当前位置:文档之家› 9判别式法求函数值域

9判别式法求函数值域

9判别式法求函数值域
9判别式法求函数值域

专题9、判别式法求函数值域 【解析】2

1x x ++(1)y x ++20=,即时,x R ∈时,方程0,1y ∴≤≤【例2】已知函数22()1

x ax b f x x ++=+的值域为[1,3],求实数,a b 的值。 。2()

f x =23?=【例3】求函数2y =的值域。

判别式法求函数值域

判别式法求函数值域 [6] 把函数转化成关于x 的二次方程(,)0F x y =,通过方程有实根,判别式0?≥,从而求得原函数的值域,这种方法叫做判别法。形如 2111122222 (,0)a x b x c y a a a x b x c ++=++不同时为的函数常用此法。此类问题分为两大类:一类为分子和分母没有公因式一般可使用判别式0?≥解得,但要注意判别式?中二次项系数为零和不为零两种情况;另一类为分子和分母中有公因式,约去因式回到上述方法解决。但值得注意的是函数的定义域问题。 例1、求函数22y=3 x x +的值域。 分析:函数22y=3x x +形如2111122222 (,0)a x b x c y a a a x b x c ++=++不同时为,且定义域为全休实数,因此可用判别式法求解。 解:由22y=3 x x + 得 2320yx y x +-= 当y = 0 时, x = 0 当0y ≠时,由0?≥ 得24120y -≥ ∴33 y -≤≤ ∴函数22y= 3x x +的值域为|33y y ??-≤≤?????。 例2、求函数22(1)(2)(1) x y x x +=--的值域。 分析:察看函数22(1)(2)(1)x y x x += --可知,分子和分母存在公因式1x +,因为分母不为0,则有10x +≠,因此可以分子和分母同时约去公因式1x +。从而原函数就等价为2(2)(1) y x x =--,再用判别式法去解。 解:由22(1)(2)(1)x y x x +=--=2(2)(1)x x --=2232 x x -+ 得

23220yx yx y -+-= ∵当0y =时,-2 = 0 ,不成立 当0y ≠时,由0?≥,得2(3)4(22)y y y ---=280y y +≥ ∴8y ≤-或0y ≥ 由于0y ≠ ∴函数22(1)(2)(1)x y x x +=--的值域为{}|80y y y ≤->或。

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

正确用判别式法求值域着重点辨析

正确用判别式法求值域“着重点”辨析 用判别式法求函数的值域是求值域的一种重要方法之一,它主要适用于分式型二次函数,或可通过换元法转化为二次函数的一些函数求值域问题。但在用判别式法求值域时因忽视一些“着重点”而经常出错,下面针对“着重点”一一加以辨析 着重点1 对二次方程的二次项系数是否为零加以讨论 例1 求函数3 22122+-+-=x x x x y 的值域。 错解 原式变形为0)13()12()12(2=-+-+-y x y x y (*) ∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得 21103≤≤y 。 故所求函数的值域是]21,103[ 分析 把21=y 代入方程(*)显然无解,因此21=y 不在函数的值域内。事实上,21=y 时,方程(*)的二次项系数为0,显然用“?”来判定其根的存在情况是不正确的,因此要注意判别式存在的前提条件,即需对二次方程的二次项系数加以讨论。 正解 原式变形为0)13()12()12(2 =-+-+-y x y x y (*) (1)当2 1= y 时,方程(*)无解; (2)当2 1≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得2 1103<≤y 。 由(1)、(2)得,此函数的值域为)21,103[ 着重点2 将原函数转化为方程时应等价变形 例2 求函数1++=x x y 的值域。 错解 移项平方得:()011222=+++-y x y x , 由()014)]12([22≥+---=?y y 解得43≥y ,则原函数的值域是?? ????+∞,43. 分析 由于1-= -x x y 平方得()011222=+++-y x y x ,这种变形不是等价变

