当前位置:文档之家› (完整word版)流体力学

(完整word版)流体力学

(完整word版)流体力学
(完整word版)流体力学

第1章绪论

一、概念

1、什么是流体?

在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)

流体质点的物理含义和尺寸限制?

宏观尺寸非常小,微观尺寸非常大的任意一个物理实体

宏观体积极限为零,微观体积大于流体分子尺寸的数量级

什么是连续介质模型?连续介质模型的适用条件;

假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸

2、可压缩性的定义;

作用在一定量的流体上的压强增加时,体积减小

体积弹性模量的定义、与流体可压缩性之间的关系及公式;

Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比

Ev=1/Κt 体积弹性模量越大,流体可压缩性越小

气体等温过程、等熵过程的体积弹性模量;

等温Ev=p

等嫡Ev=kp k=Cp/Cv

不可压缩流体的定义及体积弹性模量;

作用在一定量的流体上的压强增加时,体积不变

Ev=dp/(dρ/ρ) (低速流动气体不可压缩)

3、流体粘性的定义;

流体抵抗剪切变形的一种属性

动力粘性系数、运动粘性系数的定义、公式;

动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)

运动粘度:ν,动力粘度与密度之比,v=μ/ρ

理想流体的定义及数学表达;

v=μ=0的流体

牛顿内摩擦定律(两个表达式及其物理意义);

τ=+-μdv/dy(τ大于零)、τ=μv/δ

切应力和速度梯度成正比

粘性产生的机理,粘性、粘性系数同温度的关系;

液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降

气体:气体分子热运动所产生的动量交换,温度升高粘性增大

牛顿流体的定义;

符合牛顿内摩擦定律的流体

4、作用在流体上的两种力。

质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力

表面力:大小与表面面积有关而且分布在流体表面上的力

二、计算

1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。

第2章流体静力学

一、概念

1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);

流体内任意点的压强大小都与都与其作用面的方位无关

2、静止流体平衡微分方程,物理意义及重力场下的简化

微元平衡流体的质量力和表面力无论在任何方向上都保持平衡

欧拉方程=0 流体平衡微分方程

重力场下的简化:dρ=-ρdW=-ρgdz

3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;

不可压缩流体静压强基本公式z+p/ρg=C

不可压缩流体静压强分布规律p=p0+ρgh

平衡流体中各点的总势能是一定的

静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点

4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;

绝对压强:以绝对真空为起点计算压强大小

记示压强:比当地大气压大多少的压强

真空压强:比当地大气压小多少的压强

绝对压强=当地大气压+表压

表压=绝对压强-当地大气压

真空压强=当地大气压-绝对压强

5、各种U型管测压计的优缺点;

单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高

U:可测液体压强也可测气体压强;缺:复杂

倾斜管:精度高;缺点:??

6、作用在平面上静压力的大小(公式、物理意义)。

F=p S+ρg sinαy S

当p =大气压强,F=ρgsinαy S

压力中心:

二、计算

1、U型管测压计的计算;

2、绝对压强、计示压强及真空压强的换算;

3、平壁面上静压力大小的计算。

第3章流体动力学基础

一、概念

1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数);拉格朗日法:(拉格朗日变数(a,b,c,t))

用质点的初始坐标和时间变量共同表达质点的运动规律

描述每个流体质点自始至终的运动规律、观察连续变化的整个质点系

欧拉法:(欧拉变数(x,y,z,t))

以数学场论为基础、着眼于任何时刻物理量在场上的分布规律的流体运动描述方法/描述空间某点流体运动物理量随时间的变化规律及由一点转向另一点时该量的变化

不同瞬间物理量在空间上的分布

系统和控制体的概念;

系统:某一确定流体质点集合的总体

控制体:流场中某一确定的空间区域

2、流场的概念,定常场、非定常场、均匀场、非均匀场的概念及数学描述;流场:流体流动空间形成的物理量连续分布的场

定常场:流场中的速度、压强等物理量的分布与时间无关

均匀场:流畅中的速度、压强等物理量与空间坐标无关

3、一元、二元、三元流动的概念;

除时间坐标外,流动参数随一个、两个、三个空间坐标变化

4、物质导数的概念及公式:

