当前位置:文档之家› 化工热力学答案(3章)教学内容

化工热力学答案(3章)教学内容

化工热力学答案(3章)教学内容
化工热力学答案(3章)教学内容

化工热力学答案(3章)

3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:

1P

V V T β???=

????,1T

V k V P ???=- ?

???。试导出服从 状态方程的β和k 的表达式。 解: 方程2RT a

P V b V

=

-- 由()的性质1y x

z z x y x y z ?????????

??=- ?

? ??????????得 1T P V

P V T V T P ???????????=- ?

? ?????????? 又 ()2

32T

P a RT

V V V b ???=

-

?

???- V

P R T V b

???=

?

?-??

所以 ()23

21P a RT

V V b V

T R V b ???-??-

??=-??

????-????

()()

323

2P RV V b V T RTV a V b -???= ????--

故 ()()

22

3

12P

RV V b V V T RTV a V b β-???==

?

???--

()()

2

223

12T V V b V k V P RTV a V b -???=-= ????-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45,温度为93℃,反抗一恒定的外压力3.45 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ?、H ?、S ?、A ?、G ?、

TdS ?、pdV ?、Q 和W 。

解:理想气体等温过程,U ?=0、H ?=0 ∴ 21

1

1

2ln 2V V V V

RT

pdV pdV dV RT V

===???2109.2 ∴ 2109.2 又 P P

dT

V dS C dP T T ???=- ???? 理想气体等温膨胀过程0、

P V R T P

???= ?

???

∴ R dS dP P

=-

∴ 2

2

2

1

1

1

ln ln ln2S P P P S

P S dS R d P R P

R ?==-=-=??=5.763(·K)

A U T S ?=?-?366×5.7632109.26 (·K)

G H T S A ?=?-?=?2109.26 (·K)

TdS T S A =?=??2109.26 (·K)

21

1

1

2ln 2V V V V RT

pdV pdV dV RT V

===???

=2109.2 3-3. 试求算1氮气在压力为10.13、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。假设氮气服从理想气体定律。已知:

(1)在0.1013 时氮的p C 与温度的关系为

()27.220.004187J /mol K p C T =+?;

(2)假定在0℃及0.1013 时氮的焓为零;

(3)在298K 及0.1013 时氮的熵为191.76(·K)。

3-4. 设氯在27℃、0.1 下的焓、熵值为零,试求227℃、10 下氯的焓、熵值。已知氯在理想气体状态下的定压摩尔热容为

()362

31.69610.14410 4.03810J /mol K ig p C T T --=+?-??

解:分析热力学过程

300K 0.1 MPa H=0S=0

, 真实气体, H S

??????→、 500K 10 MPa ,

真实气体

1R

H 2

R

1R

S 2R

300K 0.1 MPa , 理想气体

11

H S ??????→、 500K 10 MPa

, 理想气体

查附录二得氯的临界参数为:417K 、7.701、ω=0.073

∴(1)300K 、0.1的真实气体转换为理想气体的剩余焓和剩余熵 T 1/ 300/417=0.719 P 1/ 0.1/7.701=0.013—利用普维法计算

1.60.4220.0830.6324r

B T =-=- 0

2.60.675 1.592

r r dB dT ==

1

4.20.1720.1390.5485r

B T =-=- 1

5.20.722 4.014

r r dB dT ==

0101R r r r c r r H dB dB P B T B T RT dT dT ω??

??=-+-?? ????

?

01R r r

r S dB dB P R dT dT ω??=-+ ???

代入数据计算得1

R

H 91.41、1

R S 0.2037 ( ·K )

(2)理想气体由300K 、0.1到500K 、10过程的焓变和熵变

2

150********

31.69610.14410 4.03810T ig

p

T H C dT T T dT

--?==+?-???

=7.02

2

1

50036213001

10

ln

31.69610.14410 4.03810ln 0.1ig T p T C P S dT R T TdT R T

P --?=-=+?-?-?

?

20.39 ( ·K )

(3) 500K 、10的理想气体转换为真实气体的剩余焓和剩余熵

T 2/ 500/417=1.199 P 2/ 10/7.701=1.299—利用普维法计算

1.60.4220.0830.2326r

B T =-=- 0

2.60.6750.4211

r r dB T dT ==

1

4.20.1720.1390.05874r

B T =-=- 1

5.20.7220.281

r r dB dT ==

0101R r r r c r r H dB dB P B T B T RT dT dT ω??

