当前位置:文档之家› 超声波

超声波

Ultrasound

A Deep Thermal & Non-thermal

Mechanical Modality

CAI BIN

?对于一位前臂开刀半年后产生黏连性疤痕组织的病患,下列超声波治疗参数的组合,何着最为合适?

?A. 間歇性:1MHZ ;0.5watt/cm2

?B. 間歇性:1MHZ ;1-2 watt/cm2

?C. 連續性:3MHZ ;0.5 watt/cm2

?D. 連續性:3MHZ ;1-2 watt/cm2

纲要

?基础部分?临床部分

What is Ultrasound?

?Located in the Acoustical Spectrum

?May be used for diagnostic imaging, therapeutic tissue healing, or tissue destruction

?Thermal & Non-thermal effects

?We use it for therapeutic effects

?Can deliver medicine to subcutaneous tissues (phonophoresis)

超声波

?超声波是指频率在20KHz以上,不能引起正常人听觉反应(16~20KHz)的机械振动波

?Therapeutic ultrasound waves range from 750,000 to 3,000,000 Hz (0.75 to 3 MHz)?近年多采用1MHz、3MHz超声

物理特性?超声波与声波的本质

相同,都是物体的机

械振动在弹性介质中

传播所形成的机械振

动波。

?在传播时产生一种疏

密交替的弹性纵波,

具有一定的方向性;

Frequency

?Frequency:number of times an event occurs in 1 second; expressed in Hertz or pulses per second

?Hertz:cycles per second

?Megahertz:1,000,000 cycles per second

?In the U.S., mainly use ultrasound frequencies of 1,

2 and

3 MHz

?1 = low frequency; 3 = high frequency

?↓frequency = ↑depth of penetration

?↑frequency = sound waves are absorbed in more superficial tissues (3 MHz)

Velocity

?The speed of sound wave is directly related to the density (↑velocity = ↑density)

?Denser & more rigid materials have a higher velocity of transmission

?At 1 MHz, sound travels through soft tissue @ 1540 m/sec and 4000 m/sec through compact bone

物理特性

超声波的传播速度与介质的特性有关,而与声波的频率无关;

介質的密度越大,則音波的傳遞速度就愈

快。例如:空氣(344m/s)<水

(1410m/s)<肌肉、軟組織(1540m/s)

<骨骼(4000m/s)

Influences on the Transmission of

Energy

?Reflection–occurs when the wave can’t pass through the next density

?Refraction–is the bending of waves as a result of a change in the speed of a wave as it enters a medium with a different density

?Absorption–occurs by the tissue collecting the wave’s energy

Attenuation

?Decrease in a wave’s intensity resulting from absorption, reflection, & refraction

?US penetrates through tissue high in water content & is absorbed in dense tissues high in protein

?the half value depth

?The average 1/2 value depth of 3MHz ultrasound is

taken at 2.5cm and that of 1MHz ultrasound as 4.0 cm

组织对超声波的吸收能力

?組織中的含水量如果愈高,則能量的吸收就越少

?人體組織中,蛋白質的含量愈高則能量的吸收就愈多

?對超音波的吸收力:骨頭>軟骨>肌腱>皮膚>肌肉>神經>脂肪>血液

Attenuation: Acoustic Impedance ?Determines amount of US energy reflected at tissue interfaces

?If acoustic impedance of the 2 materials forming the

interface is the same, all sound will be transmitted

?The larger the difference, the more energy is reflected & the less energy that can enter the 2nd medium

?US passing through air = almost all reflected (99%)?US through fat = 1% reflected

?Both reflected/refracted @ m. interface

?Soft-tissue: bone interfaced = much reflected

物理特性

超声波在两种不同介质中传播,在声阻不同的两界面就会发生反射和折射现象,两种介质的声阻差愈大,则反射能量愈多。

Soft-tissue: bone interfaced = much reflected

Intensity Output & Power

?Power:measured in watts (W);

?amount of energy being produced by the transducer

?Intensity:strength of sound waves @ a given location within the tissues being treated

Intensity Output & Power

?Spatial Average Intensity (SAI):amount of US energy passing through the US head’s

ERA(Effective Radiating Area );

?expressed in watts per square centimeter (W/cm2)

(power/ERA)

?Changing head size affects power density (larger head

results in lower density)

?Limited to 3.0 W/cm2 of maximum output

?Spatial Peak Intensity (SPI):max. output (power) produced within an ultrasound beam

Intensity Output & Power

?Spatial Average Temporal Peak Intensity (SATP): average intensity during the “on”time of the pulse ?Output meter displays the SATP intensity

?Spatial Average Temporal Average Intensity (SATA) or Temporal (time) Average Intensity:

?Power of US energy delivered to tissues over a given period of time ?Only meaningful for Pulsed US

?SAI x Duty Cycles

Beam Nonuniformity Ratio (BNR) Ratio between the spatial peak intensity (SPI) to the average output as reported on the unit’s meter

?The lower the BNR, the more uniform the beam is

?A BNR greater than 8:1 is unsafe

?Because of the existence of high-intensity areas in the beam (hot spots), it is necessary to keep

the US head moving

BNR spatial peak intensity SPI

物理特性

超声波的声场不均匀,因此,在治疗时声头位在治疗部位缓慢移动。

超声冲击处理

1.1铝合金焊件UIT研究的意义 疲劳断裂是金属结构失效的主要形式。尤其是一些受动载严重的重要结构。因此,在焊接结构制造过程中或完成后,采取有效的工艺措施,提高它们的疲劳强度意义重大。 进入21世纪以来,随着车辆提速的要求,铝合金被广泛的用作车体材料。但是,焊接残余应力的存在会使工件处于不稳定状态,是工件开裂或变形的主要原因,也是影响构件强度和寿命的主要因素。目前,主要采用氩弧焊的方法对合金进行焊接,焊接工艺的固有特点,使得这些焊接接头和焊接热影响区多存在较大的残余拉应力和较多焊缝缺陷,在交变载荷的作用下极易萌生疲劳裂纹。由于焊接过程中热输入量较大,使焊接接头焊后存在大量残余应力,且焊缝处容易出现气孔、缩松等缺陷,影响了结构的总体强度和使用寿命。有资料表明,铝合金焊接结构中90%的断裂是由承受重复性载荷的焊接接头引起的疲劳破坏。因此,铝合金焊接接头的疲劳性能已经受到设计及使用单位的普遍关注。 研究铝合金焊接接头的疲劳断裂特性,分析产生疲劳断裂危害的因素,估算焊接接头的疲劳寿命,探索提高铝合金焊接接头疲劳性能的方法具有重要的实用价值。大量研究和实践表明焊接接头的疲劳破坏一般起裂于焊接接头的焊趾部位。如果在焊后能够采取一定的有效工艺措施,降低余高造成的应力集中及消除焊趾表面的缺陷;调节焊接残余应力场,消除其消极影响,使之朝有利于疲劳强度提高的方向转变,显然能够大幅度地改善焊接接头及结构的疲劳强度。如果能改善焊趾处疲劳裂纹的起裂性能,将有效地提高焊接结构的疲劳强度。相关方法很多,如TIG熔修法、机械打磨焊趾法、爆炸法、喷丸法、过载法、局部压延法、局部加热法、锤击法。但这些方法有的仍停留在实验室阶段。目前应用较多的是普通捶击法和TIG熔修法和喷丸法。但TIG熔修法施工工艺复杂,工艺不当反而会造成副作用。这种方法需要保护气体,因此露天采用气体保护难以保证,应用受到一定限制。喷丸法是实际应用较多的一种。但这种

