当前位置:文档之家› 基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法
基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法

摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。神经网络应用在非线性系统的辨识中有良好的结果。本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。

关键字:神经网络;系统辨识;辨识算法

The latest algorithm about identification system based

on neural network model

Abstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model.

Keywords:Neural network, identification system, identification algorithm

0 前言

在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。鉴于此,神经网络控制在系统辨识中得到了新的应用。本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。

1 神经网络的应用优势

神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分

布处理方法,使得快速进行大量运算成为可能。这些特点显示了神经网络在求解非线性和不确定性系统控制方面的巨大潜力,将神经网络引入控制系统是控制学科发展的必然趋势[1]。它的引入不仅给这一领域的发展带来了生机,也带来了许多急待解决的新课题。由于对神经网络的理论研究和硬件实现还远远未达到完善的地步,此外,由于神经网络用于控制时出现的一些新的问题如控制系统的稳定性和在线学习的收敛性等需要进一步的解决,因此,现有的研究大多停留在软件及仿真研究上,付诸应用的不多,神经网络控制系统的研究还面临十分艰巨的任务。

传统的辨识方法,对于一般非线性系统的辨识是很困难的,而神经网络却提供了一个有力的工具。神经网络系统辨识实质上是选择一个适当的神经网络模型来逼近实际系统[2]。由于神经网络对非线性函数具有任意逼近和自学习能力,所以神经网络系统辨识为非线性系统的辨识提供了一种简单而有效的一般性的方法。

2 极点配置PID与神经网络结合研究过程

传统的基于最小二乘法的模型参数的辨识算法中,虽然其辨识法简单实用、在处理递推计算时,算法收敛可靠。但是,它有两个方面的缺陷:一、如果给予系统模型有色噪声干扰时,那么基于最小二乘法的参数估计不是一致的、无偏的估计;二是一旦数据处理量发生增长,那么基于最小二乘法的递推辨识方法会出现数据饱和的现象。鉴于神经网络控制方法,自学习能力强,能有效克服这些问题。所以釆用了神经网络控制的方法,在三层BP神经网络的结构中,融合最小二乘辨识算法思想,在已有的递推神经网络参数辨识方法基础上,改进了原有的参数辨识法,以新的方法进行在线辨识模型参数。针对三层BP神经网络,利用改进了常规的基于梯度下降法的权值调整算法,在高斯.牛顿算法的基础上,递推预测误差神经网络算法被提出。利用该算法,对含有多个未知参数的系统进行了非线性系统的参数辨识。随后,该辨识方法获得了进一步的推广,实现了对高阶的NARMAX模型,多维线性模型,轨道车辆横向振动等系统模型的参数辨识,取得了一定的成效。但是,该方法中动量因子与学习率均为随机给定且为固定不变的常值,因而系统会存在神经网络收敛速度慢、辨识结果精度低等问题[1]。针对该递推预测误差神经网络算法中存在的缺陷,在未进行参数辨识的情况下,引入

了动量因子与学习速率的优化机制,从而实现了对递推预测误差神经网络算法的改进,改进后,系统的稳定性、鲁棒性等性能得到了较好的改善。通过神经网络与递推预测误差结合,将改进递推预测误差神经网络算法应用到了非线性系统的模型参数辨识中。设计设计系统控制器,极点配置PID方法在工程中已经取得应用。例如RobertRichardson等学者利用极点配置PID方法设计出的阻抗控制气动机器人关节间隙器[3],让系统有效地克服了噪声等不同的外来干扰;陈青昌等中利用极点配置PID 方法所设计的全桥DC/DC变换器,并推导出变换器极点配置PID算法中PID参数与性能指标的函数关系等[4],吴平景结合神经网络辨识方法,设计了基于极点配置的数字PID控制器。

