当前位置:文档之家› 深层岩石力学与技术

深层岩石力学与技术

深层岩石力学与技术

金衍

中国石油大学(北京)

石油天然气工程学院

面对钻采工程的对象,各类岩石我们遇到这样一些问题:

?钻头破岩效果差,钻速慢

?井壁失稳,钻井复杂事故频发

?地层漏失,密度窗口窄

?测试压差、油嘴与储层的匹配

?不同开发阶段,水力裂缝有效沟通储层及长期有效性

?储层出砂、防砂及出砂管理

?套管损坏与预防

?开采过程,储层孔隙结构变形与渗透率的变化

提纲

?岩石力学管理钻井技术?储层不伤害测试技术?控制压裂技术

一、岩石力学管理钻井技术岩性

孔隙压力

坍塌压力

破裂压力

可钻性井身结构设计

复杂事故提示

钻头选型

钻井液密度及体系

钻进参数钻前

钻进钻头附近及前方100m 岩性变化孔隙压力坍塌压力破裂压力

可钻性复杂情况控制破岩效果评价钻井液调整钻进参数调整钻后地应力孔隙压力复杂情况力学化学耦合分析地层封堵能力评价与提高提高机械钻速的方法

为下一口井提供系列完整解决方案

1.钻前预测技术

资料预处理

地震特征参数提取地震测井关系建模声波、密度、岩性地震、测井和地质资料井旁地震道地震记录神经网络学习、已钻井段的地震特征参数、声波及密度测井资料

神经网络应用、待钻井段

的地震特征参数

纵波速度和地层密度

横波速度、泥质含量、孔隙度、有效应力

动态杨氏模量、泊松比

静态杨氏模量、泊松比

粘聚力、内摩擦角、抗拉强度

地层孔隙压力

上覆地层压力

最大和最小水平地应力

坍塌压力、破裂压力、可钻性

安全钻井液密度范围

钻头选型

井身结构

地质建模

井位1结果

1500 1800 2100 2400 2700 3000 3300 3600 39001 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Pp

Pb

Pf

Sv

11.1

1.2

1.3

1.4

1.5

1.6

1.71.8

1.9

2

2.1

2.2

2.3

500700900110013001500170019002100230025002700290031003300350037003900410043004500

??é??à???

ü?

è

êμ?êòa?óμ??á??¤2aμ??á??1á|?¤2aμ?ì??ú?1á|êμ?êòa?óμ?ì??ú?1á|

依南4井井壁稳定预测与实际要求的安全泥浆密度范围比较

2.随钻岩石力学管理钻井技术

钻前数据

录井

MWD

LWD

PWD

岩性

ECD

AC

GR

岩石力学模型

修正

钻头附近及前方100m

岩性变化

孔隙压力

坍塌压力

破裂压力

可钻性

复杂情况控制

破岩效果评价

钻井液调整

钻进参数调整

3.山前构造带井壁失稳与堵漏技术

泥页岩井壁坍塌周期的定量预测技术

泥浆渗入面

泥页岩岩样井壁

泥页岩水化性质的实验测量技术

泥页岩井壁稳定性分析及坍塌周期预测软件

深层盐膏岩蠕变控制技术?深层盐膏岩地质成形与地应力反演

MPa 92.11OD =τF C 010203040

506005

10

1520253035

40

平均应力 /MPa

八面体剪应力 /M P a 盐膏岩力学特性

弹性区扩容区流动区

根据盐岩井壁八面体剪应力分别为12-14MPa 设计的SLK3井钻井液密度和实际钻井液密度如图。实际钻井液密度τoct =12MPa τoct =14MPa 2250250027503000325035003750

4000425045004750500052501.31.4

1.5

1.61.71.81.9

2.0

钻井液密度 /g /c m 3井深 / m

SLW2井按八面体剪应力设计5097-5420m盐层钻井液密度为1.95g/cm3 -2.0g/cm3。若采用欠饱和盐水钻井液密度1.6g/cm3,缩径速度和缩径率见表。

井深m

钻井液密度2.0g/cm3钻井液密度1.6g/cm 缩径速度

mm/h

缩径率

%

缩径速度

mm/h

缩径率

%

51000.1310.08420.3080.198 52000.1370.08810.3230.208 53000.1440.09230.3400.218 54000.1520.09760.3560.229 55000.1670.10700.3740.241

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结 地应力是存在于地层中的为受工程扰动的天然应力。也称为岩体初始应力、绝对应力或原岩应力。 地质软岩:单轴抗压强度小于25MPa的松散、破碎、软化及风化膨胀性一类岩体的总称。 工程软岩:工程力作用下能产生显著性变形的工程岩体。声发射:材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波,发生声响。 岩石岩石地下工程:地下岩石中开挖并临时获永久修建的各种工程。 围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变的周围岩体。 锚喷支护:锚杆与喷射混凝土联合支护的简称。 边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度的临空面。 岩石:自然界各种矿物的集合体,是天然地质作用的产物。 容重:岩石单位体积的重量。根据含水情况将岩石的容重分为天然容重、干容重、饱和容重。孔隙性:天然岩石中包含着数量不等、成因各异的孔隙和裂隙。 孔隙率:指岩石孔隙的体积与岩石总体积的比值,以百分数表示。分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、和闭孔隙率。孔隙率愈大,岩石力学性能越差。 水理性:岩石与水相互作用时所表现的性质。 包括岩石的吸水性、透水性、软化性和抗冻性。 岩石强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力。 单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受的最大压应力。 岩石破坏形式:x状共轭斜面剪切破坏。这种破坏形式是最常见的破坏形式;单斜面剪切破坏。这两种破坏都是由于破坏面上的剪应力超过极限引起的。 拉伸破坏:横向拉应力超过岩石抗拉极限引起的。 流变破坏:岩石的三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受的最大压应力。 莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。直线型、抛物线型、双曲线型。 点载荷试验:试验所获得的强度指标值可以用做岩石分级的一个指标。点载荷实验装置是便携式的,可带到岩土工程现场去做实验。点载荷试验对试件的要求不严格。缺点是要根据经