如何用判别式法求函数值域

如何用判别式法求函数值域 用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。 一、判别式法求值域的理论依据 例1、 求函数1 22+--=x x x x y 的值域 象这种分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。 解:由1 22+--=x x x x y 得: (y-1)x 2+(1-y)x+y=0 ① 上式中显然y ≠1,故①式是关于x 的一元二次方程 ?? ????-+--=∴≠≤≤-≥?---=?13111,13 10) 1(4)1(222,x x x x y y y ,y y y 的值域为又解得令 为什么可以这样做?即为什么△≥0,解得y 的范围就是原函数的值域? 我们可以设计以下问题让学生回答: 1、 当x=1时,y=? (0) 反过来当y=0时,x=?(1) 当x=2时,y=? (32) 当y=3 2时,x=?(2) 以上y 的取值,对应x 的值都可以取到,为什么? (因为将y=0和y=3 2代入方程①,方程的△≥0) 2、 当y=-1时,x=? 当y=2时,x=? 以上两个y 的值x 都求不到,为什么求不到?(因为将y 的值代入方程①式中△<0,所以无解) 3、 当y 在什么范围内,可以求出对应的x 值? 4、 函数1 22+--=x x x x y 的值域怎样求? 若将以上问题弄清楚了,也就理解了判别式求值域的理论依据。 二、判别式法求值域的适用范围 前面已经谈到分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。是不是所有这种类函数都可以用判别式法求值域?

关于判别式法求值域增根的研究

关于判别式法求值域增根的研究 文章来源:2008年下半年度《试题与研究》 我们都知道对于形如f ( x ) = 的二次分式函数我们通常使用判别式来求其值域。但这是在分子分母没有公因式的前提下进行的,若分子分母有公因式时,我们须先 约去公因式,化成f(x) =的形式,然后再求出其值域。但如果我们用判别式法求这类函数的值域时,会出现什么情况呢?让我们比较吧! 例:求二次分式函数y = 的值域.

y = y = = , = 通过比较,我们发现用判别式法求值域的结果,比先化成一次分式函数来求解其值域的结果多了一个值y = 2。这就是说,

用判别式法求值域会产生增根。这是为什么呢?下面让我们首先来研究一下用判别式法来求值域的原理吧! 函数是定义域到值域的映射,在定义域内任何一个x值,在值域内都有唯一一个y值与之对应。反过来,值域内每一个y 值,都会有一个或多个x值与之对应。将某一函数化为关于x 的方程(将y看作是x的系数),只是将x和y的对应关系用另一种形式表示出来,其对应实质并未改变。判别式法求值域就是基于这种思想而产生的。 将二次分式函数的分母乘到另一侧,得到一个关于x的方程。如果二次项系数不为0,此方程为关于x的一元二次方程。其中,当△≥0时(△是含字母y的式子),将这个范围内的y 值代入方程,都能够得到一个或两个与之对应的x值;而当△<0时,方程无解,这说明在此范围内的y值没有x值与之对应,因此此范围内的值y不属于值域。如果二次项系数为0,此方程为关于x的一次方程,将此时y的取值代入解析式可得到一个与之对应的x值,如果所得x值在定义域内,则该y值属于值域;如果所得x值不在定义域内,或所得解析式根本没有意义,则该y值不属于值域。

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

人教版必修一求函数值域的几种常见方法

人教版必修一求函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b a c y y 4)4(|2 -≤}. 例1.求下列函数的值域 ① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1 += x x y ④x x y 1 + = 解:①∵-1≤x ≤1,∴-3≤3x ≤3, ∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2} ③1 111 111 +- =+-+= +=x x x x x y ∵ 01 1≠+x ∴1≠y 即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+ ==2)1(2 +- x x 2≥, 当x<0时,)1(x x y -+ --==-2)1(2 --- -x x 2-≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数x x y 1+ =的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 4 3 21 -1-2-3 -4 -6 -4 -2 2 4 6 y=x o -2 -112 f x () = x+ 1x

最全函数值域的12种求法(附例题,习题)[1]

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x 中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。 点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值

高中函数值域的经典例题 12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

用判别式法求函数值域的方法

用判别式法求函数值域的方法 例1求函数y=1 223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+2 1>0 ∴函数的定义域为R , 将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0, 我认为在此后应加上:关于..x .的方程(....2.y .-.1.).x .2.+(2y+2)x+y+3=0..............有实数解.... 例2求函数y=6 3422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少....... 有一根不为.....2.且不为...-.3. 例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用.... ,同时也暴露出作者的思维过程,不能略去。 思考之二:对于形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。 但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢 我认为有关形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可, 例3 求函数求函数y=6 3422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于..x .的方程(....y .-.1.).x .2.+(y ...-.4)x ...-.6y ..-.3=0...有实数根且至少....... 有一根不为.....2.且不为...-.3. (1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1 (2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验

