当前位置:文档之家› 如何解决因电容器故障而跳闸的现象

如何解决因电容器故障而跳闸的现象

如何解决因电容器故障而跳闸的现象

如何解决因电容器故障而跳闸的现象

在一些工业应用中,往往会用到很多电容器组,会配置速断、过流、过压、失压等保护,但是还是会出现因电容器故障而导致跳闸的现象,这究竟是怎么回事呢,该如何解决?

电容器组故障分析

电容器组采用常用的星型接线方式,三相共体外壳接于同一铁框架,框架接地。电容器内部结构为多个元件并联的四串结构,并设置内熔丝保护,检修人员与厂家人员对损坏的电容器进行解剖,发现受损电容器的A、B相内熔

丝均熔断了两根,外包封破裂,经过认真分析,认为一相熔丝熔断两根后,造成外包封损伤,在外包封受伤的情况下,长期运行发展成对壳击穿,并发展成单相接地。由于单相接地呈不稳定电弧接地,使健全相产生过电压而另一相也有两熔丝熔断,外包封受伤致使在过电压作用下发展成对壳击穿,由此形成相间短路,尽管保护可靠动作,但巨大的短路电流产生的热效应,仍对电容器造成一定程度的损伤,使电容器外壳严重变形。

另外由于电网中存在大量的非线性负荷,使得电网中谐波占有一定含量。110kV张河变电站除担任城郊居民用电外,主要担任工业供电,除几条10kV 工业专线外,其他10kV线路上还有一些小型化工厂、铸造厂等工业用户,这

些用户都可能产生谐波。尽管每户产生的谐波很少,但可以汇集成较大的谐波电流馈入电网,使电网的谐波水平升高,影响电网设备的安全运行。由于此变电站的无功补偿装置,配置电抗率为6的串联电抗器,6的电抗率虽然能对5 次及以上谐波有抑制作用,但在3次谐波下使串联电抗器与补偿电容器的阻抗成容性,出现谐波电流放大现象,使电容器过负荷。尽管母线上以5次谐波为主,3次谐波含量不是很高,而装设电容器后,容性阻抗将原有的3次谐波含

电容器的故障处理示范文本

文件编号:RHD-QB-K4229 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 电容器的故障处理示范 文本

电容器的故障处理示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1、电容器的常见故障。当发现电容器的下列情况之一时应立即切断电源。 (1)电容器外壳膨胀或漏油。 (2)套管破裂,发生闪络有为花。 (3)电容器内部声音异常。 (4)外壳温升高于55℃以上示温片脱落。 2、电容器的故障处理 (1)当电容器爆炸着火时,就立即断开电源,并用砂子和干式灭火器灭火。 (2)当电容器的保险熔断时,应向调度汇报,待取得同意后再拉开电容器的断路器。切断电源对其

进行放电,先进行外部检查,如套管的外部有无闪络痕迹,外壳是否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。 (3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。未查明原因之前,不得试投。

电容器损坏在开关电源中的故障现象与维修

电容器损坏在开关电源中的故障现象与维修 摘要本文主要是针对电容的作用、电容器损坏在开关电源出现的常见故障进行分析及维修方法。电容在开关电源中主要的作用是:滤波、旁路、去藕、储能等,其中起滤波与储能作用的电容最容易出故障,而且不容易判别电容器件质量的好与坏,维修不便,给我们的日常生活和生产带来诸多不便。因此本文就从这些角度出发,通过分析电容器的作用、故障产生的原因以及如何排除故障,进行阐述,希望对我们的日常生活和生产有所帮助。 关键词开关电源;电容;故障现象;维修方法 中图分类号TK94 文献标识码 A 文章编号1673-9671-(2012)071-0178-02 目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的“线性电源”,很快被人们所接受。而电容器在开关电源中是最重要且最容易产生故障的元器件之一,而且故障现象不容易判别,使维修较为困难。本文就针对电容器在开关电源中的作用阐述其原理,常见故障分析以及维修方法。 1 电容在开关电源中的作用 1.1 滤波 滤波是电容的作用中很重要的一部分。几乎所有的电源电路中都会用到。滤波电容好比“水池”,将电能转变成池中的水并能将水还原成电能。从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上大于1 uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000 uF)滤低频,小电容(20 pF)滤高频。 1.2 旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。 1.3 去藕 从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是耦合作用。 1.4 储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150000 uF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10 KW 的电源,通常采用体积较大的罐形螺旋端子电容器。