??=-+-?? ????

?

01R r r r S dB dB P R dT dT ω??

=-+ ???

代入数据计算得2R

H 3.41、2

R

S 4.768 ( ·K )

H ?21

= H 2

1R

H 1

H ?2R

H 91.41+7020-3410=3.701

S

?= S 21= S 2

1R S 1S ?2R

S 0.2037-20.39-4.76824.95 ( ·K )

3-5. 试用普遍化方法计算二氧化碳在473.2K 、30 下的焓与熵。已知在相同条件下,二氧化碳处于理想状态的焓为8377 ,熵为-25.86 (·K).

解:查附录二得二氧化碳的临界参数为:304.2K 、7.376、ω=0.225

∴ 473.2/304.2=1.556 30/7.376=4.067—利用普压法计算

查表,由线性内插法计算得出:

()

1.741

R c

H RT =-

()

1

0.04662

R c

H RT =

()0

0.8517

R S R

=-

()

1

0.296

R S R

=-

∴由()

()

1

R R R

c c

c

H H H

RT RT RT ω

=+、()()0

1

R R R

S S S R

R

R

ω

=

+计算得:

4.377 7.635 ( ·K )

∴ 4.377+8.377=4

7.635-25.8633.5 ( ·K )

3-8. 试估算纯苯由0.1013 、80℃的饱和液体变为1.013 、180℃的饱和蒸汽时该过程的V ?、H ?和S ?。已知纯苯在正常沸点时的汽化潜热为3.733 ;饱和液体在正常沸点下的体积为95.7 cm 3

;定压摩尔热容()16.0360.2357J /mol K ig p C T =+?;第二维里

系数 2.4

310/mol

?

?? ?

??

31B=-78cm T 。

解:1.查苯的物性参数:562.1K 、4.894、ω=0.271 2.求ΔV

由两项维里方程

2.43

21117810PV BP P Z RT RT RT T ????==+=+-??? ?????

??

2.4

636

1.013101178100.85978.31410453453?????=+-?=?? ???????

??

()

R

2R

1)(-H H H H H H id T

id P V +?+?++?=?()

R

R

2

1)(S S S S S S id T

id P V +?+?+-+?=?21V V V -=?mol cm P ZRT V 3

216.3196013

.1453314.88597.0=??==

cm

V V V 3

125.31007.9516.3196=-=-=?

3.计算每一过程焓变和熵变

(1)饱和液体(恒T 、P 汽化)→饱和蒸汽 Δ30733

ΔΔ30733/353=87.1 ·K

(2)饱和蒸汽(353K 、0.1013)→理想气体

点(、)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。

由式(3-61)、(3-62)计算

628.01.562353===C r T T T 0207.0894

.41013.0===C r P P P 00111r c -T R

r r r r r H dB B dB B P RT dT T dT T ω??????=-+-?? ? ???

????()()-0.02070.628 2.2626 1.28240.2718.1124 1.7112=??+++????

=-0.0807

10.08078.314562.1

R H =-??-377.13KJ Kmol

=011-R r r r S dB dB P R dT dT ω??

=+????

()

-0.02072.26260.2718.1124=+?

(3)理想气体(353K 、0.1013)→理想气体(453K 、1.013)

()21

21

45335316.036 1.0130.23578.3140.1013453

16.0360.235745335319.1

353

8.47id

T id

P T C P S dT Rln T P dT ln T ln KJ Kmol K

?=-??=+- ???=+--=???

(4)理想气体(453K 、1.013)→真实气体(453K 、1.013)

点(、)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。

由式(3-61)、(3-62)计算

-0.09234

=1-0.092348.314

R S =?0.7677KJ Kmol K

=?()()()2

1

453

353

2216.0360.2350.2357

16.0364533534533532

11102.31T id

id

P

P T H C dT

T dT

KJ Kmol ?==+=-+

-=??

806.01

.562453

==

r T 2070.0894

.4013

.1==

r P R

0011r c -T r r r r r H dB B dB B P RT dT T dT T ω??????=-+-?? ? ???

