当前位置:文档之家› STM32 读写 EEPROM 24C02方法

STM32 读写 EEPROM 24C02方法

STM32 读写 EEPROM 24C02方法
STM32 读写 EEPROM 24C02方法

寄存器和存储器的区别

https://www.doczj.com/doc/7b6938257.html,/p-20032411.html

寄存器和存储器的区别

如果仅是讨论CPU的范畴 寄存器在cpu的内部,容量小,速度快 存储器一般都在cpu外部,容量大,速度慢 回答者:athlongyj - 高级经理六级6-1 08:52 从根本上讲,寄存器与RAM的物理结构不一样。 一般寄存器是指由基本的RS触发器结构衍生出来的D触发, 就是一些与非门构成的结构,这个在数电里面大家都看过; 而RAM则有自己的工艺,一般1Bit由六MOS管构成。所以, 这两者的物理结构不一样也导致了两者的性能不同。寄存器 访问速度快,但是所占面积大。而RAM相反,所占面积小, 功率低,可以做成大容量存储器,但访问速度相对慢一点。 1、 寄存器存在于CPU中,速度很快,数目有限; 存储器就是内存,速度稍慢,但数量很大; 计算机做运算时,必须将数据读入寄存器才能运算。 2、 存储器包括寄存器, 存储器有ROM和RAM 寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了`````

寄存器跟存储器有什么区别? 一般数据在内存里面,要处理(或运算)的时候, 独到寄存器里面。 然后CPU到寄存器里面拿值,拿到运算核内部, 算好了在送到寄存器里面 再到内存 寄存器跟存储器有什么区别? 寄存器跟存储器有什么区别? 寄存器上:“一个操作码+一个操作数”等于一条微指令吗?一条微指令是完成一条机器指令的一个步骤对吗?cpu是直接跟寄存器打交道的对吗?也就是说寄存器是运算器、控制器的组成部分对不? 设计一条指令就是说把几条微指令组合起来对吗? 刚开始学硬件相关知识,学的晕头转向的!! 存储器与寄存器区别 2009-06-09 12:27 寄存器是CPU内部存储单元,数量有限,一般在128bit内,但是速度快,CPU访问几乎没有任何延迟。分为通用寄存器和特殊功能寄存器。 通常说的存储器是独立于cpu之外的,比如内存,硬盘,光盘等。 所有数据必须从存储器传入寄存器后,cpu才能使用。

24C02读写程序

HT49 MCU系列单片机读写HT24系列的EEPROM应用范例HT49 MCU系列单片机读写HT24系列的EEPROM应用范例文件编码:HA0017s 简介: HT24系列的EEPROM是通过I2C协议控制其读写的。HT49系列单片机的接口部分是简单I/O 口,可以用来很方便地采用I2C协议控制周边器件。 HT24系列的EEPROM总共8个管脚,三个为芯片地址脚A0、A1、A2,在单片机对它进行操作时,从SDA输入A0、A1、A2数据和芯片外部A0、A1、A2所接地址需一一对应。一个为芯片写保护脚WP,WP脚接低电平时,芯片可进行读写操作;WP脚接高时,芯片只可进行读,不可进行写。另外两个管脚为电源脚VCC,VSS。 用单片机对HT24系列的EEPROM进行控制时,HT24系列的EEPROM的外部管脚VCC、VSS、WP、A0、A1、A2根据需要,对应接上,SDA、SCL接到单片机控制脚上。 引脚名称I/O 功能描述 A0~A2 I 地址输入 VSS I 电源负极输入 SDA I/O 串行数据输入/输出 SCL I 串行数据传送时钟信号输入 WP I 写保护 VCC I 电源正极输入 HT24系列的EEPROM根据型号不同,EEPROM的容量大小不同,当EEPROM的空间大于1页(256bytes)时,即大于2048bits,则HT49 MCU需要控制A0、A1、A2来确定写HT24系列的EEPROM的第几页,HT24系列的EEPROM空间大小如下表所示: 型号引脚A0、A1及A2使用方法容量大小 HT24LC02 A0、A1、A2引脚作为器件地址输入,从SDA输入A0、A1、 A2数据和芯片引脚A0、A1、A2所接状态需一一对应 2K(256×8) HT24LC04 A1、A2引脚作为器件地址输入,从SDA输入A1、A2数据 和芯片引脚A1、A2所接状态需一一对应,A0引脚浮空 4K(512×8, 2pages) HT24LC08 A2引脚器件地址输入,从SDA输入A2数据和芯片引脚A2 所接状态需一一对应,其余引脚浮空 8K(1024×8, 4pages) HT24LC16 A0、A1、A2全部浮空,不必接16K(2048×8,8pages)