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

电容器的故障处理参考文本

电容器的故障处理参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电容器的故障处理参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、电容器的常见故障。当发现电容器的下列情况之一 时应立即切断电源。 (1)电容器外壳膨胀或漏油。 (2)套管破裂,发生闪络有为花。 (3)电容器内部声音异常。 (4)外壳温升高于55℃以上示温片脱落。 2、电容器的故障处理 (1)当电容器爆炸着火时,就立即断开电源,并用砂 子和干式灭火器灭火。 (2)当电容器的保险熔断时,应向调度汇报,待取得 同意后再拉开电容器的断路器。切断电源对其进行放电, 先进行外部检查,如套管的外部有无闪络痕迹,外壳是

否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。 (3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。未查明原因之前,不得试投。 3、处理故障电容器时的安全事项。处理故障电容器应在断开电容器的断路器,拉开断路器两侧的隔离开关,并

几种常见的电容器故障的修理方法

几种常见的电容器故障的修理方法随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。 本文立创小编主要讲解两个电容器常见故障的修理方法。 一般电容故障现象:电容开路、击穿、漏电、通电后击穿 故障原因 1、元器件开路 电容器开路后,没有电容器的作用。不同电路中的电容器出现开路故障后,电路的具体故障现象不同。如滤波电容开路后出现交流声,耦合电容开路后无声等。 2、元器件击穿 电容器击穿后,失去电容器的作用,电容器两根引脚之间为通路,电容器的隔直作用消失,电路的直流电路出现故障,从而影响交流工作状态。 3、元器件漏电 电容器漏电时,导致电容器两极板之间绝缘性能下降,两极板之间存在漏电阻,有直流电流通过电容器,电容器的隔直性能变差,电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大。这是小电容器中故障发生率比较高的故障,而且故障检测困难。 4、通电后击穿

电容器加上工作电压后击穿,断电后它又表现为不击穿,万用表检测时它不表现击穿的特征,通电情况下测量电容两端的直流电压为零或者很低,电容性能变坏。 修理方法 1、电容内部开路,换元器件;电容外部连线开路,重新焊好。 2、电容器击穿,换新。 3、电容器漏电,换新。 4、通电后击穿,换新。 二、电解电容器的检修 电解电容器是固定电容器中的一种,它的故障特征与固定电容故障特征有许多相似之处,由于电解电容器的特殊性,电解电容器的故障特征又有许多不同之处。在电路中,电解电容器的故障率较高。 故障现象:电容器两极短路 故障原因 1、未通电,击穿,电容器内部短路。 2、未通电正常,通电后击穿,电容器外部连线短路。 修理方法 1、更换新元器件。 2、电容器外部连线短路,检查短路点,断开。

变频器频繁跳闸的解决方法

变频器频繁跳闸的解决 方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

变频器跳闸的解决方案瑞康钛业公司: 经多次到贵公司生产现场实地了解及对设备的检查情况,贵公司由于生产调速的需要,在公司各地使用变频器,其中一些变频器负荷较轻,一些负荷较重。贵公司经常发生锅炉房和煤气发生站变频器跳闸而其他变频器几乎不跳闸的情况。而贵公司这两处变频器设备又是非常关键的设备,该处设备的跳闸事故给公司的正常生产带来严重影响。 变频器跳闸时的情况:经检查安川变频器跳闸记录为欠电压跳闸;询问西门子变频器跳闸时的情况,据操作工反应显示为F003(欠电压)故障。同时据贵公司技术人员反应,当变频器跳闸时,伴随着明显的电压波动情况。 一、锅炉房和煤气发生站变频器频繁跳闸时的可能原因检查及分析: 1设备本身正常;经过对这两处变频器控制的电机检查、控制线路、按钮、电源线路的走向和绝缘检查,均正常,不存在偶然性故障的可能情况。 2变频器参数设置正常;参数为对正常风机常规设置,不存在有明显数据不属实的情况。 对变频器、电机、线路均进行了检测,设备均正常;因而排除了设备方面可能存在的问题引起变频器跳闸,在结合变频器跳闸时了解的情况综合判断,锅炉房和煤气发生站变频器跳闸的原因为电源电压波动引起的。因此对贵公司电源供电及配电情况进行了解和检查。 经检查,锅炉房和煤气发生站变频器电源均由锅炉房380V配电室供给,而该配电室电源由公司10KV高配室经变压器变为380后供给。公司10KV高配室电源由附近的110KV变电所变为10KV后供给;变电所10KV侧有多路出线,分别供给其他公