几种常用的求值域方法

求函数值域的方法 求函数值域的方法有图象法,函数单调性法,配方法,平方法,换元法,反函数法(逆求法),判别式法,复合函数法,三角代换法,基本不等式法等。 这些解题思想与方法贯穿了高中数学的始终。 1、求13+--=x x y 的值域 解法一:(图象法)可化为 ?? ? ??>-≤≤---<=3,431,221,4 x x x x y 观察得值域{}4 4≤≤-y y 解法三:(利用绝对值不等式) 4 14114)1(134 )1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 所以同样可得值 域 2、求函数[]5,0,522∈+-=x x x y 的值域 解: 对称轴 []5,01∈=x [] 20,420,54 ,1max min 值域为时时∴====∴y x y x 3、求函数x x y -+=12 的值域 解:(换元法)设t x =-1,则)0(122≥++-=t t t y [)(] 4,41,01max ∞-∴==∴+∞∈=值域为,时当且开口向下 ,对称轴y t t

4、求函数[])1,0(239∈+-=x y x x 的值域 解:(换元法)设t x =3 ,则 31≤≤t 原函数可化为 [][]8,28,3;2,13,12 1 ,2m a x m i n 2值域为 时时对称轴∴====∴?= +-=y t y t t t t y 5、求函数x x y -+-=53 的值域 解:(平方法)函数定义域为:[]5,3∈x [][][] [] 2 ,24,21,0158,5,315 82)5()3(2 222原函数值域为得由∴∈∴∈-+-∈-+-+-+-=y x x x x x x x y 6、求函数 )0(2≤=x y x 的值域 解:(图象法)如图,值域为(]1,0 7、求函数x x y 2231+-? ? ? ??= 的值域 解:(复合函数法)令1)1(22 2 +--=+-=x x x t 3?? ? 由指数函数的单调性知,原函数的值域为?? ? ???+∞,31 8、求函数2 1 +-= x x y 的值域 解法一:(反函数法){}1121,≠-+= y y y y x x 原函数值域为观察得解出 解法二:(利用部分分式法)由12 3 1232≠+-=+-+= x x x y ,可得值域{}1≠y y

判别式法求值域

关于判别式法求值域增根的研究 我们都知道对于形如f ( x ) = 的二次分式函数我们通常使用判别式来求其值域。但这是在分子分母没有公因式的前提下进行的,若分子分母有公因式时,我们须先约去公因式,化成f(x) =的形式,然后再求出其值域。但如果我们用判别式法求这类函数的值域时,会出现什么情况呢?让我们比较吧! 例:求二次分式函数y = 的值域. y = y = = y =

y = = 通过比较,我们发现用判别式法求值域的结果,比先化成一次分式函数来求解其值域的结果多了一个值y = 2。这就是说,用判别式法求值域会产生增根。这是为什么呢?下面让我们首先来研究一下用判别式法来求值域的原理吧!

函数是定义域到值域的映射,在定义域内任何一个x值,在值域内都有唯一一个y值与之对应。反过来,值域内每一个y值,都会有一个或多个x值与之对应。将某一函数化为关于x 的方程(将y看作是x的系数),只是将x和y的对应关系用另一种形式表示出来,其对应实质并未改变。判别式法求值域就是基于这种思想而产生的。 将二次分式函数的分母乘到另一侧,得到一个关于x的方程。如果二次项系数不为0,此方程为关于x的一元二次方程。其中,当△≥0时(△是含字母y的式子),将这个范围内的y 值代入方程,都能够得到一个或两个与之对应的x值;而当△<0时,方程无解,这说明在此范围内的y值没有x值与之对应,因此此范围内的值y不属于值域。如果二次项系数为0,此方程为关于x的一次方程,将此时y的取值代入解析式可得到一个与之对应的x值,如果所得x值在定义域内,则该y值属于值域;如果所得x值不在定义域内,或所得解析式根本没有意义,则该y值不属于值域。 但这样做不禁会使人产生疑问:将分式两边都乘以分母,x的定义域扩大了,不会产生增根吗?上面题中出现的增根是否源于此呢?让我们一起分析一下吧!