????()-0.8060.20701.18260.51290.2712.21610.2863=?+++????-0.3961

=R 01-r r

r S dB dB P R dT dT ω??

=+????[]

-0.20701.18260.271 2.2161=+?-0.3691

=

4.求

3-10. 一容器内的液体水和蒸汽在1压力下处于平衡状态,质量为1。假如容器内液体和蒸汽各占一半体积,试求容器内的液体水和蒸汽的总焓。

解:查按压力排列的饱和水蒸汽表,1时,

根据题意液体和蒸汽各占一半体积,设干度为x 则

解之得: 所以

3-13. 试采用方程求算在227℃、5 下气相正丁烷的剩余焓和剩余熵。

解:查附录得正丁烷的临界参数:425.2K 、3.800、ω=0.193 又方程:()

0.5RT a

P V b T V V b =

--+

33762.81/2778.1/1.1273/194.4/l g l g H kJ kg H kJ kg V cm g

V cm g

====()1g l

x V x V ?=-()194.41 1.1273

x x ?=-?0.577%

x =()()10.005772778.110.00577672.81774.44/g l

H xH x H kJ kg

=+-=?+-?=21850.73R H KJ Kmol =2 3.0687R S KJ Kmol K

=?S

H ??,()

Kmol

KJ H H H H H H id T

id

P V 7.40361)(R

R

21=+?+?+-+?=?()

R

2

R

1)(S S S S S S id

T id P V +?+?+-+?=?K

Kmol KJ ?=269.93

∴ 2 2.5

0.42748c c

R T a P =

2 2.560.52

6

8.314425.20.4274829.043.810Pa m K mol -?==????

0.08664

c c RT b P = 531

68.314425.20.086648.06103.810

m mol --?==??? ∴ ()

65

0.55

8.314500.1529.04

5108.0610

500.158.0610V V V --??=--?+?

试差求得:5.61×10-4m 3

∴ 5

5

8.06100.143856.110b h V --?==

=? 1.55 1.529.04 3.8748.06108.314500.15

A a

B bRT -===??? ∴110.14383.8740.6811110.143810.1438A h Z h B h ????

=

-=-= ? ?-+-+????

∴()1.51.51ln 11 1.5ln 1 1.0997R H a b A Z Z h RT bRT V B ??=--+=--+=- ???

1.09978.314500.154573/R H J mol =-??=- () 1.5ln ln 10.8092R P V b S a b R RT bRT V -??=-+=- ???

()0.8098.314 6.726/R S J mol K =-?=-?

3-14. 假设二氧化碳服从状态方程,试计算50℃、10.13 时二氧化碳的逸度。

解:查附录得二氧化碳的临界参数:304.2.2K 、7.376

∴ 2 2.52 2.560.526

8.314304.20.427480.42748 6.46617.37610

c c R T a Pa m K mol P -?===???? 63168.314304.20.08664

0.0866429.71107.37610

c c RT b m mol P --?===???

又()

0.5RT a

P V b T V V b =

--+

∴()

66

0.56

8.314323.15 6.4661

10.131029.7110

323.1529.7110V V V --??=--?+?

迭代求得:294.9cm 3

∴ 29.710.1007294.9

b h V

===

1.56 1.56.466 4.50629.71108.314323.15

A a

B bRT -===??? ∴110.10074.5060.69971110.100710.1007A h Z h B h ????

=

-=-= ? ?-+-+???? ∴ () 1.5ln

1ln ln 10.7326P V b f a b Z P RT bRT V -?

?=---+=- ???

∴4.869

3-15. 试计算液态水在30℃下,压力分别为(a )饱和蒸汽压、(b )100×105

下的逸度和逸度系数。已知:(1)水在30℃时饱和蒸汽压0.0424×105

;(2)30℃,0~100×105

范围内将液态水的摩尔体积视为常数,其值为0.01809m 3

;(3)1×105

以下的水蒸气可以视为理想气体。 解:(a )30℃,0.0424×105

∵汽液平衡时,L V S i i i f f f =

=

又1×105

以下的水蒸气可以视为理想气体,0.0424×105

<1×105

∴30℃、0.0424×105

下的水蒸气可以视为理想气体。 又 理想气体的

∴50.042410S S i i f P Pa ==?