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

电力电容器故障分析和处理

* 电力电容器保护配置 电容器保护配置有:过电压和欠电压保护,限时过电流的电流保护,防止电容器内部故障的电容器组专用保护。 * 硬件配置 该系统配置应有如下部分:电压、电流信号的检测电路,交流变直流的信号转换电路,模数转换电路,单片机及外围部分,信号的驱动放大电路,继电器等。 * 软件设计 软件应该包括主程序和子程序。主程序作必要的初始化;子程序须进行故障判断、故障处理等。还应该设计延时、清零等子程序。 * 电力电容器的故障和处理 一.电容器内部故障 电力电容器组是由电容器元件并联或串联组成。电容器内部故障时,内部电流增大,致使内部气体压力增大,轻者发生漏油或鼓肚现象,重者会引起爆炸。电力电容器保护应反映电容器组内部局部击穿与短路,并及时切除故障,防止故障扩大。 二.电容器外部故障 系统电压过高或过低可能危及电容器的安全运行。因电容器内部功耗与电压平方成正比,过电压时电容器因内部功耗增大使温度显著增高,将进一步损坏电容器内部绝缘介质。外部短路故障时,使电容器失压,但在电荷尚未释放时,可能在恢复供电时再次充电使电容器过压;另一种情况是恢复供电时,变压器与电容器同时投入,容易引起操作过电压和谐振过电压,从而使电容器过压。 各种故障的原因及处理情况如下: 1.电力电容器第一次投入电网后,发生运行异常 故障原因 对电力电容器没有认真检查和投入运行前的必要试验。 处理方法 (1)确认电力电容器的铭牌:电压、容量、环温、湿度和通风等应符合现场要求。 (2)对未投入运行的电力电容器做仔细的外观检查。 a.外部刷漆是否均匀,有无掉漆或碰撞的痕迹; b.各部件是否完好和齐全; c.有无渗油或漏油现象。 (3)用万用表测量电容器性能。

LED显示屏频繁跳闸原因分析及解决方法v

漏电保护器布局不合理 由于LED显示屏安装现场所具有的特殊性,如接线错误、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱等原因,以及漏电保护器本身不可避免的误动和拒动,再加上没有按照实际用电情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸。 对于这种情况除了加强管理外,还需要从技术的角度,根据实际情况对漏电保护器进行合理布置。进线总电源上的漏电保护器,可主要做为防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可在200~500mA 之间选择,额定漏电动作时间可选择0.2~0.3s。这样,可极大地减少浪涌电压、浪涌电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 在保护范围内没有形成有效的二级或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。由于LED显示屏内金属导体很多,电线接头较多,如果导线绝缘不是很好,就会导致经常漏电的状况;有的还加了一些插座,在很多时候都不装漏电保护器,经常造成漏电。只有在每个保护范围内形成有效的二级或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡。LED显示屏的三相用电负荷也不可能完全平衡,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,拒动率也越大。 (2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。 漏电保护器选型不合理 (1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作 (2)给LED显示屏通电时的启动电流往往都比较大,此大电流可能会使漏电保护器跳闸。因此,应尽可能分批次地给显示屏的箱体上电。另外,一般应选用对浪涌过电压、过

并联电容器故障判断及处理(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 并联电容器故障判断及处理 (2020年) Safety management is an important part of production management. Safety and production are in the implementation process