实现存储器EEPROM AT24C02的数据读写操作 采用IIC总线读写 C程序

/*************************************************************** 功能:11:32 2008-6-27 作者:SG 时间:2004-03-15 版本:V1.0 ***************************************************************/ #include "INTRINS.H" #include "reg52.h" #define WriteDeviceAddress 0xa0 //写驱动地址指令 #define ReadDeviceAddress 0xa1 //读驱动地址指令 sbit AT24C02_SCL = 0xa4; sbit AT24C02_SDA = 0xa5; /*------------------------------------------------------------- 功能:发起始信号 ------------------------------------------------------------*/ void Start_Cond() { AT24C02_SCL = 0; _nop_(); AT24C02_SDA = 1; _nop_(); AT24C02_SCL = 1; _nop_(); AT24C02_SDA = 0; _nop_(); } /*------------------------------------------------------------- 功能:发停止信号 ------------------------------------------------------------*/ void Stop_Cond() { AT24C02_SCL = 0; _nop_(); AT24C02_SDA = 0; _nop_(); AT24C02_SCL = 1; _nop_(); AT24C02_SDA = 1; _nop_();

24c02读写程序教学资料

24c02读写程序

E2PROM芯片24C02的读写程序 一、实验目的: 给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。然后再把这组数据读出来,检验写入和读出是否正确。 在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。 二、理论知识准备: 上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。 (一)、I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。 (二)、I2C总线结构 I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL)。具有I2C接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。连接到总线的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的控制。 一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、E2PROM、ADC各器件都是具有I2C总线接口的器件):

我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据线既可以发送也可以接受,工作方式可以通过软件设置。所以,I2C总线结构的硬件结构非常简洁。 当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。 (三)、I2C总线上的数据传送 下面我们看看I2C总线是如何进行数据传送的。我们知道,在一根数据线上传送数据时必须一位一位的进行,所以我们首先研究位传送。 1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。 那么是不是所有I2C总线中的信号都必须符合上述的有效性呢?只有两个例外,就是开始和停止信号。 开始信号:当SCL为高电平时,SDA发生从高到低的跳变,就定义为开始信号。 停止信号:当SCL为高电平时,SDA发生从低到高的跳变,就定义为结束信号。 开始和结束信号的时序图如下图所示:

24c02读写程序大全

24c02读写程序大全 2C总线的应用(24C02子程序) // 对24C02的读、写 // extern void DelayMs(unsigned int); // extern void Read24c02(unsigned char *RamAddress,unsigned char Ro mAddress,unsigned char bytes); // extern void Write24c02(unsigned char *RamAddress,unsigned char Ro mAddress,unsigned char bytes); /***************************************************************************/ #define WriteDeviceAddress 0xa0 #define ReadDviceAddress 0xa1 #include #include #include /***************************************************************************/ sbit SCL=P2^7; sbit SDA=P2^6; bit DOG; /***************************************************************************/ void DelayMs(unsigned int number) { unsigned char temp; for(;number!=0;number--,DOG=!DOG) { for(temp=112;temp!=0;temp--) { } } } /***************************************************************************/ void Start() { SDA=1; SCL=1; SDA=0; SCL=0; } /***************************************************************************/ void Stop() { SCL=0; SDA=0;

