当前位置:文档之家› 有限元课程设计分析报告式样

有限元课程设计分析报告式样

有限元课程设计分析报告式样
有限元课程设计分析报告式样

轧机机架有限元分析

1.问题描述

(问题)

(采用的计算方法)

2 模型的建立及网格划分

(几何模型图)

根据结构及载荷对称性,取机架四分之一作为分析模型,模型中窗口内圆角半径分别为225mm(方案1)和180mm(方案2),圆弧导圆为R40mm, 圆滑过渡,压下螺母孔台阶处导圆为R30mm,详见下列各模型。说明网格划分情况,采用的方法,单元类型,单元大小,个数等。

3 边界条件及载荷

材料属性。

模型见图2,载荷作用在机架上横梁压下螺孔台阶处和下横梁窗口内表面上,图3、图4为压下螺孔台阶和窗口内角过渡圆弧单元划分,为15000KN压力的1/4,边界条件见图5,在机架四分之一对称面上建立对称约束,这里只给出方案1边界载荷图,方案2略。

图2 轧机有限元模型图3 压下螺孔单元划分

图4 机架窗口内圆角单元划分

图5 边界载荷

4 有限元结果分析

方案1中机架受载荷作用时,其铅垂方向变形趋势如图6,最大Y向位移值为0.984mm;其水平方向变形趋势如图7,单侧立柱最大X向位移值为0.397mm。

图6 方案1机架铅垂方向变形

图7 方案1机架水平方向变形

图8 方案2机架铅垂方向变形

方案2机架受力时,铅垂方向最大位移为0.985mm,详见图8, 水平方向单侧立柱最大位移为0.394mm,详见图9。

图9 方案2机架水平方向变形

图10、图11为方案1机架压下螺丝孔处应力分布图,最大等效应力为122MPa,详见图12;最大主应力为133MPa,详见图13。

图10 方案1压下螺丝孔等效应力分布

图11 方案1压下螺丝孔主应力分布

图12 压下螺丝孔最大等效应力(局部)

图13 压下螺丝孔最大主应力(局部)

图14、图15为机架过渡圆角处应力分布图,最大等效应力为40.7MPa,最大主应力为43.4MPa。

图14 下部过渡圆角最大等效应力

图15 下部过渡圆角最大主应力

图16、图17为方案2机架压下螺栓孔处应力分布图,最大等效应力为122MPa,最大主应力为134MPa。

图16 方案2压下螺丝孔最大等效应力

图17 方案2压下螺丝孔最大主应力

图18、图19为机架上横梁过渡圆角处应力分布图。最大等效应力为782MPa,最大主应力为466MPa。计算中有应力集中出现。

图18 上部过渡圆角等效应力分布

图19 上部过渡圆角主应力分布

图20、图21为方案2机架过渡圆角处应力分布图,最大等效应力为42.4MPa,最大主应力为46.1MPa。

图20 下部过渡圆角等效应力分布

图21 下部过渡圆角主应力分布

5 结论

根据以上模型分析可得出机架刚度:

方案1:30000/0.894=33557KN/mm

方案2:30000/0.895=33519KN/mm

由此看出,机架窗口圆角变化对刚度影响很小,只有0.1%。

方案1中窗口圆角圆弧半径为R=225mm, 方案2中窗口圆角圆弧半径为R=180mm, 机架窗口圆角圆弧处对应等效应力分别为40.7MPa和42.4MPa,应力增大4%,可以认为机架窗口圆角圆弧对强度影响很大,直接影响机架的安全系数,同时,压下螺丝孔台阶处的导圆处也是不能忽略之处,从图12至图21可以看出局部应力变化,安全系数如下:

方案1机架安全系数为:450/40.7=11.05

方案2机架安全系数为:450/42.4=10.6

综合以上分析结果,现机架结构方案,窗口圆角R取值在225-260mm范围内较为适当,机架变形改变微小,局部应力集中变化不大,认为该方案机架结构安全合理。

参考文献:

[1] ……..

6 体会及建议

…….