超声波常用名词术语

超声波常用名词术语 脉冲幅度:脉冲信号的电压幅值。当采用A 型显示时,通常为时基线到脉冲峰顶的高度。 脉冲宽度:以时间或周期数值表示的脉冲持续时间。 分贝:两个振幅或者强度比的对数表示。 声阻抗:声波的声压与质点振动速度之比,通常用介质的密度p 和速度c 的乘积表示。 声阻抗匹配:声阻抗相当的两介质间的耦合。 衰减:超声波在介质中传播时,随着传播距离的增大,声压逐渐减弱的现象。 总衰减:任何形状的超声束,其特定波形的声压随传播距离的增大,由于散射、吸收和声束扩散等共同引起的减弱。衰减系数:超声波在介质中传播时,因材质散射在单位距离内声压的损失,通常以每厘米分贝表示。 缺陷:尺寸、形状、取向、位置或性质对工件的有效使用会造成损害,或不满足规定验收标准要求的不连续性。 A 型显示:以水平基线(X 轴)表示距离或时间,用垂直于基线的偏转(Y 轴)表示幅度的一种信息表示方法。 发射脉冲:为了产生超声波而加到换能器上的电脉冲。 时基线:A 型显示荧光屏中表示时间或距离的水平扫描线。 扫描:电子束横过探伤仪荧光屏所作同一样式的重复移动。 扫描范围:荧光屏时基线上能显示的最大声程。 扫描速度:荧光屏上的横轴与相应声程的比值。 延时扫描:在A 型或B 型显示中,使时基线的起始部分不显示出来的扫描办法。 水平线性:超声波探伤仪荧光屏时间或距离轴上显示的信号与输入接收器的信号(通过校正的时间发生器或来自已知厚度平板的多次回波)成正比关系的程度。 垂直线性:超声探伤仪荧光屏时间或距离轴上显示的信号与输入接收器的信号幅度成正比关系的程度。 动态范围:在增益调节不变时,超声探伤仪荧光屏上能分辨的最大与最小反射面积波高之比。通常以分贝表示。 脉冲重复频率:为了产生超声波,每秒内由脉冲发生器激励探头晶片的脉冲次数。 检测频率:超声检测时所使用的超声波频率。通常为0.4 MHz ~15MHz。 回波频率:回波在时间轴上进行扩展观察所得到的峰值间隔时间的倒数。 灵敏度:在超声探伤仪荧光屏上产生可辨指示的最小超声信号的一种量度。 灵敏度余量:超声探伤系统中,以一定电平表示的标准缺陷探测灵敏度与最大探测灵敏度之间的差值。 分辨力:超声探伤系统能够区分横向、纵向或深度方向相距最近的一定大小的两个相邻缺陷的能力。 抑制:在超声波探伤仪中,为了减少或消除低幅度信号(电或材料的噪声),以突出较大信号的一种控制方法。 闸门:为监控探伤信号或作进一步处理而选定一段时间范围的电子学方法。 衰减器:使信号电压(声压)定量改变的装置。衰减量以分贝表示。 信噪比:超声信号幅度与最大背景噪声幅度之比。通常以分贝表示。 阻塞:接收器在接收到发射脉冲或强脉冲信号后的瞬间引起的灵敏度降低或失灵的现象。 增益:超声探伤仪接收放大器的电压放大量的对数形式。以分贝表示。 距离波幅曲线(DAC):根据规定的条件,由产生回波的已知反射体的距离、探伤仪的增益和反射体的大小,三个参量绘制的一组曲线。实际探伤时,可由测得的缺陷距离和增益值,从此曲线上估算出缺陷的当量尺寸。 耦合:在探头和被检件之间起传导声波的作用。 试块:用于鉴定超声检测系统特性和探伤灵敏度的样件。 标准试块:材质、形状和尺寸均经主管机关或权威机构检定的试块。用于对超声检测装置或系统的性能测试及灵敏度调整。 对比试块:调整超声检测系统灵敏度或比较缺陷大小的试块。一般采用与被检材料特性相似的材料制成。 探头:发射或接收(或既发射又接收)超声能量的电声转换器件。该器件一般由商标、插头、外壳、背衬、压电元件、保护膜或楔块组成。 直探头:进行垂直探伤用的探头,主要用于纵波探伤。 斜探头:进行斜射探伤用的探头,主要用于横波探伤。

超声诊断学大题汇总

乳腺纤维腺瘤: 二维超声:1、肿块呈圆形、椭圆形或分叶状 2、边界光滑,有完整包膜 3、内部回声均匀,与周围脂肪组织相比呈等回声,与乳腺实质相比为低回声,后方无衰减 4、肿块可有侧方声影5、与周围组织无粘连,加压时,可被轻度压缩 多普勒超声:较小的纤维腺瘤周围可见彩色血流信号;较大的腺瘤周边及内部均可见彩色血流信号。血流信号的走形、形态规则。脉冲多普勒可测及低速动脉血流。 乳腺癌: 二维超声:1、肿块内部回声与乳腺腺体组织相比,多呈低回声,后方衰减。 2、肿块形态不规则 3、微小钙化 4、边界不清与毛刺状边缘 5、肿块纵横比大于1 6、间接征象:包括Cooper 韧带连续性中断、皮肤水肿增厚和腋窝淋巴结肿大形态失常 多普勒超声:可见形态不规则,分布杂乱的血流信号 胎儿脑积水:胎儿脑积水为脑室系统或脑池内循环的脑脊液排出发生障碍使颅腔内有异常增多的液体聚集。声像图为脑室不同程度扩张。 1、重度脑积水:A、胎儿双顶径大于孕周 B、脑室内径明显增宽,第三脑室扩张,脑中线可在脑脊液中飘动,脑实质、颅骨壁变薄,颅骨缝裂开 2、轻度脑积水:妊娠20周后脑室率大于0.5或侧脑室后角宽大于10mm(脑室率为脑中线至侧脑室的距离与中线至颅骨内缘的距离之比,正常小于0.3),胎儿双顶径符合孕周,脑中线不偏移。甲亢: 二维超声:1、甲状腺呈弥漫性、