AT24C02串行E2PROM的读写

AT24C02串行E2PROM的读写 I2C总线是一种用于IC器件之间连接的二线制总线。它通过SDA(串行数据线)及SCL(串行时钟线)两根线在连到总线上的器件之间传送信息,并根据地址识别每个器件:不管是单片机、存储器、LCD驱动器还是键盘接口。 1.I2C总线的基本结构采用I2C总线标准的单片机或IC器件,其内部不仅有I2C接口电路,而且将内部各单元电路按功能划分为若干相对独立的模块,通过软件寻址实现片选,减少了器件片选线的连接。CPU不仅能通过指令将某个功能单元电路挂靠或摘离总线,还可对该单元的工作状况进行检测,从而实现对硬件系统的既简单又灵活的扩展与控制。I2C总线接口电路结构如图1所示。 2.双向传输的接口特性传统的单片机串行接口的发送和接收一般都各用一条线,如MCS51系列的TXD和RXD,而I2C总线则根据器件的功能通过软件程序使其可工作于发送或接收方式。当某个器件向总线上发送信息时,它就是发送器(也叫主器件),而当其从总线上接收信息时,又成为接收器(也叫从器件)。主器件用于启动总线上传送数据并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。I2C总线的控制完全由挂接在总线上的主器件送出的地址和数据决定。在总线上,既没有中心机,也没有优先机。 总线上主和从(即发送和接收)的关系不是一成不变的,而是取决于此时数据传送的方向。SDA和SCL均为双向I/O线,通过上拉电阻接正电源。当总线空闲时,两根线都是高电平。连接总线的器件的输出级必须是集电极或漏极开路,以具有线“与”功能。I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。 3.I2C总线上的时钟信号在I2C总线上传送信息时的时钟同步信号是由挂接在SCL时钟线上的所有器件的逻辑“与”完成的。SCL线上由高电平到低电平的跳变将影响到这些器件,一旦某个器件的时钟信号下跳为低电平,将使SCL线一直保持低电平,使SCL线上的所有器件开始低电平期。此时,低电平周期短的器件的时钟由低至高的跳变并不能影响SCL线的状态,于是这些器件将进入高电平等待的状态。 当所有器件的时钟信号都上跳为高电平时,低电平期结束,SCL线被释放返回高电平,即所有的器件都同时开始它们的高电平期。其后,第一个结束高电平期的器件又将SCL线拉成低电平。这样就在SCL线上产生一个同步时钟。可见,时钟低电平时间由时钟低电平期最长的器件确定,而时钟高电平时间由时钟高电平期最短的器件确定。 4.数据的传送在数据传送过程中,必须确认数据传送的开始和结束。在I2C总线技术规范中,开始和结束信号(也称启动和停止信号)的定义如图2所示。当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平定义为“开始”信号;当SCL线为高电平时,SDA线发生低电平到高电平的跳变为“结束”信号。开始和结束信号都是由主器件产生。在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲的。

ATMEGA16读写iic(TWI)(24c02) C语言程序

ATMEGA16读写iic(24c02) C语言程序测试通过 #include #include "I2C.h" #include "1602.h" #include "delay.h" /*通过AVR往I IC写数据,并通过串口把数据读出显示出来*/ //=============================================================== void UART_init(void) //UART初始化 { DDRD = 0x02; PORTD = 0x00; UCSRA = 0x02; /*无倍速*/ UCSRB = 0x18; /*允许接收和发送*/ UC SRC = 0x06; /*8位数据,1位停止位,无校验*/ UBRRH = 0x00; UBRRL = 12; /*9600*/ } //=============================================================== void USART_TXD(float data) //发送采用查询方式 { while( !(UCSRA & BIT(UDRE)) ); UDR=data; while( !(UCSRA & BIT(TXC )) ); UCSRA|=BIT(TXC); } void main(void) { unsigned char i; //LCD_init(); uart_init();//TART初始化 SEI(); //全局中断使能