现场岩石力学试验报告模板

工程勘察: 证书编号 45040Ⅲ -211-U 桂林漓江**水库枢纽工程 现场岩石试验报告 广西*******勘察设计研究院

核定:审查:校核:编写:试验:

1工作概况 (1) 2 现场混凝土与岩体抗剪(断)试验 (1) 2.1 抗剪(断)试验试样布置及地质条件 (1) 2.2 抗剪(断)试验试样制备情况 (2) 2.3 抗剪(断)试验方法 (2) 2.4 抗剪(断)试验成果整理方法 (3) 2.5 抗剪(断)试验破坏机理分析 (3) 2.6 抗剪断试验成果分析 (4) 3 现场岩体变形试验 (5) 3.1 岩体变形试验试样布置及地质条件 (7) 3.2 岩体变形试点制作 (7) 3.3 岩体变形试验方法 (7) 3.4 岩体变形试验成果整理 (7) 3.5 岩体变形试验成果分析 (8) 4 建议 (9)

1 工作概况 桂林漓江**水库枢纽工程位于广西桂林市为漓江一级支流,距离桂林**km有等外公路从**至**村。该水库枢纽主要任务是调蓄讯期洪水水量,枯水期向漓江补水,并利用补水水能发电。拟建枢纽最大坝高约**m,正常高水位**m,总库容约为**万m3,通过引水隧洞到下游厂房发电,电站装机容量为**MW。 坝址现场岩体力学试验于****日至*****日坝轴线左岸及坝轴线下游200m右岸进行现场混凝土与岩体抗剪(断)试验及现场岩体变形试验,共完成工作量见表1。 表1 现场岩石试验工作量表 试验数据采集和处理采用8098多功能岩土检测系统,该微机系统于1991年4月通过广西科学技术委员会的技术鉴定,开工前经广西计量测试研究所率定。各项技术指标均符合DLJ204-81,SLJ2-81《水利水电工程岩石试验规程》(试行),DL5006-92《水利水电工程岩石试验规程(补充部分)》。 2 现场混凝土与岩体抗剪(断)强度试验 2.1抗剪(断)试验试样布置及地质条件 a) 现场混凝土与岩体抗剪(断)试验在坝址区内进行,分别选强、弱风化泥质粉砂岩各12个点(即3组),详见表2。岩层产状一般为**?/NW∠**?,周围岩石为砂岩、泥岩互层。

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编 北京科技大学 土木与环境工程学院 2008 年3 月

前言 试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验;3、岩石密度试验;4、岩石耐崩解试验5、岩石膨胀试验;6、岩石冻融试验;7、岩石单轴抗压强度试验,8、岩石压缩变形试验,9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

目录 岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (3) 三、岩石密度试验 (6) 四、岩石耐崩解试验 (10) 五、岩石膨胀试验 (12) 六、岩石冻融试验 (15) 岩石力学性质试验 (18) 七、岩石单轴抗压强度试验 (18) 八、岩石压缩变形试验 (20) 九、岩石抗拉强度试验(巴西法) (24) 十、岩石抗剪强度试验(变角剪切) (27) 十一、岩石三轴压缩及变形试验 (29) 十二、岩石弱面剪切强度试验 (37) 十三、点载荷指数的测定 (40) 十四、岩石纵波速度测定 (42) 十五、岩石力学伺服控制刚性试验 (43) 十六、岩石声发射试验 (46)