均匀性增大,左右两侧对称,增大达正常腺体的2~3倍。峡部前后径增大明显,可达 1.0cm(正常≤0.4cm).增大明显时,颈总动脉及颈内静脉被挤压向外侧移位。 2、内部回声正常或稍强,呈密集点状分布,当本病治疗后,可有点状或条状中、强回声。 彩色多普勒超声:甲状腺内小血管增多、扩张,血流速度加快现象(V达70~90cm/s或更高),甲状腺内血流呈五彩缤纷,称之为“火海征”,此征具有特征性,但并非本病专有。 甲状腺癌: 二维超声:癌瘤的边界不整,界限不清,边缘呈锯齿状;但癌瘤较小时,边界可以光滑、整齐。癌瘤内部常是低回声且不均质。癌瘤内可出现点状、细小、微粒状的强回声钙化点,具有特异性,但敏感性差。癌瘤较大时,可出现坏死或囊性变,局部无回声区,液化不全时,呈囊实性改变。 彩色多普勒:肿瘤内有新生血管出现,呈湍流频谱,血流丰富,有动静脉瘘现象。癌瘤侵犯周围小血管时,可见血管内癌栓。癌瘤侵及颈部淋巴结,可发现淋巴结肿大,为转移灶。癌瘤侵犯喉返神经,有声音嘶哑及声带麻痹。肠套叠: 超声:肠套叠的横断面图像显示为特征性的“同心圆”征,由套叠的鞘部和套入折叠部三层肠管组成。较大的外环呈一层较厚、均匀的低回声环带,为鞘部肠管;中环和内环为套入部肠管,水肿增厚,中环和内环之间可见肠系膜反射的强回声。低回声带中心部可见一高低相间的混合回声或呈弥漫性较高回声的结构,主要是套入部肠管形成反折的浆膜及内层黏膜相互重叠挤压所致。中

超声波振动棒

超声波振动棒 超声波振动棒是通过大功率大振幅的换能器对棒体产生径向振动,在振动棒附近360°均匀的产生超声波。它的振幅是介于超声波清洗机和处理器之间,因此,使用的方向比较灵活。超声波振动棒可以用于任何有槽体的清洗,可以自由摆放在清洗槽的任何位置,而占有的体积空间很小,可以非常灵活使用。用于反应釜内部,可以用来加速溶解、加速反应和防止内壁结垢等。 超声波振动棒特点: 1、空化作用在超声波振动棒的周围产生,超声波能量非常均匀的分布在槽内,从而达到最佳的清洗效果。 2、超声波振动棒的功率输出不受液位,槽体容量及温差等负载变化的影响,功率输出稳定均匀。 3、由于超声波振动棒的结构特点,其应用范围教传统的超声震板更为广泛,最适合用于真空/压力清洗,也适合用于各种化学处理过程中。 4、超声波振动棒较传统的超声震板有着1.5倍以上的使用寿命。 5、圆管型设计使用灵活,便于安装。 6、基本上保证完全防水密封。 超声波振动棒适用范围: 超声波振动棒用于各行业的工件清洗,如精密电子零件、钟表零件、光学玻璃零件、五金机械零件、珠宝首饰、半导体硅片、涤纶过滤芯/喷丝板,医疗器械等的清洗及零件电镀前后的清洗。 超声提取以其提取温度低、提取率高、提取时间短的独特优势应用于中药材提取,油提取,各种动植物有效含量的提取,是替代传统剪切工艺方法,实现高效、节能、环保式提取的现代高新技术手段。

超声波提取中药材的优越性,是基于超声波的特殊物理性质,主要是通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。 相关产品词组:超声波实验室分散仪、超声浆料分散机、生物化学细胞粉碎系统、精油提取设备、超声波油水分离设备、乳化、分离、匀化、提取、消泡设备、植物提取设备、超声波提取机,超声波萃取设备、超声杀菌设备、超声波灭菌设备、超声波提取机,超声提取、提取设备、超声波萃取设备、药物提取超声波振动棒、金属溶液中消除气泡设备、溶液中消除气泡设备、超声波声化学处理设备、除垢防垢设备、超声波振动棒、智能棒、植物提取设备、超声乳化设备、乳化设备、超声波均化设备、乳化均化设备、超声波振动棒、智能棒,超声波聚能振动棒、超声波提取设备、超声波分离设备.

超声波发射和接收电路

超声波发射和接收电路 在本设计中,我们设计的发射和接收电路都是分别只有一个,通过继电器进行顺、逆流方向收发电路的切换,这样做既降低了成本,又消除了非对称性电路误差,且发射脉冲通过使用单独的继电器分别对发射和接收换能器进行控制,使换能器的发射和接收电路完全隔离,消除了发射信号对接收的影响。 4.2.1超声波发射电路 接收信号的大小和好坏直接取决于发射传感器的发射信号,由于使用收发共用型超声换能器,所以除了选用性能优良的超声波传感器外,发射电路和前级信号接收电路至关重要,它决定着整个系统的灵敏度和精度。 超声波测量最常用的换能器发射电路大体可分为三种类型:窄脉冲触发的宽带激励电路、调制脉冲谐振电路和单脉冲发射电路。从早先国内进口的日本超声波流量计来看,基本都采用的是窄脉冲驱动电路。这种电路在设计上一般是用一个极快速的电子开关通过对储能元件的放电来实现,这些开关器件通常为晶闸管或大功率场效应管(MOSFET)。由于需要输出激励信号的瞬时功率大,因此开关器件必须由直流高压供电,一般要达到几十到一百伏以上,这在电池供电的系统中无法实现;此外,开关瞬间会产生高压脉冲,对整个电路的抗干扰设计不利。而脉冲谐振电路设计起来比较简单,其基本方法是用振荡电路产生一个高频振荡,经过幅值和功率放大后接至换能器,使换能器发出超声波,确保高频振荡的频率与换能器固有频率一致,则可获得超声发射的最佳效果。谐振电路能够使用较低的电压产生较强的超声波发射,适合使用电池供电的系统,而且它能精确地控制发射信号,效率高。 在本设计中,超声发射电路采用了连续脉冲发射电路,它由脉冲发生、放大电路构成,具体电路连接如图17所示。单片机发出的方波信号经三极管放大和变压器升压,达到足够功率后推动换能器超声超声波,这里变压器的主要用途是升高脉冲电压和使振荡器的输出阻抗与负载(超声换能器)阻抗匹配,变压器与探头接成单端激励方式。 图17超声波发射电路 4.3.2 超声波接收电路