while(1) {/* I2C_Write('n',0x00); I2C_Write('c',0x01); I2C_Write('e',0x02); I2C_Write('p',0x03); I2C_Write('u',0x04); */ i=I2C_Read(0x00); //LCD_write_char(0,0,i); USART_TXD(i); i=I2C_Read(0x01); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x02); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x03); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x04); //LCD_write_data(i); USART_TXD(i); } } /*上面上主函数部分*/ #include #include "delay.h" //I2C 状态定义 //MT 主方式传输 MR 主方式接受#define START 0x08 #define RE_START 0x10 #define MT_SLA_ACK 0x18 #define MT_SLA_NOACK 0x20 #define MT_DATA_ACK 0x28 #define MT_DATA_NOACK 0x30 #define MR_SLA_ACK 0x40 #define MR_SLA_NOACK 0x48 #define MR_DATA_ACK 0x50 #define MR_DATA_NOACK 0x58

寄存器概念整理

寄存器、RAM、ROM、Flash相关概念区别整理 寄存器 寄存器是中央处理器内的组成部份。它跟CPU有关。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。 存储器 存储器范围最大,它几乎涵盖了所有关于存储的范畴。你所说的寄存器,内存,都是存储器里面的一种。凡是有存储能力的硬件,都可以称之为存储器,这是自然,硬盘更加明显了,它归入外存储器行列,由此可见——。 内存 内存既专业名上的内存储器,它不是个什么神秘的东西,它也只是存储器中的沧海一粟,它包涵的范围也很大,一般分为只读存储器和随即存储器,以及最强悍的高速缓冲存储器(CACHE),只读存储器应用广泛,它通常是一块在硬件上集成的可读芯片,作用是识别与控制硬件,它的特点是只可读取,不能写入。随机存储器的特点是可读可写,断电后一切数据都消失,我们所说的内存条就是指它了。 CACHE 高速缓冲存储器(Cache)其原始意义是指存取速度比一般随机存取记忆体(RAM)来得快的一种RAM,一般而言它不像系统主记忆体那样使用DRAM技术,而使用昂贵但较快速的SRAM技术,也有快取记忆体的名称。 CACHE是在CPU中速度非常块,而容量却很小的一种存储器,它是计算机存储器中最强悍的存储器。由于技术限制,容量很难提升,一般都不过兆。 ROM、RAM的区别: ROM(只读存储器或者固化存储器) RAM(随机存取存储器) ROM和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写。ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。 RAM有两大类,一种称为静态RAM(Static RAM/SRAM),当数据被存入其中后不会消失。SRAM速度非常快,是目前读写最快的存储设备了。当这个SRAM 单元被赋予0 或者1 的状态之后,它会保持这个状态直到下次被赋予新的状态或者断电之后才会更改或者消失。但是存储1bit 的信息需要4-6 只晶体管。因此它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。另一种称为动态RAM(Dynamic

STM32F103读写24C02程序使用过肯定能用

//实验24C02连接在PF口 //WP、A0、A1、A2都接地 #include "stm32f10x_flash.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" #define AT24C02 0xa0 //AT24C02 地址 /******************************** 变量定义---------------------------------------------------------*/ GPIO_InitTypeDef GPIO_InitStructure; //GPIO ErrorStatus HSEStartUpStatus; unsigned char Count1 , Count2; unsigned int USEC; static vu32 TimingDelay; unsigned char Readzfc; unsigned char pDat[8] = {0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55}; unsigned char R_Dat[8]; /*********************************声明函数-----------------------------------------------*/ void RCC_Configuration(void); void SysTick_Configuration(void); void Delay_us_24C02(u32 nTime); /************************************24C02硬件接口******************************/ #define SData GPIO_Pin_6 //I2C 时钟 #define SCLK GPIO_Pin_7 //I2C 数据 /********************************宏定义*******************************************/ #define SCL(x) x ? GPIO_SetBits(GPIOF , SCLK) : GPIO_ResetBits(GPIOF , SCLK) #define SDA(x) x ? GPIO_SetBits(GPIOF , SData) : GPIO_ResetBits(GPIOF , SData) /********************************变量*******************************************/ u8 ack; /******************************************************************* 起动总线函数 函数原型: void Start_I2c(); 功能: 启动I2C总线,即发送I2C起始条件. ********************************************************************/ void Start_I2c() { SDA(1); //SDA=1; 发送起始条件的数据信号 Delay_us_24C02(1); SCL(1); //SCL=1; Delay_us_24C02(5); //起始条件建立时间大于4.7us,延时 SDA(0); //SDA=0; /*发送起始信号*/ Delay_us_24C02(5); // 起始条件锁定时间大于4μs