岩石力学翻译

岩石力学和国际岩石力学学会的未来 摘要: 考虑岩石力学和国际岩石力学学会(ISRM)的未来需要对岩石力学在第一个五十年里取得的成就进行评估,并确定一些还主要存在的未解决的问题,指明未来可能采用的技术方法的方向以及岩石力学未来发展的可能性。这里不久的将来包括当前国际岩石力学学会委员会正在实施的现代化计划和当前技术的发展。长远的未来需要从可能产生的技术创新及其对岩石力学的影响来预言。此外,本文对专业学会如ISRM的目的、性质及潜能的演变也进行了简要的讨论。本文的重点在于支持着岩土工程的岩石力学,其主题包括地质、岩石应力、完整岩块、岩石裂隙、水流、工程活动和数值模拟。 关键字:岩石力学;成就;基本原则;技术未来;联合模拟 1、简介: 思考岩石力学未来可能被采用的方向对于其主题及其在岩土工程中的应用非常重要。事实上,这是做这样一个推测的一个合适的时间,因为2012年就是ISRM成立50周年,且2011年将在北京召开ISRM代表大会。此外,2008年还是ISRM奠基者及第一人主席利奥波德·穆勒的一百年诞辰。 希波克拉底预测未来的方法就是:“考虑过去,解释现在,预知未来。”所以,在本文就是基于过去已经取得的成就(特别是过去50年),确定一些主要存在的还未的问题。这就自然地引导我们考虑未来技术发展的可能性及存在问题能否解决。就ISRM而言,当前实施的现代化在某种程度上能帮我们对ISRM不久的未来进行预测。然而,对于ISRM的长远未来也需要讨论,因为这包括一些与个人与团队交流以及保存并传播合作知识有关的有趣问题。 2、总结当前岩石力学的认识和能力: 岩石力学的知识和能力已经在1995年Elsevier写的“综合岩土工程”里以百科全书的形式通过4407页的概要得到总结。这五卷包括一下主题: 1、基本原则; 2、分析和设计方法; 3、岩石测试和地点描绘; 4、挖掘、支撑及检测; 5、地表与地下的案例。 尽管这本概要已经出版了13年,并且岩石力学的很多领域都已取得进步,但是这门艺术的本质是相似的。 3、岩石力学未解决的问题 尽管在过去50年里岩石力学和岩土工程已经取得了大量的进步,但还是存在一些突出的问题。事实上,利奥波德·穆勒成立ISRM的灵感已经在他的1962年5月份的评论里有所表述:“我们不知道岩块的强度,这就是需要一个国际学会的原因。”。然而,在很多情况下我们还有关于评估岩块强度的问题! 在这一部分,将概述一些岩石力学主要未解决的问题。这些载于一下专题中:地质、岩石应力、岩块、裂隙、水流和模拟。在每一个小专题里面用斜体字书写的文段就是关于这些问题在不久的将来被解决的可能性。 3.1、地质 地质,特别是构造地质和工程的岩土力学,在表2中得到强调。

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

实验五 岩石单轴压缩实验(DOC)

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

重大导师简介

阴可 博士,教授,博士生导师。中国岩石力学与工程学会地下工程分会理事、中国土木工程学会隧道及地下工程分会理事。主要从事岩石动力特性、特殊岩石基础计算和设计、岩质边坡和地下洞室稳定性、滑坡防治及埋入式抗滑结构、建构筑物质量检测技术及加固措施等方面的研究。先后负责主持国家、省部级及横向科研项目20余项,参与主研各类重大、重点工程科研项目10余项。在国内外学术刊物上发表论文30余篇,其中5余篇被EI检索系统收录;先后获得国家科技进步二等奖1项、教育部科技进步一等奖1项、重庆市科技进步三等奖1项。 谢强 博士,副教授,硕士生导师。国际岩石力学学会(ISRM)会员,中国岩石力学与工程学会(CSRME)会员,《地下空间与工程学报》责任编辑。主要从事岩土力学基本理论、岩土工程测试与监测技术、地质灾害评价与治理、路基路面工程等方向的研究。主持科技部国家重大专项项目(“十一五”子课题)1 项;主持省部级科研项目3项;参与主研国家和地方的重大、重点工程科研项目12项。在国内外学术刊物上发表论文30余篇,其中10余篇被SCI、EI检索系统收录;获国家级奖项1项,省部级奖项1项,行业学会奖1项。 刘新荣 教授、博士生导师。现任重庆大学土木工程学院隧道与地下空间研究所所长、《地下空间与工程学报》常务副主编,中国岩石力学与工程学会常务理事、中国土木工程学会地下空间专业委员会副主任、重庆岩石力学与工程学会秘书长等,曾任日本东京大学土木工学科客座研究员。主要从事隧道与地下工程稳定性、岩土灾害成灾机理与防治技术、城市地下空间开发利用等领域的教学科研工作。主持或参与国家级、省部级以及横向科研项目30余项,其中获国家科技进步奖2项、省部级科技进步奖6项。发表学术论文90余篇,其中被SCI、EI 收录40余篇。荣获“霍英东教育基金会高校青年教师奖”、“重庆青年科技奖”等;入选教育部“新世纪优秀人才支持计划”、重庆市“322重点人才工程”和“重庆市第二届学术技术带头人”等。 胡岱文(女 现任重庆大学土木工程学院岩土工程系系主任、副教授。中国建筑学会岩土工程分会理事、重庆市土木建筑学会岩土工程分会理事。主要从事建筑地基与基础工程、岩土边坡工程等方向的教学科研工作。先后主持或参与国家级、省部级以及横向科研项目10余项,其中获省部级科技进步奖3项。并在国内外学术刊物上发表论文20余篇。 刘先珊女 博士,副教授。2006年毕业于武汉大学岩土工程专业,获工学博士学位。主要研究领域为

