当前位置:文档之家› 波动率于garch模型剖析

波动率于garch模型剖析

波动率于garch模型剖析
波动率于garch模型剖析

1.1.波动率

波动率是用来描述证券价格、市场指数、利率等在它们均值附近上下波动幅度的术语,是标的资产投资回报率的变化程度的度量。股票的波动率σ是用于度量股票所提供收益的不确定性。股票通常具有15%-50%之间的波动率。股票价格的波动率可以被定义为按连续复利时股票在1年内所提供收益率的标准差。当?t 很小时,2t σ?近似的等于在?t 时间内股票价格变化百分比的方差。这说明σ√?t 近似的等于在?t 时间内股票价格变化百分比的标准差。由标准差来表述股票价格变化不定性的增长速度大约为时间展望期长度的平方根(至少在近似意义下)。

1.2.由历史数据来估计波动率

为了以实证的方式估计价格的波动率,对股票价格的观察通常是在固定的时间区间内(如每天、每星期或每个月)。

定义

n+1——观测次数;

S i ——第i 个时间区间结束时变量的价格,i =0,1,…n ; τ——时间区间的长度,以年为单位。 令

1ln ,0,1,

,;i i i S u i n S -??

== ???

1.2.1

u i 的标准差s 通常估计为

s = 1.2.2

s =

1.2.3

其中u ?为i u 的均值。

由于i

u 的标准差为。因此,

变量s 是的估计值。所以σ本身可以被估计σ∧

,其中

σ∧

=

可以证明以上估计式的标准差大约为σ∧

在计算中选择一个合适的n 值并不很容易。一般来讲,数据越多,估计的精确度也会越高,但σ确实随时间变化,因此过老的历史数据对于预测将来波动率可能不太相干。一个折中的方法是采用最近90~180天内每天的收盘价数据。另外一种约定俗成成俗的方法是将n 设定为波动率所用于的天数。因此,如果波动率是用于计算量年期的期权,在计算中我们可以采用最近两年的日收益数据。关于估计波动率表较复杂的方法涉及GARCH 模型与EWMA 模型,在下文中将进行详细介绍。 1.3.隐含波动率

首先对于一个无股息股票上看涨期权与看跌期权,它们在时间0时价格的布莱克-斯科尔斯公式为

012()()rT c S N d Ke N d -=-

1.3.1 201()()rT p Ke N d S N d -=---

1.3.2

式中

21d =

2

21

d d

==-

函数N(x)为标准正态分布变量的累积概率分布函数。式中:c与p分别为欧式看涨期权与看跌期权的价格,S0为股票在时间零的价格,K为执行价格,r为以连续复利的无风险利率,σ为股票价格的波动率,T为期权的期限。

在布莱克-斯科尔斯定价公式中,不能直接观察到的参数只有股票价格的波动率。在前文中已经讨论了如何由股票的历史价格来估计波动率。在实际中,交易员通常使用所谓的隐含波动率(implied volatility)。这一波动率是指由期权的市场价格所隐含的波动率。

为了说明隐含波动率的计算思路,假设一个不付股息股票的欧式看涨期权价格为1.875,而S0=21,K=20,r=0.1和T=0.25。隐含波动率是使得式1.3.1所给期权价格c=1.875时对应的σ值。不幸的是,不能直接通过直接反解式1.3.1来将σ表示成期权价格与其他变量S0、K、r、T和c的函数,但是可以用迭代的方法求解所隐含的值σ。例如,开始时令σ=0.20,对应这一波动率,期权价格c为1.76美元,这一价格太低。由于期权价格为σ的递增函数,我们需要一个较大的σ值。再令σ=0.30,对应的期权价格c为2.10美元,此值高于市价,这意味着σ一定介于0.2和0.3之间。接下来,令σ=0.25,此值对应的期权价格仍太高,所以σ应在0.20-0.25间。这样继续下去每次迭代都使σ所在的区间减半,因此我们可以计算出满足任意精确度的σ近似值。本例中,隐含波动率σ=0.235,即每年243.5%。

隐含波动率可以用来测量市场上对于某一股票波动率的观点。而历史波动率是回望型(backward looking),而隐含波动率则为前瞻型(forward looking)。通常,交易员对于期权所报出的是隐含波动率,而不是期权的价格。这样做会带来许多方便,因为波动率的变化比期权价格变化更加稳定。

1.4.估计波动率

定义

n

σ为第n-1天所估计的市场变量在第n天的波动率,第n天波动率的平方2

n

σ为方

差率(variance rate),在前面已经对如何从历史数据来估计

n

σ的标准方法进行了描述。假

定市场变量在i天末的价格为

i

S,变量

i

u定义为在第i天连续复利收益率(第1

i-天末至第i 天末的收益):

1

ln i

i

i

S

u

S

-

=

利用

i

u在最近m天的观察数据所计算出的每天方差率2

n

σ的无偏估计为

22

1

1

1

()

1

m

n i

i

u u

m

σ

-

=

=-

-

∑ 1.4.1 其中u为i u的平均值

1

1m

n i

i

u u

m-

=

=∑

为了监视每天方差率的变化,式1.4.1中的公式通常会有一些变动:

i

u被定义为市场变量在第1

i-天末与第i天末的价格百分比变化

1

1

i i

i

i

S S

u

S

-

-

-

= 1.4.2

●u为假设为零

●1

m-为m代替

以上三个变化对计算结果影响不大,但这些变化会使得方差公式简化成

22

1

1m

n n i

i

u

m

σ

-

=

=∑ 1.4.3

式中

i

u由式1.4.2给出。

2.模型

2.1.Arch 模型

有一种这样的模型为:

∑==

m

1

i 2i

-n i

2n

u

ασ

(2-1)

其中i α为第i 天以前观察值所对应的权重,α取正值。当选择这些变量的时候,如果j i >

则j i αα<,也就是我们将较少的权重给予较旧的数据。权重之和必须为一,即

对于式(2-1)可以做一推广。假定存在某一长期平均方差,并且应当给予该方差一定权重,

这将导致以下形式的模型

∑=-+

=m

i

i

n i L n u V 1

22

αγσ (2-2)

其中L V 为长期方差率,γ为L V 所对应的权重,因为权重之和仍为1,我们有

11

=+

∑=m

i

i αγ

此模型就是最先由Engle 提出来的ARCH 模型。在这一模型中,方差的估计值是基于长期平 均方差以及m 个观察值,观察数据越陈旧所对应的权重就越小。令L V γω=,我们可以将 式(2-2)写成

∑=-+=m

i

i

n i n u 1

22

αωσ (2-3)

2.2.指数加权移动平均(EWMA )模型

指数加权移动平均模型是式(2-1)的一个特殊形式,其中权重i α随着时间以指数速读 递减,具体地讲,i λαα=+1i ,其中λ是介于0与1之间的某一常数。 在以上特殊假设下,更新波动率公式被简化为

2

1212)1(---+=n n n u λλσσ (2-4)

一个变量第n 天的波动率估计值(在第n-1天估算)n σ由第n-1天波动率估计值1-n σ(在 第n-2天估算)和变量在最近一天变化百分比1-n u 决定。

为了说明式(2-4)的权重以指数速读下降,我们将式(2-4)所算出的2

1-n σ代入公式 中

1

1

=∑=m

i

i α

2122222)1(])1([----+-+=n n n n u u λλλσλσ

2

2222212))(1(---++-=n n n n u u σλλλσ

代入2

2-n σ项,进一步得出

2

3323222212))(1(----+++-=n n n n n u u u σλλλλσ

重复计算,得出

∑=---+-=m

i m n m i n i n u 1

2

212

)1(σλλλσ 当m 很大时,2

m n m -σλ项数很小可以忽略,所以当1)1(--=i i λλα时,式(2-4)与(2-

1) 等价,对应于i u 的权重以λ速度随时间向前推移而递减,每一项的权重是前一项权重 与λ的乘积。

EWMA 方法的诱人之处是其仅需要相对较少的数据。对于任一时刻,我们只需要记忆对当前波动率的估计以及市场变量的最新观察值。当我们得到市场变量最新观察值后,就可以计算当天价格变化的百分比,然后利用式(2-4)就可以更新方差估计。旧的方差估计与旧的市场变量可以被舍弃。 2.3.GARCH(1,1)模型

我们现在讨论Bollerslev 于1986年提出的GARCH(1,1)模型,GARCH(1,1)模型与EWMA 模型的不同就好比式(2-1)与(2-2)的不同。在GARCH(1,1)中,2

n σ是由长期平均方差L V 以及1-n u 和1-n σ计算得出,GARCH(1,1)的表达式为

2

1212--++=n n L n u V βσαγσ

式中γ为对应于L V 的权重,α为对应于21-n u 的权重,β为对应于2

1-n σ的权重。因为权重之和仍为1,我们有

1=++βαγ

EWMA 模型是GARCH(1,1)模型对应于0=γ,λα-

1=及λβ=的特例。

GARCH(1,1)模型的(1,1)表示2

n σ是由最近的2u 的观察值以及最新的方差率估计而得出。

在更广义的GARCH(p ,q)模型中,2

n σ是最近的p 个2u 观察值及q 个最新方差率估计而得出

的,GARCH(1,1)是最流行的GARCH 模型。

令L V γω=,我们可以将GARCH(1,1)模型写成

21212--++=n n n u βσαωσ

在估计模型的参数时,通常会采用这种形式,一旦ω、α和β被估算,我们可以由

βαγ--1=来计算γ,长期方差γω/=L V 。为了保证GARCH(1,1)模型的稳定,我

们需要1<+

βα,否则对应于长期方差的权重会是负值。

2.4.GARCH(p ,q)模型

由GARCH(1,1)模型我们可以推广到一般的GARCH(p ,q)模型,即

∑∑=-=-

++

=q

j

j

n j p

i i n i n u 1

21

22

σβαωσ

GARCH(p ,q)模型被广泛应用于金融资产收益和风险的预测,相比于ARCH 模型,GARCH 模

型更能反映实际数据中的长期记忆性质。由于GARCH(p ,q)模型是ARCH 模型的扩展,因此GARCH(p ,q)同样具有ARCH(q)模型的特点。GARCH 模型适合在计算量不大时,方便地描述了高阶的ARCH 过程,因而具有更大的适用性。

3.实证部分

3.1.沪股通指数收益率与上证综合指数收益率的统计性分析

相关主题
文本预览
相关文档 最新文档