是全微分方程.=)(xy d =+)(23xy y x d =+òò))()((y d y g x d x f d 1.全微分方程的定义

需考虑的问题(1) 方程(1)是否为全微分方程? (2) 若(1)是全微分方程,怎样求解? (3) 若(1)不是全微分方程,有无可能转化为全微分方程求解?2 方程为全微分方程的充要条件 定理1则方程 偏导数中连续且有连续的一阶域在一个矩形区和设函数,),(),(R y x N y x M ) 1(,0),(),(=+dy y x N dx y x M 为全微分方程的充要条件是 ). 2(,),(),(x y x N y y x M ??=??)1(, 0),(),(=+dy y x N dx y x M

证明“必要性”设(1)是全微分方程,使得 则有函数),,(y x U dy y U dx x U y x dU ??+??=),(dy y x N dx y x M ),(),(+=故有),,(y x M x U =??),(y x N y U =??从而从而有都是连续的和由于,22y x U x y U ??????,22y x U x y U ???=???故.),(),(x y x N y y x M ??=??y x U y N x y U y M ???=?????=??22 ,

稳定性分析与分数阶微分方程

东华大学 2013~ 2014学年第II 学期研究生期末考试试题 考试学院:理学院 考试专业:基础数学应用数学 考试课程名称:稳定性分析与分数阶微分方程 学号姓名得分 (考生注意:答案必须写在答题上,写在本试题纸上一律不给分)[试题部分] 一、根据所学知识,概述Lyapunov第二方法的核心思想和基本理 论。 二、针对某一类问题或某个模型,运用Lyapunov第二方法进行 稳定性分析。 三、综述分数阶微积分的三种定义方式及其性质和联系。 四、谈谈你对分数阶微分方程研究的认识和看法。 要求:1. 第二题结合每人曾经报告过的文献来完成; 2. 用电子文档打印,并提交电子文件。

一、根据所学知识,概述Lyapunov 第二方法的核心思想和基本理论 李雅普诺夫(Lyapunov )提出了两种方法,分析运动的稳定性: 第一方法包含许多步骤,包括最终用微分方程的显式解来对稳定性近行分析,是一个间接的方法。 第二方法不是求解微分方程组,而是通过构造李雅普诺夫函数(标量函数)来直接判断运动的稳定性,因此又称为直接法。 李雅普诺夫直接法(也称第二方法)是整个稳定性理论的核心方法,李雅普诺夫1892年提出的稳定性理论、渐近稳定性定理及两个不稳定性定理,奠定了运动稳定性的基础,被誉为稳定性的基本定理。目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计的基本工具。 李雅普诺夫第二方法的核心思想: 以二维自治系统为例,李雅普诺夫直接法借助于一个V 函数,利用方程右端的信息来探测解的稳定性的原始几何思想。 考虑方程 ?????==),(),(21222111 x x f dt dx x x f dt dx 0)0,0()0,0(21==f f 其中21,f f 连续,保证解的唯一性. 设),()(21x x V x V =是K 类函数,且],[)(1 21+∈R R C x V ,此方程的解 T t x t x t x ))(),(()(21=的信息是未知的,但它的导数满足 )),(),,((),(2122112. 1. x x f x x f x x =的信息是已知的,因为21,f f 是已知函数. 姑且把任意解)(t x 代入)(x V 得到))((:)(t x V t V =. 粗略的说,平凡解的稳定性(包括渐近稳定性、稳定、不稳定)是由解)(t x “走近”原点,“不远离”原点,“远离”原点来决定的,而这些信息分别等价于 ))((t x V 是t 的下降、不增、上升函数。由于],[)(121+∈R R C x V ,后者又分别等价于 0)) ((,0))((,0))((>≤

微分积分公式(全集)

高中大学数学微分与积分公式(全集) (高中大学数学) 一、0 101101 lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??++ +? =?? ? (系数不为 的情况) 二、重要公式( )0sin lim 1x x x →= ( )()1 0lim 1x x x e →+= ( ))1n a o >= ( )1n = ( )limarctan 2 x x π →∞ = ( )lim tan 2 x arc x π →-∞ =- ( )limarccot 0x x →∞ = ( )lim arccot x x π→-∞ = ( )lim 0x x e →-∞ = ( )lim x x e →+∞ =∞ ( )0lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x arcsin x x arctan x x 2 11cos 2 x x - () ln 1x x + 1x e x - 1ln x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=

⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃() 2 1arccot 1x x '=-+⒄()1x '= ⒅ ' = 六、高阶导数的运算法则 ( )()()()()()()()n n n u x v x u x v x ±=±???? ( )()() () ()n n cu x cu x =???? ( )()() () ()n n n u ax b a u ax b +=+???? ( )()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 七、基本初等函数的 阶导数公式 ( )()()!n n x n = ( )()()n ax b n ax b e a e ++=? ()() ln n x x n a a a = ()()sin sin 2n n ax b a ax b n π??+=++??? ??? ? ? ()()cos cos 2n n ax b a ax b n π??+=++??? ??? ? ? () () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? + ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+