超声波焊接应力消除处理

超声波焊接应力消除处理 Ultrasonic Impact Treatment 济南斯迈高科机电设备有限公司SimaiHi-tech Machinery &Electronic Equipment Co.,Ltd Add:Jinan shizhong District wangping street 22#,China Tel:9 Fax:1 地址:济南市中区望平街22号邮编:250001 超声波焊接应力消除(超声冲击)设备概述:

超声波消除应力技术(也称为超声冲击)最早由乌克兰的Paton焊接研究所提出,并由Paton焊接技术研究所和俄罗斯“量子”研究院共同研发成功。主要用于焊接结构件的焊接残余应力的消除,并提高焊接接头疲劳强度和疲劳寿命. SMK深蓝系列超声波焊接应力消除设备装置的应用领域: 广泛应用于船舶、桥梁工程、军工、航空、航天、工程机械、电力、火车、汽车、铁路、起重设备、石油钻采、机械、压力容器等行业焊接结构件的生产制造过程中,用于大幅度提高焊接接头的疲劳强度和疲劳寿命、消除焊接残余应力、减少焊接变形等;同时该装置也普遍地应用于对机械零件焊接修复部位进行消除残余应力和强化处理;该装置还可对金属零件需要表面强化的部位进行冲击处理,以大幅度提高该部位的疲劳强度和疲劳寿命。因此,超声波焊接应力消除设备在机械制造业的制造和维护过程中具有广阔的应用前景,必将产生巨大的社会效益和经济效益。 SMK深蓝系列超声波焊接应力消除设备装置的作用: 1.可使焊接接头疲劳强度提高50%-120%,疲劳寿命延长5—100倍。 2.是目前最彻底消除残余拉应力,并产生出理想压应力的工艺方法。 3.有效改善焊趾的几何形状,降低焊缝焊趾处的应力集中,且工艺简单易 行,成本低廉。 4.消除焊趾处表层的微小裂纹和熔渣缺陷,抑制裂纹的提前萌生。 5.改变原有的应力场,明显减少焊接变形。 6.局部强化处理,提高零件表面质量和疲劳寿命。 7.于对机械零件局部焊接修复部位进行消除焊接应力和强化处理 8.提高金属在腐蚀环境下的抗腐蚀能力约400% 9.同时改善影响焊缝疲劳性能几个方面的因素:焊趾几何形状、残余应力、 微观裂纹和熔渣等缺陷、表面强化等,因而能大幅度提高焊接接头的疲劳强度和疲劳寿命。 超声波焊接应力消除设备对金属结构的突出贡献: 1.增加金属结构件在动载荷和腐蚀环境下的使用寿命 2.减少金属结构件在腐蚀疲劳下的维修费用 3.在同样的设计要求下,可使用更少的材料,从而减少了制造和运行成本 4.大幅度提高高强合金钢焊接接头的焊接性能,拓宽了高强合金钢的应用 领域; 5.增加了金属结构件在制造和使用过程中的结构稳定性 6.减少了金属结构的使用和维护成本 超声波焊接应力消除设备法相对于传统工艺方法的优势: 1.超声波焊接应力消除设备处理能同时改善影响焊缝疲劳性能的几个方面的因

乳腺超声诊断分级标准

乳腺超声诊断分级标准 在阅读乳腺超声报告时,我们常会见到这样一组英文字母,许多朋友在咨询中也常提到,即:BI-RADS。这组字母是 Breast Imaging Reporting and Data System(乳腺影像报告和数据系统)的英文缩写,是目前乳腺超声诊断普遍应用的分级评价标准。现在我们一起来了解一下BI-RADS分级标准的具体含意: 0级(category 0):指采用超声检查不能全面评价病变,需要进一步的其它影像学检查诊断。例如: 1、有乳头溢液、不对称增厚、皮肤及乳头改变等临床表现,而超声无征象; 2、临床触及肿块,年龄大于20岁,超声检查有可疑征象或无特征,需乳腺钼靶检查; 3、超声检查及钼靶检查均无特征,需鉴别乳腺癌保乳术后形成的疤痕与复发病灶时,推荐磁共振检查; 4、确定治疗前,需最后评估者确定治疗前需最后评估者: 1级(category 1):阴性(negative) 指超声检查未见异常改变,有把握判断为正常。建议随诊(一年)。例如:无肿块、无结构紊乱、无皮肤增厚、无微钙化; 2级(category 2):良性征象(benign finding/findings) 基本可以排除恶性。建议根据年龄及临床表现随诊(半年至一年)。例如:单纯性囊肿 乳腺内淋巴结(也可能属1级) 乳腺假体植入 多次复查超声,图像变化不大,年龄小于40岁的纤维腺瘤或首次超声检查年龄小于25岁的纤维腺瘤;手术后结构欠规则,但多次复查超声,图像无变化。 脂肪小叶 3级(category 3):可能良性征象(probaly benign finding) 恶性危险小于2%。建议短期随访(三至六个月)及其它检查。例如: 年龄小于40岁的实性椭圆形、边界清、纵横比小于1的肿块,良性可能,恶性的危险性小于2%; 考虑纤维腺瘤可能性大:实性肿块呈椭圆形、边界清、纵横比小于1。经过连续二至三年的复查,可将原先的3级(可能良性)改为2级(良性); 多发性复杂囊肿或簇状小囊肿 瘤样增生结节(属不确定一类) 4级(category 4):可疑恶性(suspicious abnormality)