1S S S i i i f P φ==

(b )30℃,100×105

∵exp S

i L

P

L

S

S i i

i i

P V f P dP RT

φ=?

S S S i i i f P φ=

()()3

5

0.01809101000.042410

ln 0.071748.314303.15

S i L

S L L P i i

i i

S P i

V P P f V dP f RT RT --??-?==

==??

1.074L

i S i

f f = 531.074 1.0740.042410 4.55410L S i i f f Pa =?=??=?

3-16. 有人用A 和B 两股水蒸汽通过绝热混合获得0.5的饱和蒸汽,其中A 股是干度为98%的湿蒸汽,压力为0.5,流量为1;而B 股是473.15K ,0.5的过热蒸汽,试求B 股过热蒸汽的流量该为多少?

解:A 股:查按压力排列的饱和水蒸汽表, 0.5(151.9℃)时,

B 股: 473.15K ,0.5的过热蒸汽 根据题意,为等压过程,

忽略混合过程中的散热损失,绝热混合 = 0,所以 混合前后焓值不变

设B 股过热蒸汽的流量为 x ,以1秒为计算基准,列能量衡算式

640.23/l H kJ kg =2748.7/g H kJ kg

=0.982748.70.02640.232706.53/A H kJ kg

=?+?=2855.4/B H kJ kg

=p

H Q ?=0

H ?=()

2706.5312855.42748.71x x ?+=+

该混合过程为不可逆绝热混合,所以 混合前后的熵值不相等。 只有可逆绝热过程,

因为是等压过程,该题也不应该用 进行计算。

S ?≠0

S ?=0

U ?=

化工热力学详细答案

化工热力学详细答案

————————————————————————————————作者:————————————————————————————————日期:

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 6 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.6 4.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol - 1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为

化工热力学

《化工热力学》综合复习资料 一、乙腈(1)和乙醛(2)在87.0kPa ,80℃时混合形成等分子蒸汽混合物,已知B 11= - 2.619m 3/kmol , B 22=- 0.633m 3/kmol ,δ12= - 4.060m 3/kmol ,请计算混合物中组分1和2的逸度1?f 和2 ?f 。 二、在某T , p 下,测得某二元体系的活度系数值可用下列方程表示:122ln (20.5) x x γ=+,211ln (20.5) x x γ=+,i γ为基于Lewis -Randall 规则标准状态下的活度系数。试问,这两个方程式是否符合热力学一致性? 三、在一定温度和压力下,某二元液体混合物的活度系数如用下式表达: )(ln 221bx a x +=γ )(ln 112bx a x +=γ 式中a 和b 仅为温度和压力的函数,γi 为基于Lewis-Randall 规则标准态下的活度系数。请问,这两个表达式是否满足Gibbs-Duhem 方程? 四、苯(1)-环己烷(2)恒沸混合物的组成x 1=0.525,其在常压下(101.325 kPa)的沸点为77.4℃,如果气相可视为理想气体,液相服从Van Laar 方程。并已知纯组分在77.4℃下的饱和蒸气压分别为: s p 1=93.2 kPa , s p 2=91.6 kPa 。试求(1) Van Laar 方程的方程参数。(2) 在77.4℃下与x 1=0.7成平衡的气相 组成y 1。 五、甲醇(1)和甲乙酮(2)在337.3K 和1.013×105Pa 下形成恒沸物,其恒沸组成x 1为0.842,并已知在337.3K 时甲醇和甲乙酮的饱和蒸气压分别为Pa p s 4110826.9?=,Pa p s 4 210078.6?=。如气相可视为理想气体,液相服从Van Laar 方程。试计算(1) Van Laar 方程的方程参数。(2)由纯组分混合形成1 mol 该溶液的ΔG 值。 六、在98.66kPa ,327.6K 时丙酮(1)-甲醇(2)形成796.01=x 的恒沸物。并已知327.6K 时纯组分的饱和蒸汽压为:39.951=s p kPa ,06.652=s p kPa 。试用Van Laar 方程求该溶液在x 1=0.5时的活度系数γ1和γ2。 七、已知某二元恒沸混合物的组成x 1=0.75,其在常压下(101.325 kPa)的沸点为95℃,如果气相可 视为理想气体,液相服从Van Laar 方程。并已知纯组分在95℃下的饱和蒸汽压分别为:s p 1=88 kPa , s p 2=60 kPa 。试求(1) Van Laar 方程的方程参数。(2)由纯组分混合形成1 mol 该溶液的ΔG 值。