用判别式法求函数值域的方法之欧阳光明创编

用判别式法求函数值域的方法 欧阳光明(2021.03.07) 例1求函数y=1223222++--x x x x 的值域 解:∵2x 2+2x+1=2(x+21)2+21 >0 ∴函数的定义域为R , 将原函数等价变形为(2y-1)x 2+(2y+2)x+y+3=0, 我认为在此后应加上:关于x 的方程(2y-1)x 2+(2y+2)x+y+3=0有实数解 例2求函数y=63422-+++x x x x 的值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于x 的方程(y-1)x 2+(y-4)x-6y-3=0有实数根且至少有一根不为2且不为-3 例1及例2也需要作此修正,本人认为,这些文字说明对于整个题目的解题过程起着统帅作用,同时也暴露出作者的思维过程,不能略去。 思考之二:对于形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方 法 中处理方法是要验证△=0时对应的y 值,该文中是这样的说明的:

由于函数变形为方程时不是等价转化,故在考虑判别式的同时,还需对△=0进行检验,若对应的自变量在函数的定义域内,则y 值在值域内,否则舍去。 但在文2中例2中第2小题并没有对△=0进行检验,得出正确结果,这就使读者很困惑,究竟什么情况要检验,什么情况不进行检验呢? 我认为有关形如y=f ex dx c bx ax ++++22中分子分母都有公因式的处理方法第一种可以按例2中约去公因式的方法,这已经不是判别式法的范围之内,不在讨论之列,第二种处理方法仍然用判别式法,只不过在例1的解法基础上稍加改动即可,例3 求函数求函数y=63422-+++x x x x 的 值域 解:由x 2+x-6≠0得x ≠2,x ≠-3 ∴函数的定义域为{x|x ∈R ,x ≠2,x ≠-3} 由原函数变形得:(y-1)x 2+(y-4)x-6y-3=0 我认为在此之后应加上:关于x 的方程(y-1)x 2+(y-4)x-6y-3=0有实数根且至少有一根不为2且不为-3 (1)当y=1时,代入方程求得x= -3,而x ≠-3,因此y ≠1 (2)当y ≠1时关于x 的方程(y-1)x 2+(y-4)x-6y-3=0为一元二次方程,可以验证x=-3为该方程的根,x=2不是该方程的根,因此只有两个根都为-3时不满足题意,其余都符合题意,因此只需△≠0,即可得出即可得出y ≠52

函数值域求法十五种

在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 基本知识 1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。 2.函数值域常见的求解思路: ⑴划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。 ⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。 特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷可以用函数的单调性求值域。 ⑸其他。 1. 直接观察法 对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域 例1. 求函数的值域。 解:∵∴ 显然函数的值域是: 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例2. 求函数的值域。 解:将函数配方得: ∵ 由二次函数的性质可知:当x=1时,,当x=-1时,

故函数的值域是:[4,8] 3. 判别式法 例3. 求函数的值域。 解:两边平方整理得:(1) ∵∴ 解得: 但此时的函数的定义域由,得 由,仅保证关于x的方程:在实数集R有实根,而不 能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能 比y的实际范围大,故不能确定此函数的值域为。 可以采取如下方法进一步确定原函数的值域。 ∵∴ ∴代入方程(1) 解得:即当时, 原函数的值域为: 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例4. 求函数值域。

求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

函数求值域15种方法

函数求值域15种方法 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 基本知识 1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。 2.函数值域常见的求解思路: ⑴划归为几类常见函数,利用这些函数的图象和性质求解。 ⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。 ⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。 特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 ⑷可以用函数的单调性求值域。 ⑸其他。 1. 直接观察法 对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域 例1. 求函数的值域。 解:∵∴ 显然函数的值域是: 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例2. 求函数的值域。 解:将函数配方得: ∵ 由二次函数的性质可知:当x=1时,,当x=-1时,

故函数的值域是:[4,8] 3. 判别式法 例3. 求函数

的值域。 解:两边平方整理得:(1) ∵∴ 解得: 但此时的函数的定义域由,得 由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比 y的实际范围大,故不能确定此函数的值域为。 可以采取如下方法进一步确定原函数的值域。 ∵∴ ∴代入方程(1) 解得:即当时, 原函数的值域为: 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例4. 求函数值域。 解:由原函数式可得: 则其反函数为:

求函数值域常见的五种方法

求函数值域常见的五种方法 求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考. 一、 判别式法 思路:将函数式整理成一元二次方程的形式,借用判别式求值域. 例1 求函数的4 312--=x x y 值域. 解:原式整理成01432 =---y yx yx , )4()41()1(∞+?-?--∞∈,,,x ,且0≠y , ∴0)14(492≥++=?y y y . 解得0≥y 或25 4-≤y . 当 25 4-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]25 4--+∞?∞,(. 二、 配方法 例2 求函数x x y 21-+=的值域. 解:由已知得2 121)21(21+-+--=x x y 1)121(2 12+---=x

∴所求函数的值域是 ]1-,(∞. 三、 单调性法 思路:利用函数的图象和性质求解. 例3 当)0,2 1(-∈x 时,求函数)1lg()1lg(x x y -++=的值域. 解:由已知得)1lg(2 x y -=, ∵)0,2 1(-∈x ,∴)41,0(2∈x . 又2x -在)0,2 1(-∈x 上递增, ∴)1,43(12 ∈-x . 又u y lg =在)1,4 3(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,4 3(lg . 四、 反函数法 例4 求函数x x y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得01 1≥+-=y y x , ∴1≥y 或1-

高中数学求函数值域的方法十三种

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】求函数1y x =+的值域。 【解析】∵0x ≥,∴11x +≥, ∴函数1y x =+的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112 --=x y ,{}2,1,0,1-∈x ,求函数的值域。 【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。 二. 配方法:配方法式求“二次函数类”值域的基本方法。形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。 【例1】 求函数2 25,[1,2]y x x x =-+∈-的值域。 【解析】将函数配方得: ∵ 由二次函数的性质可知:当x=1 ∈[-1,2]时, ,当 时, 故函数的值域是:[4,8] 【变式】已知 ,求函数 的最值。

【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配 方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐 标不在区间内,如图2所示。函数的最小值为,最大值为。 图2 【例2】 若函数2 ()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t (2)当∈t [-3,-2]时,求g(t)的最值。(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数 ,其对称轴方程为 ,顶点坐标为(1,1),图象开口向上。 图1 图2 图3 ①如图1所示,若顶点横坐标在区间 左侧时,有 ,此时,当 时,函数取得最小值 。 ②如图2所示,若顶点横坐标在区间上时,有 ,即 。当时,函数取得最小 值 。 ③如图3所示,若顶点横坐标在区间 右侧时,有 ,即 。当 时,函数取得最小值 综上讨论,g(t)=?? ? ??<+≤≤>+-=0110,11,1)1()(22min t t t t t x f (2)221(0)( )1(01)22(1)t t g t t t t t ?+≤? =<

利用判别式求值域时应注意的问题

利用判别式求值域时应注意的问题 用判别式法求函数的值域是求值域的一种重要的方法,但在用判别式法求值域时经常出错,因此在用判别式求值域时应注意以下几个问题: 一、要注意判别式存在的前提条件,同时对区间端点是否符合要求要进行检验 例:求函数3 22122+-+-=x x x x y 的值域。 错解:原式变形为0)13()12()12(2=-+-+-y x y x y (*) ∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得 21103≤≤y 。 故所求函数的值域是]21,103[ 错因:把21=y 代入方程(*)显然无解,因此21=y 不在函数的值域内。事实上,21=y 时,方程(*)的二次项系数为0,显然不能用“?”来判定其根的存在情况。 正解:原式变形为0)13()12()12(2 =-+-+-y x y x y (*) (1)当2 1= y 时,方程(*)无解; (2)当2 1≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得21103<≤y 。 综合(1)、(2)知此函数的值域为)21,103[ 二、注意函数式变形中自变量的取值范围的变化 例2:求函数6 3422-+++=x x x x y 的值域。 错解:将函数式化为0)36()4()1(2=+--+-y x y x y (1)当1=y 时,代入上式得093=--x ,∴3-=x ,故1=y 属于值域; (2)当1≠y 时, 0)25(2≥-=?y , 综合(1)、(2)可得函数的值域为R y ∈。 错因:解中函数式化为方程时产生了增根(3-=x 与2=x 虽不在定义域内,但是方程的根),因此最后应该去掉3-=x 与2=x 时方程中相应的y 值。所以正确答案为1|{≠y y ,且}5 2≠y 。

相关主题
文本预览
相关文档 最新文档