超声波提取分离的原理

超声波在天然成分提取分离的应用原理初探 摘要超声因其具有多种物理和声化学效应,其在食品工业中有广泛的应用,包括超声提取、超声灭菌、超声干燥、超声乳化、超声过滤、超声清洗等。本文主要就超声波提取分离的原理、优点作一综述,并对其以后在提取分离中的发展进行展望。 关键词超声波提取分离原理 1 超声波概述 1.1超声波的概念 超声波指的是频率在2×104—2×109Hz的声波,是高于正常人类听觉范围的弹性机械振动。超声波与电磁波相似,可以被聚焦,反射和折射,其不同之处在于前者传播时需要弹性介质,而光波和其他类型的电磁辐射则可以自由地通过真空。众所周知,超声波在介质中主要产生二种形式的机械振荡,即横向振荡(横波)和纵向振荡(纵波),而超声波在液体介质中只能以纵波的方式进行传播。由于超声波频率高,波长短,因而在传播过程中具有定向性好、能量大、穿透力强等许多特性[1]。超声波与媒质的相互作用可分为热机制、机械(力学)机制和空化机制3种。[2]超声波在媒质中传播时,其振动能量不断被媒吸收转变为热量而使媒质温度升高,此效应称之为超声的热机制;超声波的机械机制主要是辐射压强和强声压强引起的;在液体中,当声波的功率相当大,液体受到的负压力足够强时,媒质分子间的平均距离就会增大并超过极限距离,从而将液体拉断形成空穴,在空化泡或空化的空腔激烈收缩与崩溃的瞬间,泡内可以产生局部的高压,以及数千度的高温,从而形成超声空化现象。空化现象包括气泡的形成、成长和崩溃过程。可见,空化机制是超声化学的主动力,使粒子运动速度大大加快,破坏粒子的力的形成,从而使许多物理化学和化学过程急剧加速,对乳化、分散、萃取以及其它各种工艺过程有很大作用。 对于超声波的研究及其在各个行业中的应用,研究较多,可是对于其应用的机理研究的却很少,能过查阅华南农业大学图书馆,SCI数据库,我们发现,对于超声波的研究有4680篇,可是对于其机理的研究却只有206,所占比例不到5%。如下图1。且大多数只停留在试验室阶段。

超声波测声速(DOC)

超声波测声速 声波是一种在弹性介质中传播的机械波,它是纵波,其振动方向与传播方向一致.声速是描述声波在介质中传播特性的一个基本物理量,它与介质的特性及状态因素有关,因而通过介质中声速的测定,可以了解介质的特性或状态变化。例如,测量氯气、蔗糖等气体或溶液的浓度、氯丁橡胶乳液的比重以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。 频率低于20Hz的声波称为次声波;频率在20Hz~20kHz的声波可以被人听到,称为可闻声波;频率在20kHz以上的声波称为超声波.超声波的传播速度就是声波的速度.由于超声波具有波长短、易发射、能定向传播等优点,在超声波段进行声速测量是比较方便的. 本实验用压电陶瓷超声换能器来测定超声波在空气中的传播速度。 [实验目的] 1.学习相位比较法测定声速的原理及方法.加深对振动合成等理论知识的理解 2.了解压电换能器的工作原理和功能,进一步熟悉信号发生器、示波器的使用 3.练习使用逐差法处理数据 [实验仪器] 声速测定组合仪,信号发生器,示波器 声速测量仪: 由发射器、接收器、游标卡尺组成。当一交变正弦电压信号加在发射器上时,由于压电晶片的逆压电效应,产生机械振动发生超声波。可移动的接收器,将接收的声振动转化为电振动信号输至示波器。接收器的位置由游标卡尺读数确定。 图1. 声速测量仪 使用方法:

左击或右击换能器,可以改变换能器面与水平方向的夹角。按下右边换能器的拖动,可以改变两个换能器之间的的距离。点击或按下窗体中上部的微调按钮,可以缓慢改变两个换能器之间的距离。 信号发生器: 图2. 信号发生器 它是一种多功能信号发生器,可以输出正弦波、方波、三角波三种波形的交变信号,信号频率范围为10Hz—2000kHz,既可分档调节,又可连续调节。信号幅度可连续调节。 1.频率显示窗口:显示输出信号的频率或外测频信号的频率,用五位数字显示信号的频率,且频率连续可调(输出信号时)。 2.幅度显示窗口:显示函数输出信号的幅度,由三位数字显示信号的幅度。 3.输出波形,对称性调节旋钮(SYM):调节此旋钮可改变输出信号的对称性。当电位器处在关闭或者中心位置时,则输出对称信号。输出波形对称调节器可改变输出脉冲信号空度比,与此类似,输出波形为三角或正弦时可使三角波调变为锯齿波, 正弦波调变为正与负半周分别为不同角频率的正弦波形,且可移相180?。(仿真实验中使用方法:右键单击进行顺时针旋转,左键打击进行逆时针旋转。) 4.速率调节旋钮(WIDTH):调节此电位器可以改变内扫描的时间长短。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过低通开关进入测量系统。 5.扫描宽度调节旋钮(RATE):调节此电位器可调节扫频输出的扫频范围。在外测频时,逆时针旋到底(绿灯亮),为外输入测量信号经过衰减“20dB”进入测量系统。 6.外部输入插座(INPUT):当“扫描/计数键”(13)功能选择在外扫描外计数状态时,外扫描控制信号或外测频信号由此输入。 7. TTL信号输出端(TTL OUT):输出标准的TTL幅度的脉冲信号,输出阻抗为600Ω。 8.函数信号输出端:输出多种波形受控的函数信号,输出幅度20Vp–p(1MΩ负载),10Vp–p (50Ω负载)。

超声科考试试题及答案汇总精选文档

超声科考试试题及答案 汇总精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

余庆县人民医院 超声科诊断考试笔试试题及答案(2017年3月)姓名得分 一、选择题(每题分,共10分) 1.超声波是指频率超过( )以上的一种机械波。( B ) A,10000Hz B,20000Hz C,30000Hz D,40000Hz 2.超声的三个基本物理量之间的相关关系可表达为如下哪种公式:( C )A,λ=cf B,f=cλ C,λ=c/f D,f=cλ 3.现在临床使用的超声诊断主要利用超声的什么物理原理?(D ) A,散射 B,折射 C,绕射 D,反射 4.下列关于超声的分辨力叙述正确的是:( A) A,超声的分辨力主要与超声的频率有关。 B,纵向分辨力是指与超声垂直的平面上两个障碍物能被分辨的最小间距。C,超声的分辨力越高,超声在人体中的传播距离越远。 D,为提高超声的横向分辨力,不可以通过声学聚焦的方法实现。 5.下列不属于彩色多普勒技术的是:(C )