马沛生主编化工热力学第三章知识题解答

第三章 纯流体的热力学性质计算 思考题 3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态? 答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。 3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。 3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物? 答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。 3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制 3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随 着温度的变化”,这种说法是否正确? 答:不正确。剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。 3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零? 答:不是。只有理想气体在定温过程中的热力学内能和焓的变化为零。 3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否 交叉使用这些图表求解蒸气的热力过程?

答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。不能够交叉使用这些图表求解蒸气的热力过程。 3-8 氨蒸气在进入绝热透平机前,压力为 2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某 人提出只要控制出口压力就可以了。你 认为这意见对吗?为什么?请画出T -S 图示意说明。 答:可以。因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。 3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。假设1kg 已被冷至 -5℃的液体。现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。如果其后在5 1.01310Pa 下绝热地发生变化,试问:(1)系统的终态怎样?(2)过程是否可逆? 答:压力增高,又是绝热过程,所以是一个压缩过程(熵增加,若为可逆过程则是等熵过程),故系统的终态仍是过冷液体。此过程不可逆。 3-10 A 和 B 两个容器,A 容器充满饱和液态水,B 容器充满饱和蒸气。二个容器的容 积均为1000cm 3,压力都为1 MPa 。如果这两个容器爆炸,试问哪一个容器被破坏得更严重? 答:A 容器被破坏得更严重。因为在压力、体积相同的情况下,饱和液态水的总热力学能远远大于饱和蒸气。 二、计算题:

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

化工热力学答案(完整资料).doc

【最新整理,下载后即可编辑】 化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P = 6 8.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710V -?-?- 0.553.224 (673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 6 6 4.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1

化工热力学名词解释

化工热力学名词解释 1、(5分)偏离函数:* M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体 处于理想状态下热力学性质M* 之间的差额。 2、(5分)偏心因子: 000 .1)lg(7.0--==r T s r P ω 表示分子与简单的球形流体(氩,氪、氙) 分子在形状和极性方面的偏心度。 3、(5分)广度性质 4、(5分)R-K 方程(Redlich -Kwong 方程) 5、(5分)偏摩尔性质:偏摩尔性质 i j n P T i i n nM M ≠??=,,]) ([ 在T 、P 和其它组分量n j 均不变情况下,向无限多的溶液中加入1mol 的组分i 所引起的一系列热力学性质的变化。 6、(5分)超额性质:超额性质的定义是 M E = M -M id ,表示相同温度、压力和组成下,真实 溶液与理想溶液性质的偏差。ΔM E 与M E 意义相同。其中G E 是一种重要的超额性质,它与活度系数 7、(5分)理想溶液:理想溶液有二种模型(标准态):^ f i id = X i f i (LR ) 和 ^ f i id = X i k i (HL ) 有三个特点:同分子间作用力与不同分子间作用力相等,混合过程的焓变化,内能变化和体 积变化为零,熵变大于零,自由焓变化小于零。 8、(5分)活度: 化工热力学简答题 1、(8分)简述偏离函数的定义和作用。 偏离函数定义, * M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间的差额。如果求得同一T ,P 下M R ,则可由理想气体的M* 计算真实气体的M 或ΔM 。 2、(8分)甲烷、乙烷具有较高的燃烧值,己烷的临界压力较低,易于液化,但液化石油气的主要成分既不是甲烷、乙烷也不是己烷,而是丙烷、丁烷和少量的戊烷。试用下表分析液化气成分选择的依据。

化工热力学 第三版 课后答案 朱自强

第二章流体的压力、体积、浓度关系:状态方程式 2-1试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解](1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 331 6 8.314(400273.15) 1.381104.05310 id RT V m mol p --?+= ==???(2)用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5() () RT a V b V b p T pV V b -= +-+(E1) 其中 2 2.5 0.427480.08664c c c c R T a p RT b p = = 从附表1查得甲烷的临界温度和压力分别为c T =190.6K,c p =4.60MPa ,将它们代入a,b 表达式得 2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ??==????531 6 0.086648.314190.6 2.9846104.6010b m mol --??= =???以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 516 8.314673.15 2.9846104.05310 V -?= +??350.563353.2217(1.38110 2.984610) 673.15 4.05310 1.38110(1.38110 2.984610) -----??-?- ??????+?355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=??第二次迭代得2V 为