平面三角形单元有限元程序设计

. 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m ,E=200GPa ,=0.25,t=0.1m ,忽略自重。试计算薄板的位移及应力分布。 要求: 1. 编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2. 采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3. 提交程序编写过程的详细报告及计算机程序; 4. 所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P

有限元课程设计

一.问题描述 如图所示的平面矩形结构,设E=1,NU=0.25,h=1,考虑以下约束和外载: 位移边界条件BC(u):U A=0,V A=0,U D=0, 力边界条件BC(p):在CD边上有均布载荷q=1, 建模情形:使用四个四节点矩形单元, 试在该建模情形下,求各节点的位移以及各个单元的应力分布。

二.Matlab程序 (1).函数定义: function k= Quad2D4Node_Stiffness(E,NU,h,xi,yi,xj,yj,xm,ym,xp,yp,ID) syms s t; a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4; b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4; c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4; d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4; B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ; c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4]; B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ; c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4]; B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ; c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4]; B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ; c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4]; Bfirst = [B1 B2 B3 B4]; Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ; s-t -s-1 0 t+1 ; 1-s s+t -t-1 0]; J = [xi xjxmxp]*Jfirst*[yi ;yj ; ym ; yp]/8; B = Bfirst/J; if ID == 1 D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2]; elseif ID == 2 D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; end BD = J*transpose(B)*D*B; r = int(int(BD, t, -1, 1), s, -1, 1); z = h*r; k = double(z); end function z = Quad2D4Node_Assembly(KK,k,i,j,m,p) DOF(1)=2*i-1; DOF(2)=2*i; DOF(3)=2*j-1; DOF(4)=2*j; DOF(5)=2*m-1; DOF(6)=2*m; DOF(7)=2*p-1; DOF(8)=2*p; for n1=1:8

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

有限元分析程序设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

有限元程序课程设计

重庆大学本科学生课程设计任务书 课程设计题目有限元程序设计 学院资源及环境科学学院专业工程力学年级2010级 已知参数和设计要求: 1.独立完成有限元程序设计。 2.独立选择计算算例,并能通过算例判断程序的正确性。 3.独立完成程序设计报告,报告内容包括理论公式、程序框图、程序本 体、计算算例,算例结果分析、结论等。 学生应完成的工作: 1.复习掌握有限单元法的基本原理。 2.掌握弹性力学平面问题3节点三角形单元或4节点等参单元有限元方法 的计算流程,以及单元刚度矩阵、等效节点载荷、节点应变、节点应力 和高斯积分等的计算公式。 3.用Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参 单元的有限元程序。 4.在Visual Fortran 程序集成开发环境中完成有限元程序的编辑和调试 工作。 5.利用编写的有限元程序,计算算例,分析计算结果。 6.撰写课程设计报告。 目前资料收集情况(含指定参考资料): 1.王勖成,有限单元法,北京:高等教育出版社,2002。 2.O.C. Zienkiewicz, R. L. Taylor, Finite Element Method, 5th Eition, McGraw-Hall Book Company Limited, 2000。 3.张汝清,董明,结构计算程序设计,重庆:重庆大学出版社,1988。 课程设计的工作计划: 1.第1周星期一上午:教师讲解程序设计方法,程序设计要求和任务安 排。 2.第1周星期一至星期二完成程序框图设计。 3.第1周星期三至第2周星期四完成程序设计。 4.第2周星期五完成课程设计报告。 任务下达日期 2013 年 6 月 6 日完成日期 2013 年 07 月 03 日 指导教师(签名) 学生(签名)

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

有限元课程设计

有限元法分析与建模课程设计报告 学院:机械电子工程学院 专业:机械电子工程 指导教师:杜平安 学生:乔林 学号:201221080212 2012-12-10

摘要 摘要 连杆的作用是将活塞的往复运动变成曲轴的旋转运动, 并把活塞上的力传 给曲轴连杆工作的小端做往复运动, 大端作旋转运动, 杆身做复杂的平面运动。本文用Pro/E建立连杆的三维模型,并运用ANSYS强大的有限元分析和优化功能来实现连杆的分析ANSYS 是一款极其强大的有限元分析软件。通过数据接口,ANSYS 可以方便的实现从CAD 软件中导入实体模型。因此,将Pro/E强大的 建模功能与ANSYS 优越的有限元分析功能结合在一起可以极大地满足设计者 在设计过程中对建模与分析的需求。 关键词:连杆,有限元,Pro/E,ANSYS