岩石力学与工程习题答案全解

1.构成岩石的主要造岩矿物有正长石、斜长石、石英、黑云母、白云母、角闪石、辉石、橄榄石、方解石、白云石、高岭石、赤铁矿。 2.为什么说基性岩和超基性岩最容易风化?答:基性岩石和超基性岩石主要由易风化的橄榄石、辉石及基性斜长石组成。所以基性岩石和超基性岩石非常容易风化。 3、常见岩石的结构连结类型有那几种? 1.结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩以及部分沉积岩的结构连结。 2.胶结连结:指颗粒与颗粒之间通过胶结物质连结在一起的连结。如沉积碎屑岩、部分粘土岩的结构连结。 4.何谓岩石中的微结构面,主要指那些,各有什么特点? 答:岩石中的微结构面(或缺陷)是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理、晶格缺陷、晶粒边界、粒间空隙、微裂隙等。矿物的解理面:是指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。晶粒边界:矿物晶体内部各粒子都是由各种离子键、原子键、分子键等相连结。由于矿物晶粒表面电价不平衡而使矿物表面具有一定的结合力,但这种结合力一般比起矿物内部的键连结力要小,因此,晶粒边界就相对软弱。微裂隙:是指发育于矿物颗粒内部及颗粒之间的多呈闭合状态的破裂迹线,也称显微裂隙。粒间空隙:多在成岩过程中形成,如结晶岩中晶粒之间的小空隙,碎屑岩中由于胶结物未完全充填而留下的空隙。粒间空隙对岩石的透水性和压缩性有较大的影响。晶格缺陷:有由于晶体外原子入侵结果产生的化学上的缺陷,也有由于化学比例或原子重排列的毛病所产生的物理上的缺陷。它与岩石的塑性变形有关。 5.自然界中的岩石按地质成因分类,可分为几大类,各大类有何特点?答:根据地质学的岩石成因分类可把岩石分为岩浆岩、沉积岩和变质岩。岩浆岩特点: 1)深成岩:常形成较大的入侵体。颗粒均匀,多为粗-中粒状结构,致密坚硬,孔隙很小,力学强度高,透水性较弱,抗水性较强。2)浅成岩:成分与深成岩相似,但产状和结构都不相同,多为岩床、岩墙和岩脉。均匀性差,与其他岩种相比,它的性能较好。3)喷出岩:结构较复杂,岩性不均一,连续性较差,透水性较强,软弱结构面比较发育。沉积岩特点:1)火山碎屑岩:具有岩浆和普通沉积岩的双重特性和过渡关系,各类火山岩的 性质差别很大。2)胶结碎屑岩:是沉积物经过胶结、成岩固结硬化的岩石。 其性质取决于胶结物的成分、胶结形式和碎屑物成分和特点。3)粘土岩:包括页岩和泥岩。其性质较差。4)化学岩和生物岩:碳酸盐类岩石,以石灰石分布最广。结构致密、坚硬、强度较高。变质岩特点:是在已有岩石的基础之上,经过变质混合作用后形成的。在形成过程中由于其形成的温度和压力的不同而具有不同的性质,形成了变质岩特有的片理、剥理和片麻结构等。据有明显的不均匀性和各向异性。变质岩特点1)接触变质岩:侵入体周围形成岩体。岩 体透水性强,抗风化能力降低。 2)动力变质岩:构造作用形成的断裂带及附近受到影响的岩石。它的胶结不好,裂隙、孔隙发育,强度低,透水性强。3)区域变质岩:这种变质岩的分布范围广,岩石厚度大,变质程度均一。一般块状岩石性质较好,层状片状岩石性质较差。 6.表示岩石物理性质的主要指标及其表示方式是什么? 答:指由岩石固有的物理组成和结构特性所决定的比重、容重、孔隙率、水理性等基本属性。 7、岩石破坏有几种形式?对各种破坏的原因作出解释。 答:试件在单轴压缩载荷作用破坏时,在试件中可产生三种破坏形式: (1)X状共轭斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。 (2)单斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。 (3)拉伸破坏,破坏面

国家一级学会名单

国家一级学会名单 (中国科学技术协会下属的全国学会)理科 A-01 中国数学会 A-02 中国物理学会 A-03 中国力学学会 A-04 中国光学学会 A-05 中国声学学会 A-06 中国化学会 A-07 中国天文学会 A-08 中国气象学会 A-09 中国空间科学学会 A-10 中国地质学会 A-11 中国地理学会 A-12 中国地球物理学会 A-13 中国矿物岩石地球化学学会 A-14 中国古生物学会 A-15 中国海洋湖沼学会 A-16 中国海洋学会 A-17 中国地震学会 A-18 中国动物学会 A-19 中国植物学会 A-20 中国昆虫学会 A-21 中国微生物学会 A-22 中国生物化学与分子生物学会 A-23 中国细胞生物学学会 A-24 中国植物生理与植物分子生物学学会 A-25 中国生物物理学会 A-26 中国遗传学会 A-27 中国心理学会 A-28 中国生态学学会 A-29 中国环境科学学会 A-30 中国自然资源学会 A-31 中国感光学会 A-32 中国优选法统筹法与经济数学研究会 A-33 中国岩石力学与工程学会 A-34 中国野生动物保护协会 A-35 中国系统工程学会 A-36 中国实验动物学会 A-37 中国青藏高原研究会 A-38 中国环境诱变剂学会 A-39 中国运筹学会