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

化工热力学复习题及答案 ()

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S ,G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的p -V -T 的 问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态 7.关于化工热力学研究内容,下列说法中不正确的是( )。

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

化工热力学课后答案

化工热力学课后答案(填空、判断、画图) 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =() 1121T P P R C ig P ???? ??--,?H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是 超临界流体。)

化工热力学课后作业答案(学生版)

习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧 状态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?, 故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 4. 理想气体的焓和热容仅是温度的函数。(对) 5. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量 中只有一个强度性质,所以,这与相律有矛盾。(错。V 也是强度性质) 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是γ γ) 1(1212-??? ? ??=P P T T (其中ig V ig P C C =γ), 而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

化工热力学答案解析

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106 = 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6 =0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2 =0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3 ·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为550.1cm 3 ·mol -1 所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学复习题及答案概要

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atmcm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314J mol -1 K -1=1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

化工热力学马沛生第一版第三章习题答案

习题 3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种: (1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。 V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -= (2)Helmholtz 方程,即能量的导数式 p V S H S U T ??? ????=??? ????= T S V A V U p ??? ????=??? ????=- T S p G p H V ? ??? ????=???? ????= p V T G T A S ??? ????=??? ????=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ??? ????-=??? ???? p S S V p T ??? ????=? ??? ???? T V V S T p ??? ????=??? ???? T p p S T V ? ??? ????-=??? ???? 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响? 答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。 3-3. 如何理解剩余性质?为什么要提出这个概念? 答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即: ),(),(p T M p T M M ig R -= M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。 需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。 定义剩余性质这一个概念是由于真实流体的焓变、熵变计算等需要用到真实流体的热容关系式,而对于真实流体,其热容是温度和压力的函数,并且没有相应的关联式,为了解决此问题就提出了剩余性质的概念,这样就可以利用这一概念方便地解决真实流体随温度、压力变化的焓变、熵变计算问题了。 3-4. 热力学性质图和表主要有哪些类型?如何利用体系(过程)的特点,在各种图上确定

化工热力学 第三版 课后答案完整版 朱自强

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5() () RT a V b V b p T pV V b -= +-+ (E1) 其中 从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 第二次迭代得2V 为 353 5 20.56335355331 3.2217(1.389610 2.984610) 1.38110 2.98461067 3.15 4.05310 1.389610(1.389610 2.984610) 1.38110 2.984610 2.1120101.389710V m mol ------------??-?=?+?- ??????+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。故用RK 方程求得的摩尔体积近似为 (3)用PR 方程求摩尔体积 将PR 方程稍加变形,可写为

() ()() RT a V b V b p pV V b pb V b -= +-++- (E2) 式中 22 0.45724c c R T a p α= 从附表1查得甲烷的ω=0.008。 将c T 与ω代入上式 用c p 、c T 和α求a 和b , 以RK 方程求得的V 值代入式(E2),同时将a 和b 的值也代入该式的右边,藉此求式(E2)左边的V 值,得 56 3563355353558.314673.15 2.68012104.05310 0.10864(1.39010 2.6801210) 4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)] 1.38110 2.6801210 1.8217101.3896V ------------?= +?-???-??????+?+???-?=?+?-?=331 10m mol --?? 再按上法迭代一次,V 值仍为3311.389610m mol --??,故最后求得甲烷的摩尔体积近似为3311.39010m mol --??。 (4)维里截断式求摩尔体积 根据维里截断式(2-7) 11()c r c r Bp p Bp Z RT RT T =+ =+ (E3) 01c c Bp B B RT ω=+ (E4) 0 1.60.0830.422/r B T =- (E5) 1 4.20.1390.172/r B T =- (E6) 其中 已知甲烷的偏心因子ω=0.008,故由式(E4)~(E6)可计算得到

化工热力学(第三版)陈钟秀课后习题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 2 2.52 2.560.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P -?===???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 654.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/mol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

相关主题
文本预览
相关文档 最新文档