应广单片机读写24C02程序代码

应广单片机读写24C02程序代码 #include "extern.h" #include "main.h" //*************************************************** //*************************************************** //??ò?I2C?ó?ú I2C_SDA equ pb.2 I2C_SCL equ pb.0 I2C_SDA_DIR equ pbc.2 I2C_SCL_DIR equ pbc.0 I2C_LONG_DLY equ 50 I2C_SHORT_DLY equ 20 I2C_SDA_HIGH equ set1 I2C_SDA I2C_SDA_LOW equ set0 I2C_SDA I2C_SCL_HIGH equ set1 I2C_SCL I2C_SCL_LOW equ set0 I2C_SCL I2C_SDA_OUTPUT equ set1 I2C_SDA_DIR I2C_SDA_INPUT equ set0 I2C_SDA_DIR I2C_SCL_OUTPUT equ set1 I2C_SCL_DIR I2C_SCL_INPUT equ set0 I2C_SCL_DIR //??ò?I2C??á? uchar i2c_rw_addr; //?áD?μ??? uchar i2c_rw_byte; //?áD?êy?Y uchar i2c_rw_cmd; //?áD?μ????tμ??? uchar i2c_rw_temp; //?áD??y?ì?D????á? uchar i2c_rw_cnt; //?áD??y?ì?D????á? //---------------------------- //?úéúSTARTD?o? //---------------------------- i2c_start: I2C_SDA_OUTPUT

怎么实现对存储器24C02程序的读写

决 怎么实现24C02程序的读写 我是个新手,对24C02 一窍不通,请问怎么给24C02写程序。是不是要像给单片机写程序那样需要一个编程器,或是需要其他的什么软硬件。另外再给我介绍一些24C02的入门知识,谢谢。 问题补充: 24C02是不是只是一个存储器?使用它时需不需要专门给它写段程序再烧进去? 我们将24c02 的两条总线接在了P26 和P27 上,因此,必须先定义: sbit SCL=P2^7; sbit SDA=P2^6; 在这个试验中,我们写入了一个字节数值0x88 到24c02 的0x02 的位置。 写入完成后,P10 灯会亮起,我们再在下一颗来读出这个字节来验证结果。――――――――――――― #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long #include //包括一个52 标准内核的头文件 //本课试验写入一个字节到24c02 中 char code dx516[3] _at_ 0x003b;//这是为了仿真设置的 #define WriteDeviceAddress 0xa0 //定义器件在IIC 总线中的地址 #define ReadDviceAddress 0xa1 sbit SCL=P2^7; sbit SDA=P2^6; sbit P10=P1^0; //定时函数 void DelayMs(uint number) { uchar temp; for(;number!=0;number--) { for(temp=112;temp!=0;temp--) ; } } //开始总线

通用寄存器存储器实验

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 东北大学秦皇岛分校 实验三通用寄存器存储器实验 1、实验目的与要求 实验目的: 熟悉通用寄存器的数据通路; 掌握通用寄存器的构成和运用; 熟悉和了解存储器组织与总线组成的数据通路