并联电容器故障判断及处理(2020年) 1并联电容器的故障判断及原因分析 (1)渗漏油。并联电容器渗漏油是一种常见的现象,主要是由于产品质量不良,运行维护不当,以及长期运行缺乏维修导致外皮生锈腐蚀而造成的。 (2)电容器外壳膨胀。由于高电场作用,使得电容器内部的绝缘物游离,分解出气体或者部分元件击穿,电极对外壳放电,使得密封外壳的内部压力增大,导致外壳膨胀变形。 (3)电容器温升过高。主要原因是电容器过电流和通风条件差。例如,电容器室设计不合理造成通风不良;电容器长时间过电压运行造成电容器过电流;整流装置产生的高次谐波使电容器过电流等。此外,电容器内部元件故障,介质老化、介质损耗、介质损失角正弦值增大都可能导致电容器温升过高。电容器温升高将影响电容器的寿命,也可能导致绝缘击穿使电容器短路。

(4)电容器瓷瓶表面闪络放电。其原因是瓷绝缘有缺陷,表面脏污。 (5)声音异常。如果运行中,发现有放电声或其它不正常声音说明电容器内部有故障。 (6)电容器爆破。如果内部元件发生极间或对外壳绝缘击穿,与之并联的其它电容器将对该电容器释放很大的能量,从而导致电容器爆破并引起火灾。 2并联电容器的故障处理 (1)电容器外壳渗、漏油不严重时,可在外壳渗、漏处除锈、焊接、涂漆。 (2)电容器外壳膨胀则应更换。 (3)如室温过高,应改善通风条件;如因其它原因造成电容器温升过高,则应查明原因进行处理;如系电容器本身的问题则应更换电容器。 (4)电容器应定期检查、清扫。 (5)若电容器有异常声音应注意观察。严重时,应立即停止其运

补偿电容器故障原因分析

补偿电容器故障原因分 析 Revised by Petrel at 2021

补偿电容器故障原因分析 摘要:电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。对造成电容器损坏进行了分析,不论从设计、安装、运行管理、产品质量等各个方面都存在一定问题,应引起重视。 关键词:补偿电容器;故障;分析 宜宾电业局从1997年开始在电网中投入补偿电容器,现在已有城中、竹海、叙南、吊黄楼、九都、方水、龙头等7个变电站共12组补偿电容器在网运行。几年来的运行情况其损坏是比较严重的,电容器损坏率在15%~20%,严重地影响电网的安全运行和造成较大的经济损失。电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。究其原因,造成电容器损坏的原因大致有以下几个方面。 1?谐波的影响 宜宾电网的谐波问题是比较突出的,1990年电科院曾将宜宾电网列为全国的谐波监测点之一。一般认为三次谐波在变压器二次侧的三角形接线中流通,不会进入电容器组,因此,主要是抑制五次谐波及以上的谐波分量,由此而选用6%电容器组容抗量的串联电抗器。但实际运行中发现,变压器的三角形结线不能完全消除三次谐波,不能阻止三次谐波穿越变压器,主要是因为变压器电源侧三相谐波分量不平衡,其次是变压器二次侧除电容器外还带有谐波发生源的电力负荷,按前述所配置的6%串联电抗器对于三次谐波仍然呈容性,三次谐波进入电容器后将被放大,这对电容器组定有较大的影响。为此,为抑制三次谐波的一个办法,根据计算装设感抗为13%电容器容抗值的串联电抗器,加大串联电抗器的感抗,以阻止三次谐波进入电容器,但这将使电容器的端电压增高15%,这是正常运行所不允许的。由此必须更换更高耐受电压的电容器,这将增加较大投资。另一办法是装设三次谐波滤波器,它既可以减少谐波对电容器的影响又可以避免三次谐波侵入电网,同时使电网的电压质量得到改善。但是如果谐波来自变压器的电源侧电网,则三次谐波将穿越变压器,通过滤波器后使谐波放大,这对电网电压质量及对变压器运行带来不利影响。电容器允许的1.3(1.35)倍的额定电流下连续运行,如果电容器装有6%串联电抗器来限制了五次及以上的谐波分量,那电容器中只通过基波及三次谐波,电容器中电流的有效