多普勒血流成像 B,能量多普勒 C,频谱多普勒 D,多普勒速度能量图6.超声换能器的作用是:(6 ) A,将动能转化为势能 B,将势能转化为动能 C,将机械能转化为电能 D,将化学能转化为电能. 7.人体组织中的反射回声强度可以分为哪几个等级?(ABC) A,高回声 B,等回声 C,无回声 D,弱回声 8.下列哪种不属于超声伪像?(B) A混响伪像 B,密度伪像 C,镜面伪像 D,折射伪像 9.下列不属于超声成像设备主要组成的是:(C) A主机 B,超声换能器 C,视频图象记录仪 D,视频图象显示仪 10.下列不是彩色多普勒成像的显示方式的是:(C) A,速度型 B,能量型 C,加速度型 D,运动型 11、正常人体软组织的内部回声强度排列顺序,下述哪项正常: (A) A、肾窦>胰腺>肝脏>肾实质; B、肾窦>肝脏>胰腺>肾实质; C、胰腺>肾窦>肝脏>肾实质; D、胰腺>肾窦>肾实质>肝脏。 12、风湿性心脏病单纯二尖瓣狭窄,不出现下列哪种情况:(C) A、左房增大 B、二尖瓣舒张期高速血流

超声波检测工艺规程

1.适用范围: 适用于母材厚度为8mm到100mm的全熔透铁素体钢焊缝,也可用于厚度大于100mm的其它类型焊缝,材料。但是应用时必须考虑部件的几何声学性能,同时设定足够的灵敏度使标准的验收等级可以使用。 2.检测人员: 2.1从事焊缝检测检测的人员,应根据EN 473或相关工业区中等同的标准规定,获得相应的资格水平。 2.2从事焊缝检测人员必须掌握超声波探伤的基础知识,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识。熟知与要检测的焊缝接头相关连的测试问题。如工件的材质、坡口形式、焊接工艺、缺陷可能出现的位置等。 3.检测设备 3.1检测中使用任何设备,必须与欧洲相关标准的要求一致,设备的有关EN标准出版之前,可采用相类似的国家标准。 3.2探头的频率应在2MHZ~5MHZ之间,但选择的频率应符合规定的验收等级。 3.3当要求采用超声波束从对面反射技术和横波进行检测,必须确保超声波束与对立面之间呈斜角,斜角不能小于35°最好不大于70°,在不只使用一个探头角度处,至少使用一个角度探头,才能满足要求,使用一个探头角度,应保证焊接熔融面能检测到,或者尽可能的接近正常斜度,当规定使用2个或多个探头角度时,工称超声波束角度之间应大于或等于10°。 4.设备鉴定 4.1在进行检测之前,应设定范围和灵敏度,在检测过程中,至少每4小时要对这些设定值进行一次确认,无论什么时候,只要系统参数值发生了变化,或者相关设定值发生了变化,也需要进行检测。 4.2在检测过程之中发现灵敏度和范围的偏差不在允许范围之内,都应进行重新

5.仪器的校准与检测灵敏度 5.1试块采用主要是国际焊接学会的IIW-I、IIW-II试块以及¢3mm长横孔试块,和¢1mm、¢1.5mm、¢2mm、¢3mm、¢6mm平底孔试块。 5.2 应使用下列方法之一来设定参考等级 5.2.1 直径3mm的横孔 5.2.2 使用基于圆盘形反射体(DSR)的使用量距系统(DGS)的横向波和纵向波 5.2.3 参照基准一个1mm深的矩形槽 5.2.4 窜列DDSR=6mm(适用于所有厚度) 4种方法参考线、评定线、和记录线见下表 6.准备与检测 6.1检测面应无焊接飞溅,锈蚀、油垢或其它影响探头平滑移动和耦合的异物,如有深坑应补焊,必要时应使用砂轮机打磨或其他方法修正,检测表面的不平整度应确保焊缝表面与探头表面间隙不超过0.5mm,如果表面粗糙度不大于6.3μm机加工表面,或者不大于喷丸处理12.5μm,则认为检测面是满足要求的。 6.2探头的扫描宽度为:1.25P(P=2KT) 6.3除有特殊规定外所有的焊缝均在焊后24小时且外观检验合格后进行。 7.检测与评定 7.1 对扫描区域经过的母材都应该用直探头检测,发现缺陷对检测有影响时,应评估角度超声波检测,并相应调整技术,当超声波检测严重影响到有效的区域时,可考虑使用其他的检测方法。 7.1 A级适用于母材厚度范围t≥8mm~40mm,对纵向缺陷,采用1种角度的探头