物质导数(质点导数):运动中的流体所具有的物理量对时间的变化率dN/dt 局部导数(当地导数):质点没有空间变位时,物理量对时间的变化率,反应流场的非定常性

对流导数(迁移导数、对流导数):质点经过dt时间处于不同位置时,物理量对时间的变化率,反应流场的非均匀性

流体质点加速度、不可压缩流体、均质不可压缩流体的数学描述;

速度的质点导数(dv x/dt,dv y/dt,dv z/dt三个公式)

不可压缩流体:dρ/dt=0

均质不可压缩流体:ρ=const

5、流线、迹线的定义、特点和区别,

迹线:流体质点的运动轨迹

特点:流场中实际存在的线、同一质点不同时刻空间位置的连线、和时间

过程有关的曲线随时间增长而延长,拉格朗日方法下的概念

流线:某瞬间流场中一条假设的曲线,该曲线上各点速度方向和曲线在该点切线方向重合

特点:是某瞬间假设的曲线、不同质点同一时刻空间位置的连线描述线上各质点的运动方向、定常流动流线形状位置不随时间改变、一般情况流线不相交或转折、流线走向和疏密反应某瞬时流场内流体速度方向和大小(密,大)、欧拉方法下的概念

什么时候两线重合;

定常流动时

流管的概念;

在流场中做一封闭且不自相交的曲线C,某瞬间通过该曲线上的流线构成的管状表面

总流、微小流束、质量流量、体积流量、平均速度的概念;

总流:流管内所有流线的总和

微小流束:微小流管内所有流线的总和

质量流量:单位时间通过流管过流断面的流体质量

体积流量:单位时间通过流管过流断面的流体体积

平均速度:假设过流断面上各点速度相等,通过的流量与实际流量相等

6、流量不变方程的物理意义、公式及适用条件;

单位时间内流入的和流出控制体的流体质量相等ρ1v1dA1=ρ2v2dA2

7、微分形式连续方程的适用条件、物理意义、公式及各种简化形式;

理想流体和粘性流体

质量守恒定律在流体力学中的具体表达式

一元:v1A1=v2A2

二元、三元:

定常:

不可压缩流动:

8、粘性流体中一点的应力状态与理想流体有什么区别;应力大小与作用面方位有关

9、N-S方程的物理意义(不要求公式);

作用在流体上的力平衡关系式ΣF-m a=0

什么是本构方程?

确定应力与变形速度关系的方程式

切应力公式

见第一章内容

10、沿流线的伯努利方程:

公式、各项物理和几何意义、总体物理和几何意义

z+p/ρg+v2/2g=C

z 单位重力流体的位能,位置水头,流体质点相对于基准面的高度

p/ρg 单位重力流体的压能,压强水头,产生压强p所需的流体柱高度

v2/2g 单位重力流体的动能,速度水头,不考虑阻力时流体以速度v垂直上射的高度

适用条件(注意单位重量流体和单位质量流体伯努利方程的不同表达形式式);理想不可压流体、定常流动、质量力有势且只有重力、沿同一条流线成立、无其他能量输入输出

单位质量流体:

单位重量:

11、理想流体总流伯努利方程:公式、各项物理和几何意义、总体物理和几何意

义、适用条件(注意方程表达形式及量纲);

α动能修正系数一般为1

理想不可压流体、定常流动、质量力有势且只有重力、两过流断面是缓变流过流断面、两过流断面间无能量输入输出

缓变流概念及数学描述;

流线切线之间的夹角很小(流线平行),流线曲率很小(流线近似于直线)

动能修正系数概念(层流和湍流状态分别取什么值);

反应过流断面上速度分布的不均匀性

h轴与功率的关系;

P=ρgq v h轴(泵和压缩机为负,涡轮机为正)

12、毕托管、文丘里流量计测量的参数及测量原理;(不要硬记公式)

13、动量方程适用条件、式中各项的物理意义、简化公式(求和形式的那个公式)、

求解时需要注意的事项;

二、计算

1、积分形式的动量方程、连续方程同伯努利方程的综合应用;(注意坐标系、

控制体的选取、受力分析时管道问题尤其要注意表压力是否存在);

2、伯努利方程的应用;

3、物质导数的计算,如流体质点加速度或流体质点某物理量对时间的变化率;

4、微分形式连续方程的应用:判断流动是否存在,求某方向的流动速度等。

第5章管中流动

一、概念

0、准则数的定义(哪两种力的比)、数学描述;

惯性力/粘性力Re=vl/ν (v特征速度,l特征长度【圆管中此项为d】)

1、流动的两种状态及判断准则数;

层流、湍流

Re>2320 湍流

Re<2320 层流

圆管流动临界雷诺数的值以及计算雷诺数时的特征长度和特征速度是什么?