A-41 中国晶体学会 A-42 中国神经科学学会工科 B-01 中国机械工程学会 B-02 中国汽车工程学会 B-03 中国农业机械学会 B-04 中国农业工程学会 B-05 中国电机工程学会 B-06 中国电工技术学会 B-07 中国水力发电工程学会B-08 中国水利学会 B-09 中国内燃机学会 B-10 中国工程热物理学会B-11 中国空气动力学会 B-12 中国制冷学会 B-13 中国真空学会 B-14 中国自动化学会 B-15 中国仪器仪表学会 B-16 中国计量测试学会 B-17 中国标准化协会 B-18 中国图学学会 B-19 中国电子学会 B-20 中国计算机学会 B-21 中国通信学会 B-22 中国中文信息学会 B-23 中国测绘地理信息学会B-24 中国造船工程学会 B-25 中国航海学会 B-26 中国铁道学会 B-27 中国公路学会 B-28 中国航空学会 B-29 中国宇航学会 B-30 中国兵工学会 B-31 中国金属学会 B-32 中国有色金属学会 B-33 中国稀土学会 B-34 中国腐蚀与防护学会B-35 中国化工学会 B-36 中国核学会 B-37 中国石油学会 B-38 中国煤炭学会 B-39 中国可再生能源学会

岩石力学实验

专业:年级姓名 指导老师 《岩石力学》实验报告书 西南科技大学环境与资源学院中心实验室

试验1、岩石单向抗压强度的测定 一、仪器设备 材料试验机、游标卡尺。 二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm 的长方体。 三、测定步骤: 1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值) 填入记录表内。 2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN 3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使 试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。 四、测定结果的计算: 试件的抗压强度: F P R 式中:R ——试件抗压强度,MPa P ——试件破坏载荷,N F ——试件面积,mm 2

试验2、岩石抗拉强度的测定(劈裂法) 一、仪器设备: 材料试验机、劈裂法实验夹具、游标卡尺。 二、试件规格 标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。 三、测定步骤: 1、2同抗压强度相同。 3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。 4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。 四、测定结果计算: DL P R L 14.32 式中:R L ——岩石单向抗拉强度,MPa P ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm 抗拉强度测定记录表

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

岩石力学与工程试卷2020(1)

2019-2020第2学期《岩石力学与工程》试卷 班级:姓名:学号: 一、简答题(每题10分,共60分) 1. 什么是岩石强度?影响岩石强度的因素有哪些?如何消除或修正这些影响因素? 2. 测量岩石抗压强度的方法有哪些?测量岩石抗拉强度的方法有哪些?它们各自的优缺点是什么? 3. 表征岩体结构面状态的因素有哪些?结合所学的岩体分级方法(选择其中一个即可)论述它们各自是如何影响岩体强度的? 4. 典型的地应力直接测量方法有哪些?它们的测量原理和步骤是什么?有什么优点和缺点? 5. 空心包体应变计法进行地应力测量时,采用的测量探头为什么叫做“空心”包体?其测量原理和步骤是什么? 6. 画出开尔文(Kelvin)体的流变力学模型,给出其本构方程和蠕变方程推导过程,并画出蠕变曲线。 二、计算题(每题10分,共40分,计算结果保留小数点后2位) 1. 岩石单轴压缩试验中,当压力达到(50+学号后两位/10)MPa时试样破坏,且破坏面与轴向加载方向夹角为(25+学号后1位数)°,假定岩石破坏符合莫尔-库伦强度理论,试计算: (1)岩石内摩擦角;(3分) (2)岩石的粘聚力;(3分) (3)若有一同种岩石试样存在一软弱面与试样轴向(最大主应力方向)夹角40°。已知软弱面强度参数,粘聚力c j=8MPa,内摩擦角φj=25°,问此时试样单轴破坏强度和破坏面方位角。(4分)

2. 对某一岩石进行点荷载试验获得数据(如下表所示),请计算Is(50)数值,并估算单轴抗压强度。 3. 计算一组钻孔深度为500cm 的岩芯RQD 值。 其中:1号岩芯长度为学号的1-2位数字(单位:cm ); 2号岩芯长度为学号的3-4位数字(单位:cm ); 3号岩芯长度为学号的5-6位数字(单位:cm ); 4号岩芯长度为学号的7-8位数字(单位:cm ); 5号岩芯长度为学号7-8位数字除以10(单位:cm )。 4. 现有两个弹簧和一个摩擦块组成一套装置(如图所示)。弹簧的刚度系数都是K ,在滑动块上作用一个竖向恒荷载P ,滑动块与地面摩擦系数为μ。若在装置右侧施加一准静态荷载F 。请推导F 与装置拉伸变形关系公式,并绘制F 由0增长至(学号后两位/10)μP ,然后再逐渐减小到0时的F -位移曲线。 F

岩石力学与工程实验指导书(修订)

岩石力学实验指导书 湖南科技大学 能源与安全工程学院

岩石物理性质试验 (1) 一、岩石密度试验 (6) 岩石力学性质试验 (18) 一、岩石单轴抗压强度试验 (18) 二、岩石抗拉强度试验(劈裂法) (24) 三、岩石抗剪强度试验(变角剪切) (27) 四、岩石力学伺服控制试验 (43)