3 基于Hammerstein型神经网络的非线性动态系统辨识

Hammerstein 模型广泛应用于非线性系统的辨识中,其结构是由非线性静态增益部分和一个线性动态部分串联。Janczak[5]设计了一个神经网络描述Hammerstein模型其由有隐藏层的非线性模块和一个线性输出节点组成。Wu等[6]提出一种Hammerstein神经网络来辨识非线性动态系统。然而,这些研究均是假定Hammerstein模型的线性动态部分的阶次是已知的。为了确定 Hammerstein 模型中线性动态部分的阶次,Billings 等[7]提出一种正交回归估计方法以确定多输入多输出(MIMO)非线性系统的结构。但是,这种方法不能被用在Hammerstein模型。He 等[8]使用Lipschitz熵提出了一中确定单输入单输出(SISO)系统阶次的方法。Luh 等[9]把这种方法延伸到MIMO系统,并且使用正交基函数的概念在有限的范围内提高了其性能。MuKun[2]最近提出一种动态Hammerstein 型神经网络用来完全模拟传统的Hammerstein模型,并将其应用于非线性动态系统的辨识中。该神经网络的权值跟与Hammerstein模型的参数相对应,然后利用Lipschitz熵来确定Hammerstein型神经网络的阶次,即确定了Hammerstein 型神经网络的神经元个数。随后,Hammerstein型神经网络的权值由反向传播算法(BP)来训练[10]。最后,将提出的动态Hammerstein型神经网络应用于SISO非线性动态系统的辨识中。

4 关于神经网络辨识的分析总结

当前,我国神经网络用于系统辨识的应用正在开展,但与国外的研究水平相比,仍有一定的差距,很多理论和技术有待于进一步提高和改进,因此有必要加强理论与实现技术的研究,以提高其应用水平。目前的研究和应用大都是用计算机得到的仿真结果,这使得神经网事实上变成了逼近函数的图解。所以,个种网络的硬件实现问题非常迫切,有了真正的网络,神经网的快速,容错等优点才能真正体现,各种并行学习算法才能真正得以实施。

参考文献

[1] 吴平景. 基于神经网络系统参数辨识的自适应控制方法研究[D].

广州工业大学, 2015.

[2] 慕昆, 彭金柱. 基于Hammerstein型神经网络的非线性动态系统辨

识[J]. 计算机应用与软件, 2015, 32(10): 168-171.

[3] Richardson R, Brown M. Impedance control for a pneumatic robot-

based around pole-placement, joint space controllers[J]. Control

Engineering Practice, 2005, 13(3): 291–303.

[4] Cheng Q C, Peng L, Kang Y. PID Controller Parameters’

Optimization for DC/DC Converters Based on Pole Deploying[J].

Telecom Power Technologies, 2005, 22(4): 78-81.

[5] Janczak A. Identification of Nonlinear Systems Using Neural

Networks and Polynomial Models[M]. Springer Berlin Heidelberg,

2005, 310: 31-75.

[6] Wu D, Huang S, Zhao W, et al. Infrared thermometer sensor

dynamic error compensation using Hammerstein neural network[J].

Sensors & Actuators A Physical, 2009, 149(1): 152–158.

[7] Billings S A, Fakhouri S Y. Identification of systems containing

linear dynamic and static nonlinear elements[J]. Automatica, 1982,

18(82): 15-26.

[8] He X, Asada H. A New Method for Identifying Orders of Input-

Output Models for Nonlinear Dynamic Systems[C]. IEEE American

Control Conference, 1993: 2520-2523.

[9] Luh G C, Rizzoni G. Identification of a nonlinear MIMO IC engine

model during I/M240 driving cycle for on-board diagnosis[C]. IEEE American Control Conference, 1994: 1581-1584.

[10] 左军, 周灵. 基于神经网络模型改进算法的动态辨识系统仿真[J].

计算机科学, 2015, 42(6A): 118-120.

神经网络动态系统辨识与控制

神经网络动态系统的辨识与控制 摘要: 本论文表明神经网络对非线性动态系统进行有效的辨识与控制。本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。由仿真结果可知辨识与自适应控制方案的提出是可行的。整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题, 简介 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系

