当前位置:文档之家› 高中数学等差数列性质总结大全

高中数学等差数列性质总结大全

高中数学等差数列性质总结大全
高中数学等差数列性质总结大全

等差数列的性质总结

1.等差数列的定义:d a a

n n =--1(d 为常数)(2≥n );

2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a

推广: d m n a a m n )(-+=. 从而m

n a a d m n --=

3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=

或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a

4.等差数列的前n 项和公式:

1()2n n n a a S +=1(1)2n n na d -=+211()22

d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)

特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项

()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)

5.等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a .

⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

7.提醒:

(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项1(1)n a a n d =+-

②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );

③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d )

8..等差数列的性质:

(1)当公差0d ≠时,

等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;

前n 和211(1)()222

n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

注:12132n n n a a a a a a --+=+=+=???,

(4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列

(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

(6)数列{}n a 为等差数列,每隔k(k ∈*

N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数列

(7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和

1.当项数为偶数n 2时, ()121135212

n n n n a a S a a a a na --+=+++???+=

=奇 ()22246212

n n n n a a S a a a a na ++=+++???+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11

n n n n S na a S na a ++==奇偶

2、当项数为奇数12+n 时,则

21(21)(1)1n S S S n a S n a S n S S a S na S n +?=+=+=+?+????=??-==????

n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项).

(8){}n a 、{}n b 的前n 和分别为n A 、n B ,且

()n n A f n B =, 则

2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.

(9)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+

(10)求n S 的最值

法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和

即当,,001<>d a 由???≤≥+0

01n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

?≥≤+001n n a a 可得n S 达到最小值时的n 值. 或求{}n a 中正负分界项

法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。若S p = S q 则其对称轴为2

p q n +=

注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于1a 和d 的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

等差数列常用性质

合作探究: 问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件? 由定义得A-a =b -A ,即: 2b a A += 反之,若2 b a A += ,则A-a =b -A 由此可可得:,,2b a b a A ?+=成等差数列 也就是说,A =2 b a +是a ,A ,b 成等差数列地充要条件 问题2:在直角坐标系中,画出通项公式为53-=n a n 地数列地图象,这个图象有什么特点? (2)在同一直角坐标系中,画出函数y=3x-5地图象,你发现了什么?据此说说等差数列q pn a n +=地图象与一次函数y=px+q 地图象之间有什么关系?定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 地等差中项 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 例1在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a . 分析:要求一个数列地某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中地至少一项和公差,或者知道这个数列地任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手……例2 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a 分析:要求通项,仍然是先求公差和其中至少一项地问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来精品文档收集整理汇总例3已知数列{n a }地通项公式为q pn a n +=,其中p,q 为常数,那么这个数列一定是等差数列吗? 分析:判定{n a }是不是等差数列,可以利用等差数列地定义,也就是看)1(1>--n a a n n 是不是一个与n 无关地常数. 等差数列地常用性质: 1.若数列{a n }是公差为d 地等差数列: (1)d>0时,{a n }是 ;d<0时,{a n }是 ;d=0时,{a n }是 ; (2)d= = = (m ,n ∈N +) (3)通项公式地推广:a n =a m + d (m ,n ∈N +). 精讲点评: 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

高中数学等差数列性质总结大全

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A += 或b a A +=2 . (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ` (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: : ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 ? (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

(word完整版)高中数学等差数列练习题

一、 过关练习: 1、在等差数列{}n a 中,2,365-==a a ,则1054a a a Λ++= 2、已知数列{}n a 中,() *+∈+==N n a a a n n 3 111,111,则50a = 3、在等差数列{}n a 中,,0,019181=+>a a a 则{}n a 的前n 项和n S 中最大的是 4、设数列{}n a 的通项为()*∈-=N n n a n 72,则1521a a a +++Λ= 二、 典例赏析: 例1、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 例2、在等差数列 {}n a 中, (1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。 例3、已知数列{}n a 满足()22,21 2 1≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1 (1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 三、强化训练: 1、等差数列{}n a 中,40,19552==+S a a ,则1a = 2、等差数列{}n a 的前m 项和为30,前2m 项和为100,则前3m 项和为 3、等差数列{}n a 中,,4,84111073=-=-+a a a a a 记n n a a a S +++=Λ21,则13S 等于 4、已知等差数列{}n a 的前n 项和为n S ,且10,10010010==S S ,则110S = 。 5、在ABC ?中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan C A C A ++的值 作业 A 组: 1、 在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为 2、 已知方程 ()()02222=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则n m -等于 B 组: 3、 已知一元二次方程()()()02=-+-+-b a c x a c b x c b a 有两个相等的实根, 求证: c b a 1,1,1成等差数列 4、 已知数列 {}n a 的通项公式是254-=n a n ,求数列{}n a 的前n 项和