ABSTRACT ABSTRACT The role oftheconnecting rodisthesmall end ofthereciprocation of the pistonintoarotational movementofthecrankshaft, and to transmittheforceon the pistontothecrankshaft connecting rodreciprocates, thebig endfor pivotal movement, Shaftdo complexplanar motion. The establishment ofalinkageof thethree-dimensionalmodelusingPro / E, thepowerfulANSYSfinite elementanalysis andoptimization capabilitiestoachievetheconnecting rodfatigueanalysisANSYSisan extremelypowerfulfinite element analysis software. Throughthedata interface, ANSYS canfacilitate the realization ofsolid modelsimportedfromCAD software. Therefore,thesuperiorpowerfulmodeling capabilitiesofPro / Eand ANSYSfinite elementanalysis capabilitiestogethercanmeetthedesignersin the design processmodelingand analysis. Keywords:rod, finite element, Pro / E, ANSYS

完整word版有限元分析大作业报告要点

船海1004 黄山 U201012278 有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后 得到600个单元。

1 船海1004 黄山 U201012278 (6)模型施加约束:约束采用的是对底面BC全约束。大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L上,方向水平向右,载荷大小沿L 由小到大均匀分布。以ABAB B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: P?gh?gyY}*{?)??98000?9800(10? 2、计算结果及结果分析 (1)三节点常应变单元 三节点常应变单元的位移分布图

有限元课程设计1

目录一. 前言 二.有限元设计部分 1 问题阐述 2 解析法求解 3 模型简化 4 ANSYS软件应用说明 5 结果分析 三.机械优化设计部分 1 问题阐述 2 解析算法 3 黄金分割法顺序流程图 4 C语言源程序代码 5 结果分析 四.设计心得 五. 参考文 一.前言

二.有限元设计部分 1、问题阐述 外伸梁上均布载荷的集中度为q=3kN/m,集中力偶矩M e=3kN·m列出剪力方程和弯矩方程,并绘制剪力图。材料力学Ι(刘鸿文第四版)P121

图2-1 外伸梁简化图 2、解析法求解 由梁的平衡方程,求出支反力为 F RA=14.5kN,F RB=3.5kN 梁的C A、AD、DB等三段内,剪力和弯矩都不能有同一个方程来表示,所以应分为三段考虑。对每一段都可以用同一个方法计算,列出剪力方程和弯矩方程,方程中x以m为单位,Fs(x)以kN为单位,M(x)以kN为单位。 在CA段内: Fs(x)=-qx=-3x(0<=x<2m) (g) M(x)=-(3/2)X2(0<x<=2m) (h)

在AD段内: Fs(x)=F RA-qx=14.5-3x(2m<x<=6m) (i) M(x)=F RA(x-2)-(1/2)X2=14.5(x-2)- (3/2)X 2 (j) (2m< x6m) M(x)是x的二次函数,根据极值条件dM(x)/d(x)=0,得 14.5-3x=0 由此解出x=4.83m,亦即在那这一截面上,弯矩为极值。 代入(j) 式得AD段内的最大弯矩为 M=6.04kN·m 当截面取在DB段,用截面右侧的外力计算剪力和弯矩比较方

有限元分析报告大作业

有限元分析》大作业基本要求: 1.以小组为单位完成有限元分析计算,并将计算结果上交; 2.以小组为单位撰写计算分析报告; 3.按下列模板格式完成分析报告; 4.计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。 有限元分析》大作业 小组成 员: 储成峰李凡张晓东朱臻极高彬月 Job name :banshou 完成日 期: 2016-11-22 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况 和约束情况。图应清楚、明晰,且有必要的尺寸数据。)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外 接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布 图1 扳手的几何结构 数学模型

要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;

图 2 数学模型 如图二所示,扳手结构简单,直接按其结构进行有限元分析。 三、有限元建模 3.1 单元选择 要求:给出单元类型, 并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。) 图 3 单元类型 如进行了简化等处理,此处还应给出文字说

扳手截面为六边形,采用4 节点182单元,182 单元可用来对固体结构进行

二维建模。182单元可以当作一个平面单元,或者一个轴对称单元。它由4 个结点组成,每个结点有2 个自由度,分别在x,y 方向。 扳手为规则三维实体,选择8 节点185单元,它由8 个节点组成,每个节点有3 个自由度,分别在x,y,z 方向。 3.2 实常数 (要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。) 因为该单元类型无实常数,所以无需定义实常数 3.3材料模型 (要求:指出选择的材料模型,包括必要的参数数据。) 对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS中的线性,弹性,各项同性,弹性模量EX:2e11 Pa, 泊松比PRXY=0.3 3.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建 立正六 边形,再创立直线,面沿线挤出体,得到扳手几何模型 图4 几何建模