2320

特征长度为管道直径,特征速度为圆管过流断面平均速度

水力直径、起始段和充分发展流动的概念;

S是流体与固体边界接触部分周

起始段长度L=0.03Re

2、圆管层流的速度分布及公式、切应力分布及公式,最大速度与平均速度之间

的关系;

**********一定要记住!最大速度r=0 最大速度=2×平均速度

()

哈根-伯萧叶定律

*******记住!

α=2,β=4/3

3、湍流瞬时物理量、时均物理量和脉动物理量的概念及相互关系

脉动物理量的时均值

S’=0

湍流切应力的构成;

湍流切应力+雷诺应力()

圆管湍流的结构(湍流核心区、层流底层、过渡区);

水力光滑管的定义;

管道凹凸不平部分完全被粘性底层覆盖,粗糙度对湍流核心几乎不产生影响圆管湍流总切应力分布(定性),

分子粘性应力及湍流附加应力(雷诺应力)沿圆管不同径向位置有什么样的分布规律

粘性底层主要是粘性切应力湍流核心主要是脉动切应力轴心处速度梯度为零切应力为零

湍流速度分布(层流底层与湍流核心区的定性速度分布),

层流底层厚度

Re与圆管湍流速度分布的关系(定性);(P.53图)

4、粘性流体总流伯努利方程:公式、各项物理和几何意义、总体物理和几何意

义、适用条件(注意方程表达形式及量纲);缓变流概念及数学描述;动能

与功率的关系;

修正系数概念(层流和湍流状态分别取什么值);h

5、水力损失的概念;

沿程损失的物理意义及公式;

在等径管路中,由于流体与管壁以及流体自身的内部摩擦,是流体能量沿流动方

向逐渐降低叫做沿程损失

1、压强损失△p 按照哈根伯萧叶公式可推,或圆管层流速度公式用平均速度表

2、水头损失

也是沿程损失公式λ=A/Re

3、功率损失P=△pq v

层流沿程损失系数的计算、公式;

λ=A/Re A常取75

湍流沿程损失系数的计算、显示公式;

莫地图或显示公式

莫迪图中不同区域的特点(层流、水力光滑管、完全粗糙区等);局部损失的物理意义及公式;

流体相互碰撞和形成漩涡等

突然缩小的局部损失系数

淹没进口和淹没出口的局部损失系数;

淹没进口

6、串联管道和并联管道的特点(流量、水力损失)。

二、计算

1、管道计算

连续方程、总流伯努利方程、水力损失方程

单管、串联管道、并联管道的处理;

缓变流过流断面的选取,总流伯努利方程的量纲,h

与功率的关系等);

沿程损失:

2、水力直径的计算;

第8章气体的一元流动

一、概念

1、当地声速的概念、各种形式的公式及物理意义;马赫数公式;

流体场中当地状态参数不同,声速不同,叫当地声速

p=ρR g T 则:

马赫数:Ma=v/c 可压缩流动的决定性准则

高超音速:大于5

超音速:大于1

音速:1

亚音速:小于1

3、微弱扰动波传播的热力过程及区域;

扰动区、扰动波面、未扰动区

3、一元流动密度变化与速度变化的关系;气流参数与通道面积的关系;定常一

元等熵流动控制方程组公式(连续方程、能量方程的各种形式、过程方程、状态方程);两种参考状态:等熵滞止状态、临界状态的概念;等熵流动过程中热力学参数变化的趋势及同速度变化之间的定性关系;静参数、滞止参数与马赫数之间的关系(P.40,公式可记);临界参数与滞止参数之间的关系(P.38,公式可记);

4、不同背压下收缩喷管流动状况及出口压强;

二、计算

1、收缩喷管和缩放喷管的计算;

2、声速、马赫数的计算。

不可压缩流体c无穷大

需要注意的几点:

1、课件中的例题和作业题十分重要,一定要深刻理解;

2、有什么问题要及时答疑;