变电站10kV电容器出现故障原因分析

变电站10kV电容器出现故障原因分析 摘要:电网规模为适应经济社会发展需要,也在不断发展扩大,电网系统无功电压的重要作用日益凸显,不断有新的无功补偿装置进入电网系统工作。随着无功电压系统的长时间运行,导致电容器组出现故障的情况屡有发生。因此,找出电容器组出现故障的原因,并提出相应解决措施十分有必要。 关键词:电容器故障原因分析 一、前沿 在电力系统中,由于无功功率不足,会使系统电压及功率因数降低,从而损坏用电设备,严重时会造成电压崩溃,使系统瓦解,造成大面积停电。另外,功率因数和电压的降低,还会使电器设备得不到充分利用,造成电能损耗增加,效率降低,限制了线路的送电能力,影响电网的安全运行及用户正常用电。 二、电容器故障原因 对出现故障的电容器进行综合检测分析,发现绝缘电阻、油色谱以及电容量均出现不同程度损坏情况。随后调取了部分相关信息,如保护信息、保护装置型号,对相关元件如电抗器与避雷器等进行测试分析,在现场实测谐波,发现电容器组损坏原因有以下几点: 1 电压未进行保护整定 变电站将不平衡电压标准均设定为5V,并未根据实际情况对非平衡电压标准进行设置,建议调整为3V相对合理。缩短动作时间,将时间改为0.2至0.5秒之间,这样即使出现故障三相仍能准确灵敏运行。建议在电压正常运行情况下再增加1V。就各变电站对电容器组的保护设置而言,其中有的变电站尚未设置非平衡电压保护,如电容器出现故障问题时,三相电压将失去平衡,因此电容器的保护内容应以非平衡电压的保护为主。此外,变电站保护的装置型号老旧、设置不完整,将造成故障进一步扩大,出现熔断器发生群爆情况。部分变电站的非平衡电压保护装置尚未投入使用,若出现异常情况将导致故障扩大升级,进而导致电容器组部分功能薄弱,无法进行有效保护。 2 开关选型不当 开关的型号选择不恰当,或者真空开关质量较低等原因,可能使开关损坏频率较大,导致开关重燃。根据实地调查情况来看,各变电站出现故障的电容器开关都未使用大型厂家生产的比较成熟的品牌,也未发现厂家关于出厂开关的相关试验报告。

施工现场漏电保护器频繁跳闸原因分析标准范本

安全管理编号:LX-FS-A70052 施工现场漏电保护器频繁跳闸原因 分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

施工现场漏电保护器频繁跳闸原因 分析标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使

电容器的故障现象

电容器的故障现象 电容器在电子线路中被广泛用于调情、耦合、旁路、隔直等.电容器一旦损坏就会出现一定的故障现象.了解电容器的故障和检测是对电子设备故障快速进行维修的基础。 一、电容器的故障现象 1.电容器的开路故障。不同电路中电容器开路之后.电路中的故障现象有所不同.但共同的故障特点是只影响交流信号.不影响电路的直流工作状态。 2.电容器断续开路故障。电容器时断时续的转换过程中会出现大噪音现象。这主要是电容器的引脚内部接触不良引起。 3.电容器击穿故障。当电容器击穿(两根引脚之间为通路)时电容器不起隔直作用。不同电路中电容器击穿后电路的具体故障现象有所不同。但共同点是电路的直流工作状态不正常.从而影响到电路的交流工作状态。 4.电容器漏电故障。当电容器漏电时(电容器两极之间绝缘性能下降).两极之间存在漏电阻.将有一部分直流电流通过电容器(电容器的隔直性能变弱).同时电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大:当滤波电容器漏电时.电源电路的直流输出电压下降.同时滤波效果明显变弱(漏电严重时的故障现象同电容器击穿时差不多)。对于轻微漏电故障往往造成电路的软故障(这种故障很难发现)。电容器漏电故障主要出现在一些工作频率比较高的电路中。 5.电容器软击穿故障.一些电容器的击穿故障表现为加上工作电压后电容器m 穿.在断电后又不表现为击穿.这称为电容器的软击穿故障.、这种故障用万用表检测时不一定表现出.击穿的特征.此时若在通电情况卜测量电容器两端的直流电压为0v(成很低)。电容器的这种故障是很难发现的。 综上可知一般情况下.在工作电压较高场合下使用的电容器比较容易出现击穿故障。工作在高频状态下的电容器容易出现漏电故障。 二、检测方法 1.替代检查法.当怀疑电路中某一电容器有故障时.可用一只质量好的电容器代替。若替代后电路的故障现象不变.说明电容器正常.若替代后的故障现象消失.则说明故障部位确为该电容器。该方法在具体实施中分两种情况。(1)若怀疑某电容器存在开路故障(或容量不足).可在电路中直接并联一只好的电容器,通电检验,若故障现象消失,说明该电容开路。(2)若怀疑某电容器存在短路或漏电,则不能采取上述方法.而要先断开所怀疑电容器的一根引脚(或卸下该电容器).然后接入一好的电容器(因为电容器短路或漏电后.该电容器两引脚之间不再绝缘。若直接并联电容器.则该电容器不起作用)。