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告 学院:机电学院 专业:机械制造及其自动化指导教师:**** 学生:* *** 学号:2012011**** 2015-12-31

摘要 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。 关键词:ANSYS10.0;光盘;应力;应变。

目录 第一章引言 (3) 1.1 引言 (3) 第二章问题描述 (4) 2.1有限元法及其基本思想 (4) 2.2 问题描述 (4) 第三章力学模型的建立和求解 (5) 3.1设定分析作业名和标题 (5) 3.2定义单元类型 (6) 3.3定义实常数 (9) 3.4定义材料属性 (12) 3.5建立盘面模型 (14) 3.6对盘面划分网格 (22) 3.7施加位移边界 (27) 3.8施加转速惯性载荷并求解 (30) 第四章结果分析 (32) 4.1 旋转结果坐标系 (32) 4.2查看变形 (33) 4.3查看应力 (35) 总结 (38) 参考文献 (39)

第一章引言 1.1 引言 光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。 在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元分析Ansys大作业

有限元分析作业 作业名称扳手静态受力分析 姓名 学号 班级 宁波理工学院

题目:扳手静态受力分析: 扳手的材料参数为:弹性模量E=210GPa,泊松比u=0.3:此模型在左侧内六角施加固定位移约束,在右侧表面竖直方向上施加6 10 48 N的集中力。 模型如下图: 1-1 1.定义工作文件名和文件标题 (1)定义工作文件名:执行File-Chang Jobname-3090601048 (2)定义工作标题:执行File-Change Tile-3090601048 (3)更改工作文件储存路径:执行File-Chang Directory-E:\ANSYS 2.定义分析类型、单元类型及材料属性 (1)定义分析类型,执行Main Menu-Preferences,如下图所示:

2-1 (2)定义单元类型,执行Main Menu-Preprocessor-Element Type-Add弹出Element Type 对话框.如下图所示: 2-2 (3)定义材料属性 执行Main menu-Preprocessor-Material Props-Material models,在Define material model behavior对话框中,双击 Structual-Linear-Elastic-Isotropic.如下图所示:

2-3 3.导入几何模型 将模型导入到ANSYS,执行File-Import—PRAR…—浏览上述模型,如下图所示: 3-1

3-2 4. 网格划分 执行Main Menu-Preprocessor-meshing-Mesh Tool命令,考虑到零件的复杂性,采用智能网格划分,精度为1,其他选项为默认,如下图所示: 4-1

有限元编程的c++实现算例

有限元编程的c++实现算例 1. #include<> 2. #include<> 3. 4. 5. #define ne 3 #define nj 4 #define nz 6 #define npj 0 #define npf 1 #define nj3 1 2 #define dd 6 #define e0 #define a0 #define i0 #define pi 16. 17. 18. int jm[ne+1][3]={{0,0,0},{0,1,2},{0,2,3},{0,4,3}}; /*gghjghg*/ 19. double gc[ne+1]={,,,}; 20. double gj[ne+1]={,,,}; 21. double mj[ne+1]={,a0,a0,a0}; 22. double gx[ne+1]={,i0,i0,i0}; 23. int zc[nz+1]={0,1,2,3,10,11,12}; 24. double pj[npj+1][3]={{,,}}; 25. double pf[npf+1][5]={{0,0,0,0,0},{0,-20,,,}}; 26. double kz[nj3+1][dd+1],p[nj3+1]; 27. double pe[7],f[7],f0[7],t[7][7]; 28. double ke[7][7],kd[7][7]; 29. 30. 31. 36. void jdugd(int); 38. void zb(int); 39. void gdnl(int); 40. void dugd(int);

有限元分析大作业

《有限元分析及应用》大作业——齿根弯曲应力计算报告 班级:无可奉告 姓名:无可奉告 学号:无可奉告 指导老师:无可奉告

目录 目录 (2) 1.概述 (3) 1.1工程问题描述 (3) 1.2问题分析 (3) 2.建模过程 (4) 2.1几何建模 (4) 2.2CAE网格划分与计算 (5) 2.3后处理 (8) 3.多方案比较与结果分析 (9) 3.1多方案比较 (9) 3.2结果分析 (11)

1.概述 1.1工程问题描述 我在本次作业中的选题为齿根弯曲应力的计算与校核。通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。 设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。 综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。 已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。 齿面为硬齿面,传动方式为闭式传动。 根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。 根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。1.2问题分析 大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。