实验要求: 在掌握了AX、BX运算寄存器的读写操作后,继续完成CX、DX通用寄存器的数据写入与读出; 按照实验步骤完成实验项目,掌握存储部件在原理计算机中的运用。 2、实验原理 通用寄存器: 通用寄存器数据通路如下图所示。由四片8位字长的74LS574组成CX、DX通用寄存器组。途中X1 X2 X0定义为输出选通使能,SI、XP控制位为源选通选择。RXW为寄存器数据写入使能,Q2 Q1 Q0及OP、DI为目的寄存器选择。T4信号为寄存器、对战数据写入脉冲,上升沿有效。准双向I/O 输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。 存储器: 存储器是计算机的存储部件,用于存放程序和数据。存储器是计算机信息存储的核心,是计算机必不可少的部件之一,计算机就是按存放在存储器中的程序自动有序不间断地进行工作。 本系统从提高存储器存储信息效率的角度设计数据通路,按现代计算机中最为典型的分段存储理念把存储器组织划分为程序段、数据段等,由此派生了数据总线(DBus)、指令总线(IBus)、微总线(μBus)等与现代计算机设计规范相吻合的实验环境。 实验所用的存储器电路原理如图3-1所示,该存储器组织由二片6116构成具有奇偶概念的十六位信息存储体系,该存储体系AddBus由IP指针和AR指针分时提供,E/M控位为“1”时选通IP,反之选通AR。该存储体系可随机定义总线宽度,动态变更总线结构,把我们的教学实验提高到能与现代计算机设计规范相匹配与接轨的层面。

E2PROM芯片24C02的读写程序

E2PR0M 芯片24C02的读写程序 一、实验目的: 给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。然后再把这组数据读出来,检验写入和读出是否正确。 在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。 二、理论知识准备: 上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的 串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。 (—)、I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。 (二)、I2C总线结构 I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL )。具有I2C 接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。连接到总线 的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的 控制。 一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、 E2PROM、ADC各器件都是具有I2C总线接口的器件): SDA SCL|| || || || 微控制器LCD驱动ADC E2PR0M 我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据 线既可以发送也可以接受,工作方式可以通过软件设置。所以,I2C总线结构的硬件结构非 常简洁。 当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。(三)、I2C总线上的数据传送 下面我们看看I2C总线是如何进行数据传送的。我们知道,在一根数据线上传送数据时必须 一位一位的进行,所以我们首先研究位传送。 1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保 持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于 4.7us。

计算机组成原理存储器读写实验报告

《计算机组成原理》实验报告 实验名称:存储器读写实验班级: 学号:姓名: 一、实验目的 1、掌握存储器的工作特征 2、熟悉静态存储器的操作过程,验证存储器的读取方法 二、实验设备 1、YY—Z02计算机组成原理实验仪一台。 2、排线若干。 3、PC微机一台。 三、实验原理 1.存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类, 其可分为易失性和非易失性存储器,易失性存储器中的数据在关电后将 不复存在,非易失性存储器中的数据在关电后不会丢失。易失性存储器 又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有 2ms,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电, 信息是不会丢失的。 2.静态存储器芯片6116的逻辑功能: 3.存储器实验单元电路:

存储器实验单元电路控制信号逻辑功能表: 4.存储器实验电路: 存储器读写实验需三部分电路共同完成:存储器单元、地址寄存器单元和输入、输出单元。存储器单元以6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送人地址寄存器,向存储器单元电路提供地址信息,输入、输出单元作用与以前相同。

四、实验结果记录 (1)连线准备 1.连接输入、输出实验的全部连线。 2.按实验逻辑原理图连接M-W、M-R两根信号低电平有效信号线。 3.连接A7—A0 8根地址线。 4.连接B-AR正脉冲有效信号线。 (2)记录结果(包含采集结果前的动作) 地址写入数据读出数据结果说明 01H0010000000100000数据的写入与读取02H0001001100010011数据的写入与读取03H0010011000100110数据的写入与读取04H数据的写入与读取05H0000010100000101数据的写入与读取25H不写存储器一个随机地址 36H0010000100100001数据的写入与读取 0A0H写总线悬空时的数 据总线悬空时表示的数据是FFH,即写入的数据是,所以读出结果为 五、实验总结与心得体会