施工现场漏电保护器频繁跳闸原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 施工现场漏电保护器频繁跳闸原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4487-40 施工现场漏电保护器频繁跳闸原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。

2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护

配电线路跳闸的原因分析及防范措施

配电线路跳闸的原因分析及防范措施 摘要:故障的情况下进行开关合闸,但常因过流保护动作跳闸而无法正常送电。现场情况表明,对这类存在开关异常跳闸状况的线路进行合闸送电瞬间,电流表指针往往大幅度偏转,然后又在较短的时间内返回到正常值。合闸冲击电流过大会导致过流保护动作跳闸,更为严重的是,有的线路只能将线路分段后逐段送电。 一跳闸原因: 1 管理原因: (1)外力破坏:电力线路受外力破坏易造成倒杆断线恶性事故,严重威胁电网安全运行。 (2)盗窃设施:电力线路多为金属材料,受价格上涨因素,犯罪分子偷盗电力设施,案发前必然先造成线路跳闸停电后实施犯罪。 (3)车辆撞杆:线路延公路两侧架设方案仍是目前普遍推行的首选方案,它便于施工与接火跳线,但随着车辆快速增长,违章行车直接撞击电杆事故也呈上升趋势。 (4)杆根取土:修路、建房、烧砖等取用土时,对架设在田间地头电杆地段进行取土,破坏了电杆基础,造成电杆倾斜倒塌。 (5)破坏拉线:组立在农村耕地上带有接线的电杆,因其不便于农机作业和农作物的收种,从而擅自拆除拉线,引起电杆倒塌。 (6)焚烧农作物秸秆:每年农作物收割之后,废弃在耕地中或堆积在田间地头、公路两侧的秸秆就地焚烧而引起线路跳闸。 (7 短路:人为因素较多,大都是缺乏电力保护常识而引发障碍。重点有:风筝、过街宣传横幅,彩带等绕线;金属丝抛挂,此类故障多集中在村庄附近和空旷地段;架空导线飞鸟短路,地下电缆出线裸露部分小动物短路。 (8线路巡查不到位:线路的安全管理重点在线路上,线路巡查工作必须要认真仔细,并要正确巡查所有设备,确保线路设备保持良好的运行状态。 (9 路薄弱点不清:没有标定危险部位与薄弱环节,遇到负荷高峰期,线路连接薄弱点放电发热烧断导线。 二原因:

电力电容器常见故障的探析

电力电容器常见故障的探析 发表时间:2018-10-01T09:55:42.983Z 来源:《电力设备》2018年第16期作者:赵昕 [导读] 摘要:电容器作为电力系统的无功补偿装置,对系统的安全稳定运行起着非常重要的作用。 (国网冀北电力有限公司唐山供电公司河北唐山 063000) 摘要:电容器作为电力系统的无功补偿装置,对系统的安全稳定运行起着非常重要的作用。但是,由于本身质量问题、人为因素及外在因素的原因,电容器故障时常发生,影响电力系统的安全生产。本文结合现场实际,提出电容器常见的故障类型,并总结故障发生原因以及应采取的相应措施。 关键词:电力电容器;故障;诊断;维护 在泵站的机电设备中,电力电容器是一种静止的无功补偿设备。它的主要作用是向供电系统提供无功功率,达到提高系统的功率因数。电容器在电力系统中对于提高电能质量还有十分重要的作用, 它是保障电力系统经济安全运行的重要手段, 所以电容器的安全运行和故障处理非常重要。在长期的机电运行中, 因为运行环境、人为因素等方面的原因, 电容器故障时常发生发, 严重地威胁着电力系统的安全运行。从电容器损坏的形态来分, 以油箱鼓肚和渗漏油情况居多,其次为内部故障熔丝动作、绝缘不良、爆炸等。 一、日常运行中的电力电容器的维护和保养 对运行中的电力电容器组应进行日常巡视检查、维护和保养,定期停电检查。(1)电容器应有值班人员, 应做好设备运行情况记录。(2)对运行的电容器组的外观巡视检查,应按规程规定每天都要进行,如发现箱壳膨胀应停止使用,以免发生故障。(3)检查电容器组每相负荷可用安培表进行。(4)电容器组投入时环境温度不能低于-40℃,运行时环境温度1h,平均不超过+40℃,2h平均不得超过+30℃,及一年平均不得超过+20℃。如超过时,应采用人工冷却(安装风扇)或将电容器组与电网断开。(5)安装地点的温度检查和电容器外壳上最热点温度的检查可以通过水银温度计等进行, 并且做好温度记录(特别是夏季)。(6)电容器的工作电压和电流,在使用时不得超过1.1倍额定电压和1.3倍额定电流。(7)接上电容器后,将引起电网电压升高,特别是负荷较轻时,在此种情况下,应将部分电容器或全部电容器从电网中断开。(8)电容器套管和支持绝缘子表面应清洁、无破损、无放电痕迹,电容器外壳应清洁、不变形、无渗油,电容器和铁架子上面不应积满灰尘和其他脏东西。(9)必须仔细地注意接有电容器组的电气线路上所有接触处(通电汇流排、接地线、断路器、熔断器、开关等) 的可靠性。因为在线路上一个接触处出了故障, 甚至螺母旋得不紧, 都可能使电容器早期损坏和使整个设备发生事故。(10)如果电容器在运行一段时间后,需要进行耐压试验,则应按规定值进行试验。(11)对电容器电容和熔丝的检查,每个月不得少于一次。在一年内要测电容器的tg2~3次,目的是检查电容器的可靠情况, 每次测量都应在额定电压下或近于额定值的条件下进行。 二、电力电容器在运行中的故障处理 (1)电容器喷油、爆炸着火时的处理。当电容器喷油、爆炸着火时,应立即断开电源,并用砂子或干式灭火器灭火。此类事故多是由于系统内、外过电压,电容器内部严重故障所引起的。为了防止此类事故发生,要求单台熔断器熔丝规格必须匹配,熔断器熔丝熔断后要认真查找原因, 电容器组不得使用重合闸,跳闸后不得强送电,以免造成更大损坏的事故。 (2)电容器的断路器跳闸的处理。电容器的断路器跳闸, 而分路熔断器熔丝未熔断时。应对电容器放电3min后,再检查断路器、电流互感器、电力电缆及电容器外部等情况。若未发现异常,则可能是由于外部故障或母线电压波动所致, 并经检查正常后,可以试投,否则应进一步对保护做全面的通电试验。通过以上的检查、试验, 若仍找不出原因, 则应拆开电容器组,并逐台进行检查试验。但在未查明原因之前, 不得试投运。 (3)当电容器的熔断器熔丝熔断的处理。当电容器的熔断器熔丝熔断的时, 应向值班调度员汇报, 待取得同意后, 再断开电容器的断路器。在切断电源并对电容器放电后, 先进行外部检查, 然后用绝缘摇表摇测极间及极对地的绝缘电阻值。如未发现故障迹象,可换好熔断器熔丝后继续投入运行。如经送电后熔断器的熔丝仍熔断,则应退出故障电容器, 并恢复对其余部分的送电运行。 (4 )处理故障电容器应注意的安全事项。处理故障电容器应在断开电容器的断路器,拉开断路器两则的隔离开关,并对电容器组经放电电阻放电后进行。电容器组经放电电阻( 放电变压器或放电电压互感器)放电以后,由于部分残存电荷一时放不尽,仍应进行一次人工放电。放电时先将接地线接地端接好, 再用接地棒多次对电容器放电,直至无放电火花及放电声为止,然后将接地端固定好。由于故障电容器可能发生引线接触不良、内部断线或熔丝熔断等,因此有部分电荷可能未放尽,所以检修人员在接触故障电容器之前, 还应戴上绝缘手套, 先用短路线将故障电容器两极短接,然后方动手拆卸和更换。电容器在变电所各种设备中属于可靠性比较薄弱的电器,它比同级电压的其他设备的绝缘较为薄弱,内部元件发热较多,而散热情况又欠佳,内部故障机会较多,制造电力电容器内部材料的可燃物成分又大, 所以运行中极易着火。因此, 对电力电容器的运行应尽可能地创造良好的低温和通风条件。 (5)环境温度问题。电容器周围环境的温度不可太高, 也不可太低。如果环境温度太高, 电容工作时所产生的热就散不出去; 而如果环境温度太低, 电容器内的油就可能会冻结, 容易电击穿。按电容器有关技术条件规定, 电容器的工作环境温度一般以40℃为上限。我国大部分地区的气温都在这个温度以下, 所以通常不必采用专门的降温设施。如果电容器附近存在着某种热源, 有可能使室温上升到40℃以上, 这时就应采取通风降温措施, 否则应立即切除电容器。电容器环境温度的下限应根据电容器中介质的种类和性质来决定。YY型电容器中的介质是矿物油, 即使是在- 45℃以下, 也不会冻结, 所以规定- 40℃为其环境温度的下限。而YL 型电容器中的介质就比较容易冻结,所以环境温度必须高于- 20℃。 (6)常见故障处理及预防措施 (1)当电容器发生放电、爆炸等着火现象时,首先应该切断电源,再进行灭火处理。 (2)当电容器相应的断路器发生跳闸现象时,首先要对电容器进行充分放电,然后再检查相关设备,如果检查没有异常,则可能是电网电压的波动所致,可尝试投运,若投运不正常,则可能是电容器内部发生故障,检查试验每只电容器,直至找出故障原因。 (3)发生熔丝熔断情况时,首先要对电容器充分放电,然后更换熔丝,检查相应设备无其他异常现象后可以试投运,如果试投运不成功,则停电后对每一只电容器检查试验。 (4)电容器运维时应该注重加强巡视,定期进行停电检查工作,主要检查外观情况、是否有鼓包、渗漏油、熔丝异常以及闪络等现象,如有以上情况应及时停电组织处理。