岩石物理性质试验 一、岩石密度试验 1 概述 岩石密度,即单位体积的岩石质量,是试样质量与试样体积之比。根据试样的含水量情况,岩石密度可分为烘干密度、饱和密度和天然密度。一般未说明含水情况时,即指烘干密度。 根据岩石类型和试样形态,分别采用下述方法测定其密度: (1)凡能制备成规则试样的岩石,宜采用量积法。 (2)除遇水崩解、溶解和干缩湿胀性岩石外,可采用水中称重法。 (3)不能用量积法或水中称重法进行测定的岩石,可采用腊封法。用水中称重法测定岩石密度时,一般用测定岩石吸水率和饱和吸水率的同一试样同时进行测定。 2 试样制备 2.1 量积法 (1)试样的形态,可以用圆柱体、立方体或方柱体,根据密度试验后的其他实验要求选择。 (2)制备的试样,应具有一定的精度,其精度要求应满足其他试验项目的规定。 (3)每组试验须制备3 个试样,它们须具有充分的代表性。 2.2 腊封法 (1)试样取边长为4?6cm的近似立方体的岩块。 (2 )如需测定天然密度时,拆除密封后立即称试样重。 (3)每组试验须制备3 个试样,它们须具有充分的代表性。 3 试样描述 (1 )岩石名称、颜色、结构、矿物成分、颗粒大小、胶结物质等特征。 (2)节理裂隙的发育程度及其分布。 (3 )试样形态及缺角,掉棱角等现象。 4 主要仪器设备 4.1 量积法 (1 )钻石机、切石机、磨石机或其他制样设备。

岩石力学与工程典型题解

绪论典型题解 1.1岩石和岩体的概念有何不同? 答:所谓岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体;所谓岩体是在一定的地质条件下,含有诸如节理、裂隙、层理和断层等地质结构面的复杂地质体。岩石就是指岩块,在一般情况下,不含有地质结构面。 1.2在力学性质上,岩体具有什么特征? 答:岩体具有不连续性、各向异性、不均匀性、岩石块单元体的可移动性、赋存地质因子这五条特征。 ------------------------------------------------------------------- 岩石和岩体的基本物理力学性质 典型题解 2.1某岩石试件,测得容重3/9.1cm kg =γ,比重△=2.69,含水量%29=d ω,试求该岩样的孔隙比v ε,孔隙度n ,饱和度r S 和干容重d γ。 解:孔隙比:83.019 .1) 29.01(69.21) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083 .0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?= =ε ω G S r 干容重:)/(47.183 .0169 .213cm g d =+=+?= εγ 上述指标,也可利用三相图进行计算,若从以知条件V ω γ= 入手,则可先假 设V=1,然后推算出三相重量及体积,按各物理指标的定义,即可将各指标求得: 设31cm V =,则按容重定义:g V W 9.1=?=γ 按含水量定义:s s d W V W 29.0==γωω 按三相图: W W W s =+ω 即 : 9.129.0=+s s W W 故: g W s 47.129 .19 .1== g W W W s 43.047.19.1=-=-=ω

第十四次全国岩石力学与工程学术大会议程及学术报告安排

第十四次全国岩石力学与工程学术大会会议日程 日期时间内容地点:广州颐和大酒店2016年12月11日07:00-24:00第八次全国会员代表大会参会代表报到酒店大堂2016年12月11日19:30-21:30第七届理事会十四次常务理事会会议雅典厅 2016年12月12日07:00-24:00第十四次全国岩石力学与工程学术大会参会代表报到国际会议中心 2016年12月12日08:30-12:00第八次全国会员代表大会第一次会议国际会议中心13:30-15:00第八届理事会第一次理事会议国际会议中心15:00-15:30第八届理事会党员大会国际会议中心15:30-16:00第八届理事会党委第一次会议国际会议中心16:15-17:00第八次全国会员代表大会第二次会议国际会议中心17:00-18:00第八届理事会第一次常务理事会国际会议中心 2016年12月13日 上午08:30-09:30大会开幕式、颁奖仪式国际会议中心09:30-12:30特邀报告与大会报告1国际会议中心 2016年12月13日 下午13:30-18:05专题报告1——岩石力学实验研究国际会议中心分会场一13:30-18:05专题报告2——理论与数值模拟国际会议中心分会场二13:30-18:05专题报告3——岩石工程与施工技术国际会议中心分会场三13:30-18:05青年学者论坛雅典厅 2016年12月14日 上午08:30-09:50专题报告1——岩石力学实验研究国际会议中心分会场一08:30-09:50专题报告2——理论与数值模拟国际会议中心分会场二08:30-09:50专题报告3——岩石工程与施工技术国际会议中心分会场三08:30-09:50青年学者论坛雅典厅 10:10-12:30大会报告2国际会议中心 2016年12月14日 下午13:30-16:40特邀报告与大会报告3国际会议中心16:40-17:00大会闭幕式、颁奖国际会议中心 2016年12月15日会后工程考察