神经网络在系统辨识中的应用

神经网络在系统辨识中的应用 摘要应用于自动控制系统的神经网络算法很多,特点不一,对于非线性系统辨识的研究有一定影响。本文就BP网络算法进行了着重介绍,并点明了其收敛较慢等缺点,进而给出了改进算法,说明了建立在BP算法基础上的其他算法用于非线性系统辨识的可行性与有效性。 关键词神经网络BP算法;辨识;非线性系统 前言 神经网络是一门新兴的多学科研究领域,它是在对人脑的探索中形成的。神经网络在系统建模、辨识与控制中的应用,大致以1985年Rumelhart的突破性研究为界。在极短的时间内,神经网络就以其独特的非传统表达方式和固有的学习能力,引起了控制界的普遍重视,并取得了一系列重要结果。本文以神经网络在系统辨识中的应用作一综述,而后着重介绍BP网络算法,并给出了若干改进的BP算法。通过比较,说明改进算法具有诸多优点及用于非线性系统辨识[1]的可行性与有效性。 1 神经网絡用于系统辨识的原理及现状 神经网络在自动控制系统中的应用已有多年。目前,利用神经网络建立动态系统的输入/输出模型的理论及技术,在许多具体领域的应用得到成功,如化工过程、水轮机、机器入手臂、涡轮柴油发动机等。运用神经网络的建模适用于相当于非线性特性的复杂系统[2]。 目前系统辨识中用得最多的是多层前馈神经网络[1]。我们知道,自动控制系统中,一个单隐层或双隐层的具有任意数目神经元的神经网络,可以产生逼近任意函数的输入/输出映射。但网络的输入节点数目及种类(延迟输入和输出)、隐层节点的个数以及训练所用的算法对辨识精度和收敛时间均有影响。一般根据系统阶数取延迟输入信号,根据经验确定隐层节点数,然后对若干个神经网络进行比较,确定网络中神经元的合理数目。现在用得较多的多层前馈神经网络的学习算法是反向传播算法(Back Propagation),即BP算法。但BP算法收敛速度较慢,后面将会进一步讨论。 1.1 神经网络的结构 感知器是最简单的前馈网络,它主要用于模式分类。也可用在基于模式分类的学习控制和多模态控制中。现以多层前馈神经网络为代表,来说明神经网络的结构。多层前馈神经网络由输入、输出层以及一个或多个隐层组成。每层有若干个计算单元称之神经元。这些神经元在层状结构的网络中按图1所示方式相互连接。信息按树状路径从下至上逐层传送。一旦相邻层间神经元的连接权以及隐层中神经元的阈值被确定,整个网络的特性也就确定了。如图1所示,第1层为输

BP神经网络模型与学习算法

BP神经网络模型与学习算法 BP神经网络模型与学习算法 (1) 一,什么是BP (1) 二、反向传播BP模型 (8) 一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。" 我们现在来分析下这些话: ?“是一种按误差逆传播算法训练的多层前馈网络” BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。 传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差: 即BP的思想可以总结为 利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 ?“BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)” 最简单的三层BP:

?“BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。”BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。 激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数: 那么上面的函数为什么称为是S型函数呢: 我们来看它的形态和它导数的形态: p.s. S型函数的导数:

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

神经网络系统建模综述

神经网络系统建模综述 一、人工神经网络简介 1.1人工神经网络的发展历史 人工神经网络早期的研究工作应追溯至本世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。 1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。 1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。 50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。 在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。 80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。 1.2人工神经网络的工作原理 人工神经网络是由大量处理单元广泛互连而成的网络结构,是人脑的抽象、简化和模拟。人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

最新数学建模bp神经网络.docx

BP神经网络 算法原理: 输入信号 x i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输 出信号 y k,网络训练的每个样本包括输入向量x 和期望输出量d,网络输出值y 与期望输出值 d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值w ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练, 确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有 n 个神经元,隐含层有p 个神经元 , 输出层有 q 个神经元 输入向量: x x1 , x2 ,L , x n 隐含层输入向量:hi hi1, hi2 ,L , hi p 隐含层输出向量:ho ho1 , ho2 ,L ,ho p 输出层输入向量:yi yi1, yi2 ,L , yi q 输出层输出向量:yo yo1, yo2 ,L , yo q 期望输出向量 : do d1, d2 ,L , d q 输入层与中间层的连接权值:w ih 隐含层与输出层的连接权值:w ho 隐含层各神经元的阈值: b h 输出层各神经元的阈值:b o 样本数据个数 :k1,2,L m 激活函数 : f 误差函数: e 1 q(d o (k )yo o (k )) 2 2 o1