有限元编程的c++实现算例

有限元编程的c++实现算例 1.#include 2.#include 3. 4. 5.#definene3 //单元数 6.#definenj4 //节点数 7.#definenz6 //支撑数 8.#definenpj0 //节点载荷数 9.#definenpf1 //非节点载荷数 10.#definenj312 //节点位移总数 11.#definedd6 //半带宽 12.#definee02.1E8 //弹性模量 13.#definea00.008 //截面积 14.#definei01.22E-4 //单元惯性距 15.#definepi 16. 17. 18.intjm[ne+1][3]={{0,0,0},{0,1,2},{0,2,3},{0,4,3}}; /*gghjghg*/ 19.doublegc[ne+1]={0.0,1.0,2.0,1.0}; 20.doublegj[ne+1]={0.0,90.0,0.0,90.0}; 21.doublemj[ne+1]={0.0,a0,a0,a0}; 22.doublegx[ne+1]={0.0,i0,i0,i0}; 23.intzc[nz+1]={0,1,2,3,10,11,12}; 24.doublepj[npj+1][3]={{0.0,0.0,0.0}}; 25.doublepf[npf+1][5]={{0,0,0,0,0},{0,-20,1.0,2.0,2.0}}; 26.doublekz[nj3+1][dd+1],p[nj3+1]; 27.doublepe[7],f[7],f0[7],t[7][7]; 28.doubleke[7][7],kd[7][7]; 29. 30. 31.//**kz[][]—整体刚度矩阵 32.//**ke[][]—整体坐标下的单元刚度矩阵

有限元课程设计(0001)

有限元课程设计

目录 0.前言 (3) 1.问题阐述 (4) 2.有限元分析 (5) 2.1.梁的参数设定 (5) 2.2.材料参数 (5) 2.3.单元选择 (5) 2.4.梁的边界条件 (6) 2.5.梁所受的载荷 (6) 2.6.ANSYS软件应用说明 (6) 3.交互式的求解过程 (7) 3.1创建梁的各个节点 (7) 3.2定义单元类型、材料特性和梁的横截面几何参数 (10) 3.3创建单元 (12) 4.施加约束和载荷 (13) 4.1节点自由度约束 (13) 4.2施加节点13处的弯矩m。 (14) 4.3施加单元1到单元12上的的分布载荷q。 (15) 5.求解 (15) 5.1定义分析类型 (15) 5.2求解 (15) 6.后处理 (16) 6.1绘制梁的Y方向变形图 (16) 6.2建立单元结果表 (17) 6.3结果显示 (19) 退出程序 (21) 心得体会 (22) 参考文献 (22)

0.前言 目前,几乎所有高校的力学、土木、机械、航空、航天、船舶、水利、交通、桥梁等理工科专业,都为高年级本科生开设了《有限元方法》基础课程,为研究生开设了《非线性有限元方法》学位课程。学生在学习完有限元课程之后,还必须熟练掌握相关有限元软件的使用,才能将有限元基本理论有效地应用到实际工程问题分析中去。为此,部分有条件的高校也开设了有限元软件应用课程(课程名称可能会因学校及专业的不同而有所差异,但都是以讲解有限元软件ANSYS或其他软件为主)。哈尔滨工业大学航天学院工程力学专业20世纪90年代末即开设了该类课程《应用软件工程--ANSYS》,作者从2003年开始接手讲授该门课程。虽然市面上的ANSYS书籍很多,但却难以找出一本非常适合做教材的书籍,因此作者参考多本书籍自主编写了校内讲稿。经过6年多的试用,目前已基本成型,现将多年的校内讲稿和心得体会完善成书,以期与开设该类课程的兄弟院校分享、共勉,同时也供从事相关科研与工程项目的人员参考阅读。 ANSYS软件是目前国际上最著名的大型通用有限元分析软件,经过三十年的发展,已形成融结构、热、流体、电磁、声学及多物理场耦合为一体的大型通用有限元分析软件,广泛应用于航空航天、石油、化工、汽车、造船、铁道、电子、机械制造、地矿能源、水利、核能、生物、医学、土木工程、轻工、一般工业及科学研究等各个领域,其极强的分析功能覆盖了几乎所有的工程问题。作为世界最具权威的有限元产品和工业化分析标准,目前几乎所有的CAD/CAE/CAM软件都竞相开发了与ANSYS的专用接口,实现数据的共享和交换,如Pro/Engineer、NASTRAN、Alogor、I-DEAS及AutoCAD等。ANSYS软件在Linux 和Windows下均有版本,并同时有32位和64位版本,目前最新的版本为12.0。 本书以ANSYS 12.0版本为依据,以Windows NT为操作平台,将结构有限元分析的基本理论与ANSYS实践操作紧密结合,通过大量精心筛选的具有实际工程应用背景的原创性分析实例,以图形用户界面和命令流两种方式向读者全面介绍了ANSYS结构有限元分析方法。