岩石力学

1、岩石的强度与矿物颗粒、胶结类型与程度的关系:1岩石的强度与矿物颗粒的关系包括两个方面:一是结晶程度和颗粒大小,岩石的结晶程度和颗粒大小对其抗压强度的影响是显著的。一般来说,结晶岩石比非结晶岩石强度高,细粒结晶的岩石比粗粒结晶的岩石强度高。二是矿物成分,不同矿物组成的岩石,具有不同的抗压强度,这是由于矿物本身的特点 2 岩石的强度与胶结类型与程度的关系:对沉积岩来说,胶结程度类型和胶结物类型对强度的影响很大。在胶结程度类型方面,分为基质胶结、接触胶结和孔隙胶结。基质胶结,岩石颗粒彼此不直接接触,完全受胶结物的包围,岩石强度取决于胶结物的性质;接触胶结,只有岩石颗粒接触的地方才有胶结物胶结,胶结一般不牢固,岩石强度低,透水性强;孔隙胶结,胶结物完全或部分的充填于岩石颗粒之间孔隙中,胶结一般较牢固,岩石强度和透水性较弱。在胶结物类型方面,石灰质胶结的岩石强度较低,而硅质胶结的具有很高的强度,泥质胶结的岩石强度最低。 2、碎屑质沉积岩非均质性与各向异性对岩石力学性质的影响:非均质性指组成不同,非均质岩石的力学特性由细观单元力学特性和其非均质特性共同决定,岩石的非均质性对其极限强度具有弱化影响;各向异性指储层岩石沿各个方向的物性、电性、热力学性质等不同。由于碎屑质沉积岩的各向异性明显,所以不能用常规的单轴抗压实验来测定岩石力学性态,而必须在一定的围压下(必要时还要考虑温度的作用)进行试验测定,通常采用的是三轴抗压试验 3、围压、液体介质对于砂岩强度的影响:对于砂岩,随着围压的增加,岩石的杨氏弹性模量、剪切模量和泊淞比均有一定程度的提高。液体介质的存在,减弱了岩石的胶结,从而降低了岩石的强度。 4、牙轮钻头与PDC 钻头破岩时岩石的破坏形式:牙轮钻头:冲击压力(动载)的作用下,岩石的三向压缩状态下发生剪切破坏,形成破碎坑;PDC钻头:钻压作用下切削吃入岩石,扭矩作用下的岩石发生剪切破坏。 5、弹性变形、塑性变形与蠕变的定义:弹性变形:弹性是指在一定的应力范围内,物体受外力作用产生变形,而去除外力(卸荷)后能够立即恢复其原有的形状和尺寸大小的性质。其产生的变形称为弹性变形。塑性变形:塑性是指物体受力后,在应力超过屈服应力时仍能继续变形而不即行断裂,撤去外力(卸荷)后,变形又不能完全恢复的性质。不能恢复的那部分变形称为塑性变形,或称永久变形、残余变形。蠕变:指在恒定荷载作用条件下,变形随时间逐渐增长的现象 6、蠕变过程根据应力状态的变化可将此蠕变过程划分为四个阶段。1瞬时变形:即常应力刚刚作用于岩石试件上就出现的弹性应变。2初始蠕变或阻尼蠕变,也称第一蠕变阶段:对应着区域Ⅰ。在此区域应变ε最初随时间增长较快,但增长速率随时间逐渐降低。这个过程可能伴随着“稳定的”微裂隙以逐渐减小的速率慢慢扩展;3稳态蠕变或等速蠕变,也称第二蠕变阶段:对应着区域Ⅱ。在此区域曲线有近似常数的斜率,即应变随时间呈近于等速的增长;4加速蠕变(第三蠕变阶段:对应着区域Ⅲ。其应变速率加快并迅速导致破坏。这个过程可能伴随着“不稳定的微裂隙的快速张开。 7、蠕变对于钻井工程的影响井径缩小的影响及其措施-钻柱遇阻、下套管遇阻;安全施工时间段-加速蠕变前完成下套管、注水泥作业;套管抗外挤载荷的确定-考虑上覆岩层压力为最大外挤载荷 8、三轴应力试验方法模拟地层应力环境、温度条件下的试验测试,将圆柱状的岩样置于一个高压容器中,首先用液压使其四周处于均匀压缩的应力状态,然后保持此压力不变,对岩样进行纵向加载,直到破坏,记录下纵向的应力和应变关系曲线,获得地层条件下的岩石力学性质,强度特征,变形特征 9、摩尔强度准则:材料在极限状态下,剪切面上的剪应力就达到了随法向应力和材料性质而定的极限值时,发生破坏。也就是说,当材料中一点可能滑动面上的剪应力超过该面上的剪切强度时,该点就产生破坏,而滑动面的剪切强度[τ]又是作用于该面上法向应力σ的函数。三向压应力作用下,岩石出现剪切破坏,且仅与最大、最小主应力相关;最大最小主应力差值到达极限,摩尔圆与强度曲线相切,出现破坏;强度曲线-滑动面的剪切强度[τ]是作用于该面上法向应力σ的函数。 10、库伦-摩尔强度准则:三向应力作用下,岩石出现剪切破坏,且仅与最大最小主应力有关,岩石内任一点发生剪切破坏时,破坏面上的剪应力(τ)应等于或大于材料本身的固有强度(C)和作用于该面上由法向应力σ引起的摩擦阻力之和。 11、应用密度测井的垂直地应力计算中如何考虑地层压力的影响?水平地应力的来源与 计算?出现最大、最小水平地应力的原因: 垂直地应力来源于上覆岩层压力,还受地层 压力的影响。水平地应力:垂直地应力作用 下岩体受到位移约束,产生水平地应力分量, 且与泊淞比有关。