算法步骤: Step1. 网络初始化 。给各连接权值分别赋一个区间( -1 , 1)内的随机数,设定 误差函数 e ,给定计算精度值 和最大学习次数 M 。 Step2. 随机选取第 k 个输入样本 x( k) x 1( k ), x 2 (k),L , x n (k ) 及对应期望输出 d o ( k) d 1 (k ), d 2 ( k),L , d q (k) Step3. 计算隐含层各神经元的输入 n hi h ( k) w ih x i (k ) b h h 1,2,L , p 和输出 i 1 ho h (k) f (hi h (k )) h 1,2, L , p 及 输 出 层 各 神 经 元 的 输 入 p yi o (k ) w ho ho h (k) b o o 1,2,L q 和输出 yo o ( k) f ( yi o (k )) o 1,2, L , p h 1 Step4. 利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 数 o (k ) 。 e e yi o w ho yi o w ho p yi o ( k) ( h w ho ho h (k ) b o ) ho h (k ) w ho w ho e ( 1 q (d o ( k) yo o (k))) 2 2 o 1 ( d o (k ) yi o yi o (d o (k) yo o (k ))f ( yi o (k )) @ o (k ) Step5. 利用隐含层到输出层的连接权值、输出层的 差函数对隐含层各神经元的偏导数 h (k ) 。 e e yi o o ( k) ho h (k ) w ho yi o w ho e e hi h (k) w ih hi h ( k) w ih n hi h (k ) ( w ih x i (k ) b h ) i 1 x i ( k) w ih w ih yo o (k )) yo o (k ) o ( k) 和隐含层的输出计算误

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

BP神经网络模型与学习算法

BP神经网络模型与学习算法 一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。" 我们现在来分析下这些话: “是一种按误差逆传播算法训练的多层前馈网络” BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。 传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差: 即BP的思想可以总结为 利用输出后的误差来估计输出层的直接前导层的误差,再用

这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 “BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)” 我们来看一个最简单的三层BP: “BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。” BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。 激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数: 那么上面的函数为什么称为是S型函数呢: 我们来看它的形态和它导数的形态: p.s. S型函数的导数:

系统辨识课程综述

系统辨识课程综述 通过《系统辨识》课程的学习,了解了系统辨识问题的概述及研究进展;掌握了经典的辨识理论和辨识技术及其优缺点,如:脉冲响应法、最小二乘法(LS)和极大似然法等;同时对于那些为了弥补经典系统辨识方法的不足而产生的现代系统辨识方法的原理及其优缺点有了一定的认识,如:神经网络系统辨识、基于遗传算法的系统辨识、模糊逻辑系统辨识、小波网络系统辨识等;最后总结了系统辨识研究的发展方向。 一、系统辨识概论 自40年代Wiener创建控制论和50年代诞生工程控制论以来,控制理论和工程就一直围绕着建立模型和控制器设计这两个主题来发展。它们相互依赖、相互渗透并相互发展;随着控制过程的复杂性的提高以及控制目标的越来越高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。但是大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,此时建立模型需要细致、完整地分析系统的机理和所有对该系统的行为产生影响的各种因素,从而变得十分困难。系统辨识建模正是适应这一需要而产生的,它是现代控制理论中一个很活跃的分支。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。所谓系统辨识,通俗地说,就是研究怎样利用对未知系统的试验数据或在线运行数据(输入/输出数据),运用数学归纳、统

计回归的方法建立描述系统的数学模型的科学。Zadeh与Ljung明确提出了系统辨识的三个要素:输入输出数据,模型类和等价准则。总之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合我们所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号;对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识亦称为实验建模方法,它是“系统分析”和“控制系统设计”的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。 二、经典的系统辨识 经典的系统辨识方法包括脉冲响应法、最小二乘法(LS)和极大似然法等。其中最小二乘法(LS)是应用最广泛的方法,但由于它是非一致的,是有偏差性,所以为了克服他的缺陷,形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GLS)、辅助变量法(IV)、增广最小二乘法(ELS)、广义最小二乘法(GLS),以及将一般的最小二乘法与其他方法相结合的方法,有:最小二乘两步法(COR—LS)

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

系统辨识综述

系统辨识方法综述 摘要 在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统控制,以及对未来行为的预测,都需要知道系统的动态特性。在研究一个控制系统过程中,建立系统的模型十分必要。因此,系统辨识在控制系统的研究中起到了至关重要的作用。本文论述了用于系统辨识的多种方法,重点论证了经典系统辨识方法中运用最广泛的的最小二乘法及其优缺点,引出了将遗传算法、模糊逻辑、多层递阶等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键字:系统辨识;最小二乘法;遗传算法;模糊逻辑;多层递阶 Abstract In many fields of natural and social science, the design of the system, the quantitative analysis of the system, the synthesis of the system and the control of the system, as well as the prediction of the future behavior, all need to know the dynamic characteristics of the system. It is very necessary to establish a system model in the process of studying a control system. Therefore, system identification plays an important role in the research of control system. This paper discusses several methods for system identification, the key argument is that the classical system identification methods using the least squares method and its advantages and disadvantages, and leads to the genetic algorithm, fuzzy logic, multi hierarchical knowledge application in system identification of some modern system identification method. Finally, the paper summarizes the system identification in the future direction of development. Keywords:System identification; least square method; genetic algorithm; fuzzy logic; multi hierarchy 第一章系统辨识概述 系统辨识是研究建立系统数学模型的理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质牲征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中