低强度超声波在生物技术中应用的研究进展

文章编号:1000-582X(2002)10-0139-04 低强度超声波在生物技术中应用的研究进展Ξ 时兰春,王伯初,杨艳红,戴传云 (重庆大学生物工程学院教育部生物力学与组织工程重点实验室,重庆400044) 摘 要:低强度超声波在生物技术中的应用,是一个比较新的热点研究领域。超声波作用的物理机制主要包括机械传质作用、加热作用和空化作用。研究发现低强度超声波可以促进底物分子之间的相互作用,强化反应物进入及生成物离开酶活性中心的过程,提高酶的活性;改变细胞膜的透性,加强物质运输,促进有益物质的生成;提高整个细胞的新陈代谢效率,加速细胞生长;增加细胞膜的透性,有助于细胞对药物的吸收。因而可以将之应用于酶工程、发酵工程、细胞工程以及肿瘤的生物治疗中。文中就有关这方面的研究,在综述了国内外研究进展的基础上,提出了此领域今后的发展趋向。 关键词:低强度超声波;生物技术;应用 中图分类号:Q681文献标识码:A 超声波是高于人耳听觉上限阈值的声波,也是物质介质中的一种弹性机械波,在金属探伤、水下定位、化学与化工、医学诊断与治疗领域中已被广泛应用。20世纪80年代以来,强超声波在生物技术领域中的应用日益受到重视,较高强度的超声波已在破碎细胞,使酶失活和基因转移方面得到了较好应用。同时,随着研究的深入和拓宽,许多研究者对低强度超声波在生物工程技术中的应用研究也日益感兴趣,他们在研究中发现低强度超声波还具有可促进酶的生物活性、刺激细胞生长、增加细胞透性等特点[1-16]。笔者就有关这方面的研究,综述了国内外的研究概况,同时,提出了今后的发展趋向。 1 低强度超声波作用的物理机制 超声波在物质介质中传播时形成介质粒子的机械振动,这种含有能量的超声振动在亚微观范围内引起的作用有:机械传质作用、加热作用和空化作用[2]。这些作用的强弱与超声波的频率和强度有关。 加热作用:超声波在介质内传播的过程中,其能量不断地被传播介质吸收而使介质温度升高,在生物反应过程中,超声波引起介质升温不是其作用的主要方式,但亦是重要的影响因素之一。 空化作用:空化作用是液体中气泡在声强作用下发生的一系列动力学过程。在压力波的作用下,液体中分子的平均距离随着分子的振动而变化,当对液体施加足够的负压时,分子间距离超过保持液体作用的临界分子间距,就会形成空穴,即空化泡。空化分为瞬态空化(指声强度大于10WΠcm2时产生的生存周期较短的空化泡)和稳态空化(指在声强度较低时产生的空化泡,其大小在其平衡尺寸附近振荡,生成周期达数个循环)。液体内可同时产生上述两种空化作用,且在一定条件下稳态空化可转化为瞬态空化。瞬态空化泡绝热收缩至崩溃瞬间,泡内可产生高温和空压,导致自由基形成及产生强大冲击波和射流,从而破坏细胞结构或使酶失活,这可用于破碎细胞,而在生物反应过程中是不希望的。稳态空化作用形成的空化泡可使其周围的酶或细胞颗粒受微声流作用下的切应力的作用。这种类型的空化作用对超声波在生物技术中的应用具有重要意义。 机械传质作用:超声波,甚至是低强度的超声波作用,都可使介质点进入振动状态,从而增强液态介质的质点运动,加速质量传递作用。在生物技术中,这个过程主要发生在界面层、膜或细胞壁附近以及在细胞液内。超声波可增强生物膜以及细胞壁的质量传递,在声强作用下振动的气泡,在其界面层周围相对于微声流会产生液体的圆周运动。这对于反应底物进入酶生物催化剂的活性部位及其产物进入介质中的传质作用有利,从而可提供高生物反应的速度,这就是超声波对传质的促进作用。 低强度超声波在介质中传播时,产生的是有规律而缓和的稳态空化作用,空化泡以非线性的形式在媒质中振荡若干个声周期,振荡过程中空化泡周围的微  2002年10月重庆大学学报Oct.2002 第25卷第10期Journal of Chongqing University V ol.25 N o.10 Ξ收稿日期:2002-06-13 作者简介:时兰春(1971-),女,河南郸城人,重庆大学硕士研究生,从事生物医学研究。

心脏超声检查和心脏彩超检查指标

心脏超声检查和心脏彩超检查有没有一样: 心脏彩超主要观察心脏舒缩功能,心房心室有没有肥大,心脏瓣膜正常不. 心脏超声诊断仪现在是常规包括4个部分M型超声心动图,二维超声心动图(2维超声通常叫做B型超声),频谱多普勒超声心动图(具体还分连续多普勒CW和脉冲多普勒PW),彩色多普勒血流成像(CDFI) 检查项目 常规超声心动图 (二维、 M 型、频谱多普勒、彩色多普勒血流图) 经食道超声心动图 右心声学造影 胎儿超声心动图 负荷超声心动图 心外科术中超声及心脏介入治疗中超声基本概念及临床价值超声心动图被誉为“无创性心脏活动体解剖”和“无创性心导管检查”,是各种心脏病变不可缺少的影像学诊断方法,可了解心脏及大血管的形态、大小、结构、功能和血流动力学状态。 注意事项 1 、常规超声心动图 检查时患者暴露前胸、背对医生、左侧卧位,背部靠近仪器。不能配合的儿童需使用镇静药物; 2、经食道超声心动图 检查前家属签字,同意检查,

患者禁食、禁水 6 小时。检 查后 2 ~ 3 小时待局麻药物 作用消失后,可进温凉半流饮食。 M 型超声心动图观察室壁运动 心脏超声检查的临床价值 1 、具有特异性诊断价值的病变 心脏瓣膜病、先心病、心包病变、感染性心内膜炎、主动脉夹层、心内占位病变、心肌梗死并发症、心脏功能状态等。 2 、可提供重要诊断依据的病变 各种类型心肌病、高血压心脏病、冠心病、肺心病、肺动脉压力状况、心脏大小等。 心肌梗死后心尖部室壁瘤形成 经食道超声心动图显示房间隔缺损左室心尖部室 壁瘤伴血栓风湿性心脏病 二尖瓣狭窄风湿性心脏病 二尖瓣返流 心脏彩超正常值 项目名称:内径(mm) 部位名称厚度( mm)左房 LA 〈35 室间隔IVS <12 左室 LV 〈55 左室后壁LVPW <12 升主动脉 AO 〈35 右室壁 <3-4 主肺动脉 PA 〈30 左室壁 <9-12 右房 RA 〈40×35 右室 <25

超声诊断学重点总结 超声诊断学笔记(期末考研复试)

超声诊断学笔记 ——2012级临床五年五班整理 ?绪论 超声波:其本质为高频变化的压力波。其频率超过成人听觉阈值的上限,以波动的形式 在物质内传播而不能在真空内传播。 超声波的一般性质 1、波形:①.纵波:介质中质点方向与波传播方向平行者称为纵波。②横波:介质中质点方向与波传播方向垂直着称为横波。③表面波 2、频率:每秒振动的次数称为频率。超声波的频率在20kHz以上,诊断用超声波频率多在1~20MHz间。 3、周期:为一次完整的压力波变化(或振动)所需时间。 4、声传播速度:超声波在不同介质中的传播速度不同,同一介质温度高低不同亦具差别。(血浆1571m/s,软组织1500m/s。) 5、波长:为超声波在介质中传播时,一次完整周期所占空间长度。 波长,频率与声速间的关系:λ=c/f 超声波的发生 诊断用超声波一般应用压电元件所产生的压电效应,即电能与机械能的相互转换而产生。 压电效应:指力的作用下,压电元件的一对面上产生电场,其符号相反。 超声场 凡加力后产生电场的变化,称为正压电效应,而加电场后产生厚度的变化称为逆压电效应。 探头向前方辐射超声能量所到达的空间,称超声场。 近场:在声束的平行区至扩散区交点L以内的范围称为近场。 远场:从声束的扩散点开始,即为远场。 超声波的传播:从探头发出超声波以波动形式向人体内部行进并带入声能。 ?声特性阻抗:声特性阻抗又称声阻抗率,指某点的声压和质点速度的复数比, 等于介质中声速和其密度的乘积Z=ρ×c. ?界面:两种声阻抗不同的物体的相接触处称界面。 1散射:小界面对入射声束呈散射现象 2反射:大界面对入射声束呈反射现象 3折射:在界面两侧介质中声速不等且入射角>0时,则透射声束偏离入射声束的方向传播。 4会聚及发散:平行声束通过圆球形病灶,如病灶内声速与其周围不等,则在病灶后方产生声束的会聚或发散。 超声波的衰减 衰减:超声波携带的能量,在其传播过程中必然受到损失,使声强逐渐降低,称为衰减。人体组织的衰减与其组织中所含成分有关,通常含液者衰减甚低,实质性组织中随其含蛋白质的百分数增高而增高。含气脏器属人体内最高衰减 人体组织中的衰减与散射有关,某些病变(如脂肪肝)时散射较大,致使传人深部的声强显著下降。(骨>软骨>肌腱>肝肾>血>尿液与胆汁) 超声生物效应:超声波携带能量,进入人体组织后可产生三大效应,即热效应,空化效应,增流效应。 超声生物效应的安全性:热指数,机械指数