分数阶微分方程数值实验MATLAB编码

分数阶微分方程数值实验 实验题目: 考虑分数阶扩散微分方程 ),() ,()(),(t x q x t x u x d t t x u +??=??α α (1.1) 这里的6 )2.2()(1 +Γ=αx x d ,3)1(),(x e x t x q t -+-=,其中初值为()30,x x u =,边值 ???==-t e t u t u ),1(0 ),0(,其真解为3),(x e t x u t -=,计算其数值解。 实验算法: 1.将空间区间[0,1]等距剖分成N 段,1+N 个节点为 12101N x x x +=<<<= ;将时间区间]1,0[等距剖分成M 段,1+M 个节点为 1...0121=<<<=+M t t t 。 2.将方程组(1.1)中的()ααx t x u ??,用有限G runward Letnikov -算子离散,即 2 10,210)1(),(+=-+=---∑∑=??? ? ??-=j i k k j k i k j i GL F k i k i u g h u k h t x u D ααα αα 其中) 1()1() 1()1()1(,+Γ+-Γ+Γ-=? ?? ? ??-=k k k g k k k αααα i 1,2,...,1N =+,1,,2,1+=M j 其中α 是分数阶。 再对1+-j k i u 利用中心差分212 1 +--+-+=j k i j k i j k i u u u 进行离散,则得到()α αx t x u ??,的离散格式)(2110 ,2 1 ,+--=-+ =-+=∑∑-j k i j k i i k k j i k k u u g h u g h k i ααα α

全微分方程的不定积分解法及其证明

全微分方程的不定积分解法及其证明 一个一阶微分方程写成 P (x,y ) dx + Q (x,y ) dy = 0 ⑴ 形式后,如果它的左端恰好是某一个函数u= u (x,y ) 的全微分: du (x,y ) = P (x,y ) dx + Q (x,y ) dy 那么方程⑴就叫做全微分方程。这里 5u 5x = P (x,y ), 5u 5y = Q (x,y ) 方程⑴就是du (x,y ) = 0,其通解为: u (x,y ) = C(C 为常数) 可见,解全微分方程的关键在于求原函数u (x,y )。因此,本文将提供一种求原函数u (x,y ) 的简捷 方法,并给出证明。 1引入记号 为了表述方便,先引入记号如下: 设M (x,y ) 为一个含有变量x,y 项的二元函数,定义: ⑴“M (x q ,y ) ”表示M (x,y ) 减去它里面含有变量x 的项; ⑵“M (x,y q )”表示M (x,y ) 减去它里面含有变量y 的项; 注意:常数项看作既不含变量x 也不含变量y 的项。 现举一例如下: 设:M (x,y ) = xy + x ey+ x 1- x + sinx+ co sx co sy + y 2+ 1 按记号定义有: M (x q ,y ) = M (x,y ) - (x y + x ey + x 1 - x + sinx + co sx co sy ) = y 2 + 1 M (x,y q )= M (x,y ) - (x y + x ey + co sx co sy + y 2) = x 1 - x

+ sinx + 1 2u (x,y ) 的简捷求法 引理设开区域G 是一个单连通域,函数P (x,y ),Q (x,y ) 在G 内具有一阶连续偏导数,则 P (x,y ) dx + Q (x,y ) dy 在G 内为某一函数u (x,y ) 的全微分的充分必要条件是等式 5P 5y = 5Q 5x

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分? x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子: x N y M y M x N ??-??=????????-??μμμ1 )(x μ: N x N y M dx d ??-??=μμ1 )(y μ: M x N y M dy d ??-??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解: x N y M ??≡??=x 2 ??=-+x y C dy y xydx 002)0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y

解: x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解: x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23232322 )(32)(32)(32 既C y x x =-+2322 )(32 4)0)ln (3=++dy x y dx x y 解: x N y M ??≡??=x 1 C dy y dx x y y x =+??030既C y x y =+4/||ln 4 5)05233 3222=+-+dy y y x dx y y x 解: x N y M ??≡??=326--y x ??=-+-x y C dy y dx y y x 00222253 C y x y x =++-/523 6)02cos )2sin 1(2=-+xdy y dx x y 解: x N y M ??≡??=x y 2sin 2 C ydy dx x y x y =-+??002)2sin 1(