基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法 摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。神经网络应用在非线性系统的辨识中有良好的结果。本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。 关键字:神经网络;系统辨识;辨识算法 The latest algorithm about identification system based on neural network model Abstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model. Keywords:Neural network, identification system, identification algorithm 0 前言 在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。鉴于此,神经网络控制在系统辨识中得到了新的应用。本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。 1 神经网络的应用优势 神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分

神经网络与遗传算法

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

智能控制之神经网络系统辨识的设计

四、神经网络系统辨识分析(25分) 用BP 神经网络进行系统在线逼近的原理框图如图3所示 ) (k y n (k u (k y 图3 图4 假设某控制对象的模型为2 3 )1(1) 1()()(-+-+ =k y k y k u k y ,采样时间取t=1ms ,输入信号 t)sin(650.)u(π=k 。采用的BP 神经网络结构如图4所示,权值ij w 和2j w 的初值取 [-1,+1] 之间的随机值,权值采用δ学习算法,学习速率η取0.50,动量因子α取0.05。试分析神经网络在线逼近的运行过程,并作Matlab 仿真。 题目四、需要阐述清楚BP 网络逼近控制对象的工作原理和学习过程 BP 算法的基本思想是:对于一个输入样本,经过权值、阈值和激励函数运算后,得到一个输出y n (k),然后让它与期望的样本y(k)进行比较,若有偏差,则从输出开始反向传播该偏差,进行权值、阈值调整,使网络输出逐渐与希望输出一致。 BP 算法由四个过程组成:输入模式由输入层经过中间层向输出层的“模式顺传播”过程,网络的希望输出与网络的实际输出之间的误差信号由输出层经过中间层向输入层逐层修正连接权的“误差逆传播”过程,由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程,网络趋向于收敛即网络的全局误差趋向极小值的 “学习收敛”过程。 BP 网络(Back Propagation ),该网络是一种单向传播的多层前向网络。误差 反向传播的BP 算法简称BP 算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 BP 网络特点: (1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间不连接; (3)权值通过δ学习算法进行调节;

非线性系统辨识综述

系统辨识综述 张培硕研4班 摘要:本文主要介绍了系统辨识中的非线性系统辨识方法,包括多层递阶辨识方法,以及把神经网络、模糊逻辑、遗传算法等知识应用于非线性系统辨识而得到的一些新型辨识方法,最后概括了非线性系统辨识未来的发展方向。 关键词:非线性系统辨识;多层递阶;神经网络 1 引言 系统辨识作为现代控制论和信号处理的重要内容,是近几十年发展起来的一门学科,它研究的基本问题是如何通过运行(或实验)数据来建立控制与处理对象(或实验对象)的数学模型。因为系统的动态特性被认为必然表现在它变化着的输入/输出数据之中,辨识就是利用数学方法从数据序列中提炼出系统的数学模型。 从本质上说,系统辨识是一种优化问题,当前常用辨识算法的基本方法是通过建立系统的参数模型,把辨识问题转化为参数估计问题。这类算法能较好地解决线性系统或本质线性系统的辨识问题,但若要应用于本质非线性系统则比较困难。可是,真实世界中的模型都不是严格线性的,它们或多或少都表现出非线性特性,因此越来越多的非线性现象和非线性模型己经引起了人们广泛的重视。 非线性系统广泛的存在于人们的生产生活中,随着人类社会的发展进步,越来越多的非线性现象和非线性系统已经引起研究者们的广泛关注,混沌现象的发现被誉为“ 二十世纪三大发现之一” 。目前关于非线性理论的研究正处于发展阶段。建立描述非线性现象和非线性系统的模型是研究非线性问题的基础。线性系统辨识理论已经趋于成熟,但一般的线性模型实际上是某些非线性被忽略或用线性关系代替后得到的对真实系统的近似数学描述。随着科学技术的迅猛发展,控制系统越来越复杂,对控制精度的要求越来越高,具有复杂非线性的系统不能用线性模型来近似,所以研究非线性系统辨识理论有着很重要的实际意义。 对于非线性系统参数模型的辨识问题,人们最早涉及的是某些特殊类型的非线性系统,如双线性系统模型、Hammerstain 模型、Wiener 模型、非线性时间序列模型、输出仿射模型等。针对每一类特殊模型,各国学者都作了大量的工作,提出了不少辨识算法。同时,也对这些算法的估计一致性问题进行了讨论。随着人们对非线性系统辨识问题研究的日益深入,更为一般的普适性非线性模型的辨识问题就显得日益重要。常用的非线性系统描述方法有微分(或差分)法、泛函级数法、NARMAX 模型法及分块系统法等。一些学者已经对非线性系统辨识方法进行了某方面的综述。例如,1965 年Arnold 和Stark 讨论了正交展开方法在非线性系统辨识中的应用,1968 年Aleksandrovskii 和Deich及1977 年Hung 和Stark综述了核辨识算法,1989 年Titterington 和Kitsos总结了非线性试验设计的最新发展,并列举了十五个在化工领域中常遇到的非线性模型。 本文对近年来新的非线性系统的辨识方法作以简单的综述。