24c02读写程序大全

51晶振为 〖文件〗 2001/09/18 --------------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------------------------------------------- 调用方式:void WriteIIC_24CXX(enum EEPROMTYPE eepromtype,unsigned int address,unsigned char ddata) ﹫2001/09/18 函数说明:对于IIC芯片24CXX,在指定地址address写入一个字节ddata 调用方式:unsigned char ReadIIC_24CXX(enum EEPROMTYPE eepromtype,unsigned int address) ﹫2001/09/18 函数说明:读取IIC芯片24CXX,指定地址address的数据。 -----------------------------------------------------------------------------------------------------------------*/ #include "" #include "" sbit SCL= P2^7; sbit SDA= P2^6; enum EEPROMTYPE {IIC24C01,IIC24C01A,IIC24C02,IIC24C04,IIC24C08,IIC24C16,IIC24C32,IIC24C64,IIC24C128 ,IIC24C256}; enum EEPROMTYPE eepromtype; delay() { unsigned int i=1200; while(i--); } /*---------------------------------------------------------------------------- 调用方式:write_8bit(unsigned char ch) ﹫2001/03/23 函数说明:内函数,私有,用户不直接调用。 -------------------------------------------------------------------------------*/ void write_8bit(unsigned char ch)

计算机组成原理实验五-存储器读写实验

实验五 存储器读写实验 一、 实验目的 1. 掌握存储器的工作特性。 2. 数学静态存储器的操作过程,验证存储器的读写方法。 二、 实验原理 存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类,存储器可分成易失性和非易失性存储器,易失性存储器中的数据在关电后将不复存在,非易失性储器又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有2ms ,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电,信息是不会丢失的。为简单起见,计算机组成实验用的是容量为2K 的镜头存储器6116。 1. 静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的态存储器芯片,封在24引脚的封装中,封装型式如图2-7所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输入状态、输出状态和高阻状态,高阻状态数据线处于一种特殊的“断开”状态;11根地址线A10-A0, 指示芯片内部2048个存储单元号;3根控制线CS ???片选控制信号,低电平时,芯片可进行读写操作,高电平时,芯片保存信息不能进行读写;WE ???为写入控制信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存储 单元中;OE ???为输出使能控制信号,低电平时,把地址线A10-A0指示的存储单元中的数据读出送到数据线上。芯片控制信号逻辑功能见表2-9。 图2-7 存储器部件电路图 2. 存储器实验单元电力路 因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片 的三根地址线A11-A8接地也没有多片联用问题,片选信号CS ???接地使芯片总是处于被选中状态。芯片的,WE.和OE ???信号分别连接实验台的存储器写信号M ?W ???????和存储器读写信号M ?R ???????,存储器实验单元逻辑电路如图2-7所示。这

计算机组成原理实验五存储器读写实验

实验五存储器读写实验 一、实验目的 1.掌握存储器的工作特性。 2.数学静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类,存储器可分成易失性和非易失性存储器,易失性存储器中的数据在关电后将不复存在,非易失性储器又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有2ms,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电,信息是不会丢失的。 为简单起见,计算机组成实验用的是容量为2K的镜头存储器6116。 1.静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的态存储器芯片,封在24引脚的封装中,封装型式如图2-7 所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输 入状态、输出状态和高阻状态,高阻状态数据线处于一种特殊的 “断开”状态;11根地址线A10-A0,指示芯片内部2048个存储 单元号;3根控制线CS???片选控制信号,低电平时,芯片可进行读 写操作,高电平时,芯片保存信息不能进行读写;WE???为写入控制 信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存 储单元中;OE???为输出使能控制信号,低电平时,把地址线A10-A0 指示的存储单元中的数据读出送到数据线上。芯片控制信号逻辑 功能见表2-9。 表2-9 6116芯片控制信号逻辑功能表 图2-7 存储器部件电路图 2.存储器实验单元电力路