几种常见的电容器故障的修理方法

几种常见的电容器故障 的修理方法 The manuscript was revised on the evening of 2021

几种常见的电容器故障的修理方法随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。 本文立创小编主要讲解两个电容器常见故障的修理方法。 一般电容故障现象:电容开路、击穿、漏电、通电后击穿 故障原因 1、元器件开路 电容器开路后,没有电容器的作用。不同电路中的电容器出现开路故障后,电路的具体故障现象不同。如滤波电容开路后出现交流声,耦合电容开路后无声等。 2、元器件击穿 电容器击穿后,失去电容器的作用,电容器两根引脚之间为通路,电容器的隔直作用消失,电路的直流电路出现故障,从而影响交流工作状态。 3、元器件漏电 电容器漏电时,导致电容器两极板之间绝缘性能下降,两极板之间存在漏电阻,有直流电流通过电容器,电容器的隔直性能变差,电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大。这是小电容器中故障发生率比较高的故障,而且故障检测困难。 4、通电后击穿

电容器加上工作电压后击穿,断电后它又表现为不击穿,万用表检测时它不表现击穿的特征,通电情况下测量电容两端的直流电压为零或者很低,电容性能变坏。 修理方法 1、电容内部开路,换元器件;电容外部连线开路,重新焊好。 2、电容器击穿,换新。 3、电容器漏电,换新。 4、通电后击穿,换新。 二、电解电容器的检修 电解电容器是固定电容器中的一种,它的故障特征与固定电容故障特征有许多相似之处,由于电解电容器的特殊性,电解电容器的故障特征又有许多不同之处。在电路中,电解电容器的故障率较高。 故障现象:电容器两极短路 故障原因 1、未通电,击穿,电容器内部短路。 2、未通电正常,通电后击穿,电容器外部连线短路。 修理方法 1、更换新元器件。 2、电容器外部连线短路,检查短路点,断开。

相关主题
文本预览
相关文档 最新文档