3、概念比计算更重要,概念融会贯通,计算只是小菜一碟;只注重计算却很容

易忽视概念,拿高分十分不易。

工程热力学、传热学、流体力学、机械原理

1

《内燃机原理》课程教学大纲 课程名称:内燃机原理(Internal Combustion Engine) 课程代码: 学分/学时:3学分/51学时 开课学期:秋季学期 适用专业:车辆工程、动力机械及工程、船舶工程等相关专业 先修课程:工程热力学、传热学、流体力学、机械原理与设计 后续课程:现代发动机设计、发动机电子控制技术、发动机排放控制技术 开课单位:机械与动力工程学院 一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献,专业人才培养目标中的知识、能力和素质见附表) 课程性质:内燃机原理是车辆工程、动力机械及工程、船舶工程等专业的一门重 要专业技术基础课,是培养发动机设计工程师和科研人员的主干、核心课。 教学目标:内燃机原理是一门理论性较强的专业课程,是汽车及内燃机工程专业 的核心课程。通过本门课程的学习,要使学生掌握内燃机工作过程各项性能指标的概念和内涵,熟悉内燃机理论和实际工作循环的特点,学习内燃机的充量更换、燃料供给与调节、混合气的形成与燃烧以及污染物的生成与排放控制等方面的工作原理及影响因素,能运用所学知识,分析提高内燃机各种工作性能指标、降低排放的技术措施和适用条件,培养成为熟悉内燃机原理的研究或设计人才。为从事相关专业技术工作、科学研究工作及管理工作提供重要的理论基础。(A5.1、A5.2、A5.3、B2、B4、C2) 本课程通过本课程的学习,使学生熟练掌握内燃机工作过程的性能指标,把握点燃式汽油机和压燃式柴油机的混合气形成、燃烧及排放等工作过程的特点,掌握如充量更换规律、现代内燃机燃料供给与调节方式、内燃机各种污染物的生成原理与控制方法等,在此基础上,能够对运用所学内燃机的原理知识,分析内燃机强化、降低油耗和减少排放等各项技术的工作机理和工程实际的可行性。要求学生能够掌握内燃机常规试验的方法和技巧。同时培养学生科学抽象、逻辑思维能力,进一步强化实践是检验理论的唯一标准的认识观。具体来说: (1)掌握内燃机关键性能参数的定性概念,能够把握住内燃机正常的工作状态(A5.1) 2

流体力学与传热学

1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的(热传导)和边界层外的(对流传热)合并考虑,并命名为给热。 2、在工程计算中,对两侧温度分别为 t1,t2 的固体,通常采用平均导热系数进行热传导计算。平均导热系数的两种表示方法是或。答案;λ = 3、图 3-2 表示固定管板式换热器的两块管板。由图可知,此换热器为或。体的走向为 管程,管程流 1 1 4 2 2 3 3 5 图 3-2 3-18 附图答案:4;2 → 4 → 1 → 5 → 3;3 → 5 → 1 → 4 → 2 4、4.黑体的表面温度从 300℃升至 600℃,其辐射能力增大到原来的(5.39)倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的 4 次方成正比, ? 600 + 273 ? 摄氏温度,即 ? ? =5.39。 ? 300 + 273 ? 5、 3-24 用 0.1Mpa 的饱和水蒸气在套管换热器中加热空气。空气走管内, 20℃升至 60℃,由则管内壁的温度约为(100℃) 6、热油和水在一套管换热器中换热,水由 20℃升至 75℃。若冷流体为最小值流体,传热效率 0.65,则油的入口温度为 (104℃)。 7、因次分析法基础是 (因次的一致性),又称因次的和谐性。 8、粘度的物理意义是促使流体产生单位速度梯度的(剪应力) 9、如果管内流体流量增大 1 倍以后,仍处于滞流状态,则流动阻力增大到原来的(2 倍) 10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时4 倍。 11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的(速度梯度),即使(粘度)很小,(内摩擦应力)仍然很大,不容忽视。 12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的(惯性力)与(粘性力)之比。 13、滞流与湍流的本质区别是(滞流无径向运动,湍流有径向运动) 二、问答题:问答题: 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么?答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。这是因为饱和蒸汽与低于其温度的壁面接触后,冷凝为液体,释放出大量的潜在热量。虽然蒸汽凝结后生成的凝液覆盖着壁面,使后续蒸汽放出的潜热只能通过先前形成的液膜传到壁面,但因气相不存在热阻,冷凝传热的全部热阻只集中在液膜,由于冷凝给热系数很大,加上其温度恒定的特点,所以在工业上得到日益广泛的应用。如要加热介质是过热蒸汽,特别是壁温高于蒸汽相应的饱和温度时,壁面上就不会发生冷凝现象,蒸汽和壁面之间发生的只是通常的对流传热。此时,热阻将集中在靠近壁面的滞流内层中,而蒸气的导热系数又很小,故过热蒸汽的对流传热系数远小于蒸汽的冷凝给热系数,这就大大限制了过热蒸汽的工业应用。 2、下图所示的两个 U 形管压差计中,同一水平面上的两点 A、或 C、的压强是否相等? B D P1 A P2 p 水 B C 空气 C 水银图 1-1 D 水 P1 1-1 附图 P2 A B D p h1 。 答:在图 1—1 所示的倒 U 形管压差计顶部划出一微小空气柱。空气柱静止不动,说明两侧的压强相等,设为 P。由流体静力学基本方程式: p A = p + ρ空气 gh1 + ρ水 gh1 p B = p + ρ空气 gh1 + ρ空气 gh 1 Q ρ水 > ρ空气 p C = p + ρ空气 gh1 ∴ p A> pB 即 A、B 两点压强不等。而