因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片的三根地址线A11-A8接地也没有多片联用问题,片选 信号CS ???接地使芯片总是处于被选中状态。芯片的,WE.和OE ???信号分别连接实验台的存储器写信号M ?W ???????和存储器读写信号M ?R ???????,存储 器实验单元逻辑电路如图2-7所示。这种简化了控制过程的实验电路可方便实验进行,存储器实验单元电路控制信号逻辑功能见 3. 存储器实验电路 存储器读/写实验需呀三部分电路共同完成:存储器单元(MEM UNIT )、地址寄存器单元(ADDRESS UNIT )和输入、输出单元(INPUT/OUTPUT UNIT )。存储器单元以6116总线上的数据送入地址寄存器,向存储器单元电路提供地址信息,输入、输出单元作用与以前相同。存储器实验的逻辑原理如图2-8所示。 图2-8 存储器实验电路逻辑图 三、 实验过程 1. 连线 (1) 连接实验一(输入、输出实验)的全部连线。 (2) 按实验逻辑原理图连接M ?W ???????、M ?R ???????两根信号低电平有效信号 线。 (3) 连接A7-A0 8根地址线。 (4) 连接B-AR 正脉冲有效信号线。 2. 顺序写入存储单元实验操作过程 (1) 把B-AR 控制开关拨到0(因此信号是正脉冲有效),把其他控 制开关全部拨到1,使全部控制信号都处于无效状态。 (2) 在输入数据开关上拨一个地址数据(如00000001,即16进制 01H ),拨下,IOR.开关,把地址数据送总线。 (3) 拨动一下B-AR 开关,实现“0-1-0”,产生一个正脉冲,把地 址数据送地址寄存器(AR )保存。 (4) IO ?R ?????????控制开关,把实验数据送到总线。 (5) 拨动M ?W ???????控制开关,即实现“0-1-0”,产生一个负脉冲,把 实验数据存入存储器的01H 号单元。

24C02数据读写

一这物行时每如一、认识IIC 这是最常用、物理结构上,行信息 传输。时钟。信息传每个器件都有如:存储器)C 总线的工作方最典型的II IIC 系统由一。在数据传输传输的对象和方有一个唯一的地。发送器或接方式 C 总线连接方一条串行数据输时,由主机初方向以及信息地址,而且可 接收器可以在IIC 时方式。 据线SDA 和一条初始化一次数息传输的开始可以是单接收的 在主模式或从模时序24C02的 条串行时钟线数据传输,主和终 止均由的器件(例如 模式下操作,的操作 线SCL 组成。主机使数据在S 主机决定。如:LCD 驱动器 这取决于芯片 主机按一定的SDA 线上传输 器)或者可以接 片是否必须启的通信协议向输的同时还通过接收也可以发启动数据的传从机寻址和进过SCL 线传输发送的器件(例传输还是仅仅被进输例被

寻1I 在低2I 寻址。 1.总线上数据IIC 总线是以在时钟线高电低电平时,才2.总线上的信IIC 总线在传据的有效性 串行方式传输电平期间数据线才允许数据线上信号 送数据过程中输数据,从数据线上必须保持上的电平状态 中共有四种类据字节的最高持稳定 的逻辑态变化,如图 类型信号,它们高位开始传送,辑电平状态,11-2所示。 们分别是:开,每一个数据位高电平为数据 开始信号、停止 位在SCL 上都据1,低电平为 止信号、重新都有一个时钟为数据0。只新开始信号和应脉冲相对应。有在时钟线为应答信号。 为

开的停停重之所开始信号(STA 的时候,例如停止信号(STO 停止信号,结重新开始信号之前,主机通所示,当SCL ART):如图1如,没有主动设OP):如图11结束数据通信。号(Repeated S 通过发送重新开L 为高电平时,1-3所示,当设备在使用总-3所示,当。 START):在I 开始信号,可,SDA 由高电当SCL 为高电总线(SDA 和S SCL 为高电平IC 总线上,由可以转换与当 电平向低电平跳平时,SDA 由CL 都处于高电平时,SDA 由低由主机发送一前从机的通信 跳变,产生重由高电平向低电电平),主机通低电平向高电一个开始信号启信模 式,或是 重新开始信号,电平跳变,产通过发送开始电平跳变,产生启动一次通信是切换到与另 ,它的本质就产生开始信号始(START)信号 生停止信号。信后,在首次另一个从机通信就是一个开始。当总线空闲号建立通信。主机通过发送次发送停止信号信。如图11-信号。 闲 送号3

相关主题
文本预览
相关文档 最新文档