系统辨识综述

系统辨识课程综述 作者姓名:王瑶 专业名称:控制工程 班级:研硕15-8班

系统辨识课程综述 摘要 系统辨识是研究建立系统数学模型的理论与方法。虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。 关键字:系统辨识;神经网络;辨识方法 0引言 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。所以说系统辨识是自动化控制的一门基础学科。 图1.1系统辨识、控制理论与状态估计三者之间的关系 随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 : (1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨

BP神经网络算法预测模型

BP神经网络结构及算法 1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播算法(Error Back Proragation,简称BP)进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常釆用误差反向传播算法,人们也常把多层前馈网络直接称为BP网。釆用BP算法的多层前馈网络是目前应用最多的神经网络。 BP神经网络的结构 BP网络有三部分构成,即输入层、隐含层(又称为中间层)和输出层,其中可以有多个隐含层。各层之间实现完全连接,且各层神经元的作用是不同的:输入层接受外界信息;输出层对输入层信息进行判别和决策;中间隐层用来表示或存贮信息。通常典型的BP网络有三层构成,即只有一个隐层。三层BP神经网络的结构可用图1表示。 图1 三层BP神经网络机构图 BP神经网络的学习算法 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐含层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传、并将误差分摊给各层的所有神经元,从而获得各层神经元的误差信号,此误差信号即作为修正各神经元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的,权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出误差减少到可接受的程度,或进行到预先设定的学习次数为止,标准BP算法流程见图2。

神经网络系统辨识综述

神经网络系统辨识综述 目前,国内外有许多利用神经网络来模拟设备性能、预测负荷的成功例子。1993 年,美国的Mistry和Nair成功开发了一个用来决定预期平均满意率(PMV)和温湿度参数的神经网络模型。1994 年,Curtiss利用神经网络模型成功地模拟了一台往复压缩式的冷水机组和其它暖通空调设备的性能。随后,Darred和Curtiss利用神经网络模型成功地预测了冷水机组的冷负荷和耗电量。在国内,也有利用神经网络对暖通空调优化控制、对空调器进行仿真研究的成功例子。神经网络之所以能够在国内外得到如此广泛的应用是因为: a)神经网络具有模拟高度非线性系统的优点; b)神经网络具有较强的学习能力、容错能力和联想能力; c)神经网络具有较强的自适应能力。 例如可通过重新训练网络进行设备特性的动态校准功能,这也是它优于其它控制方法的主要特点。此外,神经网络模型还具有建模时间短、易于进行计算机模拟的优点。对于智能建筑,其热动力学参数模型本质上为分布参数系统,应用系统辨识也很难获得其精确的数学模型,控制效果可想而知,而人工神经网络允许在模型理论不完善的情况下,构成一种具有自学习、自适应的体系结构,在与外界信息的交互作用中,形成一种非线性映射或线性动力学系统,以正确反映输入和输出关系而不必预先知道这种关系的精确数学模型。 神经网络在线性系统辨识中的应用 自适应线性(Adaline-Mada Line)神经网络作为神经网络的初期模型与感知机模型相对应,是以连续线性模拟量为输入模式,在拓扑结构上与感知机网络十分相似的一种连续时间型线性神经网络。这种网络模型是美国学者Widrow和Hoff

相关主题
文本预览
相关文档 最新文档