还受到构造应力的影响。 水平地应力为构造地应力和垂直地应力产 生,构造地应力在不同方向上大小不同,所 以产生最大最小水平地应力 12、水力压裂试验测试方法及典型测试曲线 确定最小水平地应力、抗拉强度方法:水力压 裂裂缝面垂直于最小主应力;对于垂直裂缝 面,破裂压力为水力压裂试压时的最高压力; 已经压开地层形成人工裂缝后,停泵再次压 开地层的压力为闭合压力,其等于最小水平 地应力;破裂压力=闭合压力+岩石的抗拉强 度 1破裂压力Pf :压力最大之点,反映了液压 克服地层的抗拉强度使其破裂,形成井漏, 造成压力突然下降。 2 延伸压力 Ppro ,压 力趋于平缓的点,为裂隙不断向远处扩展所 需的压力。3瞬时停泵压力Ps :当裂缝延伸 到离开井壁应力集中区,进行瞬时停泵,从 压降曲线找出裂缝的闭合压力Ps.此时,Ps 与最小水平地应力相平衡。4裂缝重张压力 Pr ,瞬时停泵后重新开泵向井内加压。使闭 合的裂缝重新张开。由于张开闭合裂缝所需 的压力 Pr 与破裂压力Pf相比不需克服岩 石的拉伸强度, 因此可以认为破裂层的拉伸强度等于这两个 压力的差值,即有: St=Pf-Pr。因此,只要 通过破裂压力试验测得地层的破裂压力、瞬 时停泵压力和裂缝重张压力,结合地层孔隙 压力的测定,利用1、2、3式即可以确定出 地层某深处的最大、最小水平主地应力:① St=Pf-Pr②σh = Ps③σH=3σh-Pf-αPp+St 13、声发射(凯赛尔)实验测试与确定地应 力的原理和方法:原理:岩石的声发射现象 最重要的特征是七对受过的应力履历的一种 记忆效应,这种效应称为凯赛尔效应。声发 射活动的频率和振幅与应力有一定的关系, 岩石受力发生微破裂,微破裂发生的频率随 着应力的增加而增加,在单调增加应力作用 下,当应力达到过去已施加过的最大应力时, 声发射现象明显增加。在声发射信号随载荷 的变化曲线上找出声信号突然明显增加处, 记录下此处的载荷,即为岩石在该地下该方 向上所受的地应力。方法:通过定向取心、 古地磁定向等,测试岩心水平面不同方向的 凯赛尔应力点即可确定最大最小水平地应 力,也可通过水平面与垂直方向凯赛尔实验 测试确定三个地应力的大小 14、声波测井资料确定地层孔隙压力的原理 与方法:泥质沉积物不平衡压实造成的地层 前压实并产生异常高压,正常压实情况下, 泥质沉积物的垂直有效应力随着埋深的增加 而逐渐增大,孔隙度减小,对于欠压实泥页 岩地层,孔隙度比正常压实情况偏大,即偏 离了正常压实曲线,按照不平衡压实造成地 层欠压实并产生高压的机制,则认为该处存 在异常高压。方法:声波时差测井 15、泥页岩地层井壁失稳:泥页岩地层岩石 强度低,抗剪切强度很低;水基泥浆为常用 泥浆体系,粘土水化膨胀促使岩石强度降低, 局部压应力增大;井壁岩石的应力状态发生 变化,低营地最大主应力大于原始地应力, 由于是非渗透泥页岩,地应力最小主力为井 筒内的液柱压力,最大最小主应力差增大, 可能出现剪切破坏。 16、井壁失稳影响因素:影响因素:水化膨 胀是主因-泥页岩粘土含量与成份、泥浆的 抑制性;力学方面 -泥浆密度、井内波动压力的影响等 17、坍塌压力对于井壁稳定的重要性:坍塌 应力是指水基泥浆钻井条件下,泥页岩地层 保持井壁稳定所需要的最小泥浆液柱压力, 通常用当量密度表示。坍塌应力的确定需要 考虑井壁应力条件下岩石的抗剪切强度,通 常最大主应力为垂直地应力或最大水平地应 力,井筒形成后对于非渗透的泥页岩地层, 井壁岩石最小主应力为井筒液柱压力,从力 学角度,为防止井壁岩石发生三向压缩状态 下的剪切破坏,实际泥浆密度应大于坍塌应 力的当量密度 18、水力压裂中砂岩地层破裂压力与地应力、 岩石强度的关系:砂岩地层破裂压力=裂缝重 张压力+岩石抗拉强度。裂缝重张压力,瞬 时停泵后重新开泵向井内加压。使闭合的裂 缝重新张开。由于张开闭合裂缝所需的压力 与破裂压力相比不需克服岩石的拉伸强度, 因此可以认为破裂层的拉伸强度等于这两个 压力的差值,即有St=Pf-Pr 19、低强度地层出砂的原因:上覆岩层压力 石油岩石骨架与岩石内流体压力共同承担 的,由于地层压力降低,施加在岩石骨架上 的压力就越来越大,当茶果地层抗压强度时, 地层就会发生破坏而造成出砂。 20、地层天然裂缝与地应力的关系:天然裂 缝通常是指由于构造运动,在历史地应力作 用作用下,地层岩石产生破坏形成的裂 缝。一般可以分为:显裂缝,微裂缝,成岩 缝,层理缝。形式上可以分为:垂直缝、高 角度缝、低角度缝、水平缝。现今地应力与 历史地应力相关,多为垂直缝和高角度缝, 天然裂缝面也通常垂直于最小水平地应 力。

相关主题
文本预览
相关文档 最新文档