等差数列的基本性质

等差数列 一、等差数列的定义以及证明方法: 1、定义:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. 注意一些等差数列的变形形式,如: 111n n d a a +-=(d 为常数,此时,数列{1 n a }为等差数列) d =(d 为常数,此时,数列??为等差数列) …… 2、证明方法: (1)定义法:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2 (3)通项公式法:若数列{a n }的通项公式为a n =pn+q 的一次函数,则数列{a n }为等差数列. (4)若数列{a n }的前n 项和为S n =An 2+Bn ,则数列{a n }为等差数列. 【例题1】【2013年,北京高考(文)】给定数列a 1,a 2,a 3,……,a n ,……,对i =1,2,……,n-1,该数列的前i 项的最大值记为A i ,后n –i 项a i+1,a i +2,……,a n 的最小值记为B i ,d i =A i –B i . (I)设数列{a n }为3,4,7,1,求d 1,d 2,d 3的值. (II)设d 1,d 2,……,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,a 3,……,a n -1是等差数列.

3、等差数列的通项公式: (1)等差数列的通项公式:a n =a 1+(n-1)d 累加法和逐项法:对于形如() 1n n a a f n --=的形式,我们一般情况下,可以考虑使用逐项法或者累加法,从而达到求a n 的目的. 变形形式: a n =a m +(n-m )d 由以上公式可以得到:n m a a d n m -= - (2)等差数列通项公式的一些性质: ①若实数m,n,p,q 满足:m+n=p+q ,则:n m p q a a a a +=+;特别的,若m+n=2p ,则: 2n m p a a a +=; ②若数列{a n }为等差数列,则下标成等差数列的新数列仍然成等差数列; ③若数列{a n }为等差数列,数列{b n }为等差数列,则数列{pa n +qb n }还是等差数列; ④当d >0时,{a n }为递增数列;当d =0时,数列{a n }为常数列;当d <0时,数列{a n }为递减数列; 【例题1】【2015届黑龙江省双鸭山一中高三上学期期末考试,3】在等差数列{}n a 中,首项 01=a ,公差,0≠d 若7321a a a a a k ++++=Λ,则k =( ) A . 22 B . 23 C . 24 D. 25 【变式训练】【2015届吉林省东北师大附中高三上学期第三次摸底考试,3】设等差数列{}n a 的前n 项和为n S ,若151,15a S ==,则6a 等于 ( ) A .8 B .7 C .6 D .5 4、等差数列的求和问题:——方法:倒序相加 ()()()111111222 n n n n n n S a a a a n d na d -= +=++-=+???? (1)在等差数列{a n }中,k S ,2k k S S -,32k k S S -成等差数列;或者:()233k k k S S S -=; (2)奇偶项问题: 在等差数列中,若项数为偶数项,即:当n=2m (n,m ∈N*)时,有:S 偶-S 奇=md , 1 = m m S a S a +奇偶;

等差数列知识点总结最新版

等差数列 1. 定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 用递推公式表示为d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: (1)* 11(1)()n a a n d dn a d n N =+-=+-∈(首项:1a ,公差:d ,末项:n a ) (2)d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式:1() 2 n n n a a s += 1(1) 2 n n na d -=+ 211 ()22 d n a d n = +- 2An Bn =+ (其中A 、B 是常数) (当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的证明方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ( 2 ) 等差中项:数列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 注:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,

等差数列的性质

(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式为S n =na 1+n (n ﹣1)d 或者S n = 性质:①若项数为() *2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1 n n S a S a +=奇偶. ②若项数为() *21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, 1 S n S n = -奇偶(其中n S na =奇,()1n S n a =-偶). 【例题精讲】 例1、若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列 例2、等差数列{a n }前n 项和为S n ,且﹣ =3,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 例3、设S n 是等差数列{a n }的前n 项和,若,则 =( ) A .1 B .2 C .3 D .4 例4、在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B.-4 C .5 D.-5

高中数学等差数列教案3篇

高中数学等差数列教案3篇 教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是为大家收集等差数列教案,希望你们能喜欢。 等差数列教案一 【教学目标】 1. 知识与技能 (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列: (2)账务等差数列的通项公式及其推导过程: (3)会应用等差数列通项公式解决简单问题。 2.过程与方法 在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊

到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。 3.情感、态度与价值观 通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。 【教学重点】 ①等差数列的概念;②等差数列的通项公式 【教学难点】 ①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程. 【学情分析】 我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重

引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展. 【设计思路】 1.教法 ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性. ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性. ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点. 2.学法 引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法. 【教学过程】 一:创设情境,引入新课

高二数学 等差数列的定义及性质

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同 一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数 列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其中任意三 个就可以列方程组求出另外两个(俗称“知三求二’).