超声波辅助法

超声波法-有机溶剂法提取薰衣草中的多酚 一实验原理 溶剂提取法是根据天然产物中各种化学成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要的溶出成分溶解度小的溶剂,将有效成分从药材组织内溶解出来的方法。本实验选取有机溶剂做提取液。 超声波法利用外力强化提取,超声波使提取液不断振荡,有助于溶质扩散,可以明显加速植物中有效成分的提取。 二实验材料及仪器(简略) (1)材料:优质薰衣草 (2)试剂:无水乙醇、蒸馏水、福林试剂、碳酸钠 (3)仪器:烘箱、可见分光光度仪、粉碎机、60目筛、电子天平、超声波萃取仪、pH计、移液管、容量瓶、玻璃棒、、烧杯 三实验步骤 1 样品的预处理 薰衣草用粉碎机粉碎并过60目筛,以提高提取效率,处理后的薰衣草粉末装袋密封冷藏保存,备用。 2 多酚提取率的测定 2.1没食子酸标准品溶液的制备 精确称没食子酸0.0250g,蒸馏水溶解,定容至1000ml容量瓶中,室温放置,储存。 2.2没食子酸标准曲线的建立 分别精确吸取没食子酸标准液0.5ml、1.0ml、2.0ml、3.0ml、4.0ml、5.0ml、6.0ml、7.0ml、8.0ml转入25ml比色管中,加入1ml福林试剂,再加入4ml15%NaHCO3,蒸馏水定容至刻线,摇匀,避光保存60min。测定没食子酸标准品在760nm波长处的吸光度值,以多酚浓度为横坐标,吸光度为纵坐标绘制标准曲线,得回归方程。 2.3供试品的制备 超声波法-有机溶剂法提取薰衣草中的多酚,过滤,得提取液,悬蒸至无乙醇味,定容至100ml容量瓶。 2.4(1)根据标准曲线可得供试品的质量浓度 (2)绿原酸的提取率:X=(C×25×200)/m

超声波传感器原理及应用

[日期:2007-06-05] 来源:作者:[字体:大中小] 超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-18 02:40 超声波传感器原理及应用 信息来源:转载https://www.doczj.com/doc/7d15624782.html,发布时间:2008-01-02字号:小中大 关键字:超声波传感器 1、遥控开关超声波遥控开关可控制家用电器及照明灯。采用 2、液位指示及控制器由于超声波在空气中有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。A点与上图A点相连接。当液位低于设置值时,比较器输出为低电平。BG 不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控制)。 超声波传感器 信息来源:https://www.doczj.com/doc/7d15624782.html,/ca.htm发布时间:2007-11-27字号:小中大 关键字:超声波传感器传感器压电陶瓷超声传感器超声波距离传感器 超声波传感器的测距系统设计图

信息来源:中国超声波发布时间:2008-03-17字号:小中大 关键字:超声波传感器 安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了senscomp公司生产的polaroid6500系列超声波距离模块和600系列传感器,微处理器采用了atmel公司的at89c51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20khz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法tof(timeofflight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由polaroid600系列传感器、polaroid6500系列超声波距离模块和at89c51单片机构成。

超声冲击处理

1.1 铝合金焊件UIT研究的意义 疲劳断裂是金属结构失效的主要形式。尤其是一些受动载严重的重要结构。因此,在焊接结构制造过程中或完成后,采取有效的工艺措施,提高它们的疲劳强度意义重大。 进入21世纪以来,随着车辆提速的要求,铝合金被广泛的用作车体材料。但是,焊接残余应力的存在会使工件处于不稳定状态,是工件开裂或变形的主要原因,也是影响构件强度和寿命的主要因素。目前,主要采用氩弧焊的方法对合金进行焊接,焊接工艺的固有特点,使得这些焊接接头和焊接热影响区多存在较大的残余拉应力和较多焊缝缺陷,在交变载荷的作用下极易萌生疲劳裂纹。由于焊接过程中热输入量较大,使焊接接头焊后存在大量残余应力,且焊缝处容易出现气孔、缩松等缺陷,影响了结构的总体强度和使用寿命。有资料表明,铝合金焊接结构中90%的断裂是由承受重复性载荷的焊接接头引起的疲劳破坏。因此,铝合金焊接接头的疲劳性能已经受到设计及使用单位的普遍关注。 研究铝合金焊接接头的疲劳断裂特性,分析产生疲劳断裂危害的因素,估算焊接接头的疲劳寿命,探索提高铝合金焊接接头疲劳性能的方法具有重要的实用价值。大量研究和实践表明焊接接头的疲劳破坏一般起裂于焊接接头的焊趾部位。如果在焊后能够采取一定的有效工艺措施,降低余高造成的应力集中及消除焊趾表面的缺陷;调节焊接残余应力场,消除其消极影响,使之朝有利于疲劳强度提高的方向转变,显然能够大幅度地改善焊接接头及结构的疲劳强度。如果能改善焊趾处疲劳裂纹的起裂性能,将有效地提高焊接结构的疲劳强度。相关方法很多,如TIG熔修法、机械打磨焊趾法、爆炸法、喷丸法、过载法、局部压延法、局部加热法、锤击法。但这些方法有的仍停留在实验室阶段。目前应用较多的是普通捶击法和TIG熔修法和喷丸法。但TIG熔修法施工工艺复杂,工艺不当反而会造成副作用。这种方法需要保护气体,因此露天

相关主题
文本预览
相关文档 最新文档