有限元分析报告

有限元分析大作业计算分析报告 A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) E、建议与体会 试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (×) 2)分别采用不同数量的三节点常应变单元计算;(√) 3)当选常应变三角单元时,分别采用不同划分方案计算。(√)

1.有限元建模单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制 1)单元选择:由于ANSYS没有提供三角形常应变单元,故采用六节点三角形单元进行计算。 2)结点布置:(0,0)(6,0)(10,0)(3,0)(0,5)(3,5) 3)单元数目:4 4)网格划分方案 方案1 方案2 5)边界条件 底边加上UX,UY 的约束 6)载荷 受齐顶的水压力作用,呈阶梯状分布,载荷函数为F=1000(10-Y)7)求解控制:默认,单一载荷步 2.计算结果及结果分析(位移分析、应力分析、正确性分析评判)1)位移结果与应力分析 方案1: 最大位移为0.109×10-05 最大应力为15936 最小应力为5181 方案2: 最大位移为0.130×10-05 最大应力为15058 最小应力为7834 2)正确性分析 从应力分布图中,我们比较这两种网格划分方案的优劣,方案1的应力最大位置在(0,0)处,方案2的应力最大位置在(6,0)处,显然,方案1更贴近实际情况,因为其左下角的单元与整体单元的受力情况相似,而方案2则有较大的差别。但是,由于这两种网格划分都非常粗燥,根据常识,在坝顶处,其受力为0,应力应接近于0,而这两种情况的最小应力分别为5181和7834。因此,我们将增加单元的个数,使得计算结果接近真实情况。

有限元及程序设计

有限元及程序设计 1. 下列关于高精度单元描述正确的是( )。 A.等参元的位移模式和坐标变换采用不同的形函数 B.矩形单元形状规则,因而使用范围较 广 C.6结点三角形单元、10结点三角形单元、8结点矩形单元和 12结点矩形单元的单元 刚度矩阵的建立过程是不一样的 D.6结点三角形单元较容易模拟物体的边界形状 【参考答案】:D 2. 0 =cxy 能解决矩形板( )问题。 A.左右均布拉压 B.上下均布拉压 C 纯剪切 D.纯弯曲 【参考答案】:C 3. 下列关于等参元的叙述不正确的是( A.精度较高 B.能较好的模拟边界条件 【参考答案】:D 4. 薄板的边界不包括( A.简支边界 B.固定边界 C.自由边界和荷载边界 D.非固定边界 【参考答案】:D )。 C.输入的信息量较少 D.输入的信息量较多 5. 下列属于平面应力问题的是( A.平板坝的平板支墩 B 挡土墙 【参考答案】:A 6. 在应力函数上任意增减一个( A.线性项 B.二次项 C.三次项 【参考答案】:A 7. 下列不属于提高单元精度的方法是 A.增加单元结点数目 B 在单元内增设结点 【参考答案】:C 8. 空间问题的基本平衡微分方程有( A.2 B.3 C.4 D.5 【参考答案】:C )。 C.重力水坝 D.受内水压力作用的圆管 ),对应力分量无影响。 D.常数项 )。 C.减少单元结点数目 D.设等参元 个。 )问题。 C 纯剪切 D.纯弯曲 A.左右均布拉压 B.上下均布拉压 【参考答案】:B 10. 下列属于不规则单元的有( A.正四面体单元 B.正三棱体单元 【参考答案】:C 11. 空间问题的基本未知位移分量有( A.2 B.3 C.4 D.5 【参考答案】:B 1. 薄板小挠度弯曲理论的基本假定是( )。 A.直法线假定 B.法向位移假定 C.中面位移假定 D.板内无挤压假定 【参考答案】:A|C|D 2. 弹性力学平面问题 按应力求解具体可分为( )两种。 A.逆解法 B.顺解法 C.半逆解法 D.半顺解法 )。 C.任意四面体单元 D.正六面体单元 )个。

相关主题
文本预览
相关文档 最新文档