等差等比数列的性质总结

等差等比数列的性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间 项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

数列系列等差数列的性质

数列系列 等差数列的性质 一、思维导图 ????????????????????????????++++++++++--? ????=+=+=+=++=++=+????????? ??+=?? ? ??????=-=-+=+= -++成等差数列 成等差数列 成等差数列则是等差数列若片段和性质当心则时若则若下标和性质即的等差中项和是中等差数列或则成等差数列若等差中项等差数列的性质6425319638527412321212 2,,,,,}{:2,2,:2:}{2222 ,,a a a a a a a a a a a a a a a S S S S S ,a a a a a a a a p n m a a a a q p n m a a a ,a a ,a a a b A b a A b a A b a A , b A a n n n n n n n n p n m q p n m n m n m n m n m n

二、例题精析 1、(2018商洛模拟)等差数列}{n a 中,,12031581=++a a a 则1092a a -的值为__________ [解析]:已知,24,1202338881581=∴=+=++a a a a a a 242,281091089==-∴+=a a a a a a 2、(2018温州模拟)已知等差数列}{n a 的公差不为零,且242a a =,则3 21642a a a a a a ++++的值是__________ [解析]:2323332 224321642=?==++++a a a a a a a a a a ,下标和性质 3、(2017中原区校级月考)已知}{n a 为等差数列,,7,22683==+a a a 则=5a __________ [解析]:已知1572222,22655683=-=-=∴=+=+a a a a a a ,下标和性质 4、(2018南关区校级期末)在等差数列}{n a 中,102,a a 是方程0722=--x x 的两根,则=6a __________ [解析]:已知4 1)(21,21211026102=+=∴=-- =+a a a a a ,下标和性质 5、(2018塑州期末)在等差数列}{n a 中,若,39741=++a a a ,33852=++a a a 则=++963a a a _____ [解析]:设27,39332,963=∴+=?∴=++x x x a a a ,片段和性质 6、(2017商丘期末)等差数列}{n a 中,0>n a 且,301021=+++a a a 则=+65a a __________ [解析]:已知,6,30)(5101651011021=+=+∴=+=+++a a a a a a a a a 下标和性质 7、(2018太原期末)在等差数列}{n a 中,若,9531=++a a a ,21654=++a a a 则=7a __________ [解析]:已知,3,9333531=∴==++a a a a a ,7,21355654=∴==++a a a a a 92357=-=a a a

(完整版)高中数学等差数列教案

等差数列 教学目的: 1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程: 引入:① 5,15,25,35,… 和 ② 3000,2995,2990,2985,… 请同学们仔细观察一下,看看以上两个数列有什么共同特征?? 共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等-----应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) ⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N + ,则此数列是等差数列,d 为公差 2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可 得:d a a =-12即:d a a +=12 d a a =-23即:d a d a a 2123+=+= d a a =-34即:d a d a a 3134+=+= …… 由此归纳等差数列的通项公式可得:d n a a n )1(1-+= ∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项a 如数列①1,2,3,4,5,6; n n a n =?-+=1)1(1(1≤n ≤6) 数列②10,8,6,4,2,…; n n a n 212)2()1(10-=-?-+=(n ≥1) 数列③ ;,1,54 ;53,52;51Λ 5 51)1(51n n a n =?-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--= 则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即的第二通项公式 =n a d m n a m )(-+ ∴ d=n m a a n m -- 如:d a d a d a d a a 43212345+=+=+=+= 三、例题讲解 例1 ⑴求等差数列8,5,2…的第20项 ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

等差数列的性质总结

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +?=+≥∈212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘 以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

高中数学必修等差数列知识点总结和题型归纳

二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( ) A .49 B .50 C . 51 D .52 3.等差数列 1,- 1,- 3,?,- 89的项数是( ) 等差数列 一.等差数列知识点: 知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d 2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2 对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 : ⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示: S n 是其前 n 项的和, k N ,那么 S k , S 2k S k , S 3k S 2k 成 S 3k a 1 a 2 a 3 S k a k a k 1 S 2k a 2k S k a 2k 1 S 3k S 2k a 3k ①若项数为 2n n * , 则 S 2n n a n a n 1 , 且 S 偶 S 奇 S 奇 nd , 奇 an . ②若项数为 2n 1 n S 偶 a n 1 S 奇 n (其中 S 奇 na n , S 偶 n 1 a n ). S 偶 n 1 奇 等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n , 等于( )

2.2等差数列的概念、通项公式、性质练习含答案

2.2 等差数列概念、通项公式、性质 第1课时 等差数列的概念及通项公式 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,…. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 题型二 等差中项 例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中, (1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10. 跟踪训练3 (1)求等差数列8,5,2,…的第20项; (2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 等差数列的判定与证明 典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1. (1)证明:数列???? ??a n 3n 是等差数列;

(2)求数列{a n }的通项公式. 典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式. 【课堂练习】 1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13 的等差数列 C .公差为-13 的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)?{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)?{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)?{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量. 【巩固提升】 一、选择题 1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )

相关主题
文本预览
相关文档 最新文档