最新分数阶微分方程课件

分数阶微分方程课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方

积分和简单的微分方程

第三讲 积分和简单的微分方程 1 对于保守力有p dE F dx =- ,势能极值点就是受力平衡点 2 小量展开能将复杂的表达式简化,用多项式逼近任意函数。重要的公式: 当1x <<时 2 (1)(1)1 (2) n n n x nx x -+=++ + 3 常见的求导公式 1[]'n n x nx -=;[]'x x e e =;[sin ]'cos x x =;[cos ]'sin x x -=;1[ln ]'x x = 积分是变量累计的基本方法。掌握积分之后一方面可以用更为简明的办法处理部分竞赛题,另一方面为同学们自学各种高级课程扫平了障碍。 物理方程常常同时包括某个物理量和这个物理量的导数,这样的方程就叫微分方程。掌握微分方程之后,对于许多问题便可以跳出具体的已知量、未知量的限制,从物理本质的角度,讨论问题的可解性,归纳多题一解的方法。 第一部分 单元函数积分 知识点睛 引入:物理公式分类 物理公式分成:状态方程(初中常见,例如牛二,万有引力)和过程方程(例如动能定理,动量定理)。判定以下方程是状态方程还是过程方程:m V ρ=;F ma =;x vt = 看下面两组方程 U I R =;U IR = q I t = ;q It = 前一组是状态的方程。后一组是过程的方程。当电流是常数的时候,两个式子都是对的。然后电流是变化的时候,前一组方程还成立,后一组得到的就不是电流了,而是电流的平均值。如果还要求结果是瞬时的电流,必须把第二组第一个变成求导数,后一个方程就把乘积变成了对瞬时的电流*时间再求和,也就是我们今天要学的积分。 先看两个例子: 上讲回顾 本讲目标 知识模块

通过MATLAB求二阶全微分方程解析解

1.对于二阶全微分方程a,不同的a,b,c取值会求出不同的解析 解,解析解又是由齐次解和特解组成。其中,齐次解由特征方程决定,而特解的决定因素则比较复杂。 2.对于二阶全微分方程的分析,我们大致分为三种情况: b^2-4ac>0(两个不同的实根) b^2-4ac=0(两个相同的重根) b^2-4ac<0(两个不同的复数根) 对三种情况进行MATLAB编程,分析齐次解和特解后,再改变W的值,观察解析解的变化 3.b^2-4ac>0的情况 STEP1:求解析解 s1=dsolve('D2y+3*Dy+2*y=0','y(0)=2,Dy(0)=0','t'); s2=dsolve('D2y+3*Dy+2*y=sin(t)','y(0)=2,Dy(0)=0','t'); s3=dsolve('D2y+3*Dy+2*y=sin(2*t)','y(0)=2,Dy(0)=0','t'); s4=dsolve('D2y+3*Dy+2*y=sin(5*t)','y(0)=2,Dy(0)=0','t'); s5=dsolve('D2y+3*Dy+2*y=sin(13*t)','y(0)=2,Dy(0)=0','t'); s6=dsolve('D2y+3*Dy+2*y=sin(25*t)','y(0)=2,Dy(0)=0','t'); STEP2:绘制图形 (1)求w=1情况下的通解和齐次解 t=1:0.1:10; s1=4*exp(-t)-2*exp(-2*t)%general solution s2=-3/10*cos(t)+1/10*sin(t)-11/5*exp(-2*t)+9/2*exp(-t)%special solution subplot(2,1,1); plot(t,s2); xlabel('t') ylabel('y(t)') title('general solution') subplot(2,1,2); plot(t,s1); xlabel('t') ylabel('y(t)') title('special solution')

常见的有解析解的常微分方程---经典总结

常见的有解析解的常微分方程---经典总结 1、可分离变量方程:1122()()()()0f x g y dx f x g y dy += 两边同除以12()()0g y f x ≠,得1221()()0()() f x g y dx dy f x g y += 积分,得1221()()()() f x g y dx dy C f x g y +=?? 2、齐次方程:'()y y f x = 令y u x =,则y ux =,'du y u x dx =+ 于是,原方程()ln ()()du du dx du u x f u x C dx f u u x f u u ?+=?=?=+--? 3、可化为齐次型的方程:111222 ()a x b y c dy f dx a x b y c ++=++ (1)当120c c ==时, 11 112222()()()y a b a x b y dy y x f f g y dx a x b y x a b x ++===++,利用2求解 (2)1 1220a b a b =,即1122 a b a b λ==,则22122222()()()a x b y c dy f g a x b y dx a x b y c λ++==+++ 令22a x b y u +=,则 22()du a b g u dx =+,利用1求解 (3)1 122 0a b a b ≠,1c ,2c 不全为0 解方程组111222 00a x b y c a x b y c ++=??++=?,求交点(,)αβ 4、一阶线性方程:'()()y p x y q x +=

相关主题
文本预览
相关文档 最新文档