第三部分流体力学、传热学知识

第三部分 —流体力学、传热学知识 一、单项选择题 1、在水力学中,单位质量力是指(C) □A.单位面积液体受到的质量力;□B.单位体积液体受到的质量力;□C.单位质量液体受到的质量力;□D.单位重量液体受到的质量力。 2、液体中某点的绝对压强为100kN/m2,则该点的相对压强为( B ) □A.1 kN/m2 □B.2 kN/m2 □C.5 kN/m2 □D.10 kN/m2 3、有压管道的管径d与管流水力半径的比值d /R=(B) □A.8 □B.4 □C.2 □D.1 4、已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于( C ) □A.层流区□B.紊流光滑区 □C.紊流过渡粗糙区□D.紊流粗糙区 5、现有以下几种措施: ①对燃烧煤时产生的尾气进行除硫处理;②少用原煤做燃料; ③燃煤时鼓入足量空气;④开发清洁能源。 其中能减少酸雨产生的措施是(C) □A.①②③□B.②③④□C.①②④□D.①③④6、“能源分类相关图”如下图所示,下列四组能源选项中,全部符合图中阴影部分的能源是(C)

□A.煤炭、石油、潮汐能□B.水能、生物能、天然气□C.太阳能、风能、沼气□D.地热能、海洋能、核能7、热量传递的方式是什么?(D) □A.导热□B.对流□C.热辐射□D.以上三项都是8、流体运动的连续性方程是根据(C)原理导出的? □A.动量守恒□B.质量守恒□C.能量守恒□D.力的平衡9、当控制阀的开口一定,阀的进、出口压力差Δp(B) □A.增加□B.减少□C.基本不变□D.无法判断10、热流密度q与热流量的关系为(以下式子A为传热面积,λ为导热系数,h为对流传热系数)(B) □A.q=φA □B.q=φ/A □C.q=λφ□D.q=hφ 11、如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将( B ) □A.不变□B.提高□C.降低□D.随机改变 12、在传热过程中,系统传热量与下列哪一个参数成反比? ( D ) □A.传热面积□B.流体温差 □C.传热系数□D.传热热阻 13、下列哪个不是增强传热的有效措施?(D) □A.波纹管□B.逆流

【精品】流体力学与传热学教案设计

流体力学与传热学 流体静力学:研究静止流体中压强分布规律及对固体接触面的作用问题 流体动力学:研究运动流体中各运动参数变化规律,流体与固体作用面的相互作用力的问题 传热学研究内容:研究热传导和热平衡规律的科学上篇:流体力学基础 第一章流体及其主要力学性质 第一节流体的概念 一流体的概述 ⒈流体的概念:流体是液体和气体的统称 ⒉流体的特点:易流动性—在微小剪切力的作用下,都将连续不断的产生变形(区 别于固体的特点) ⑴液体:具有固定的体积;在容器中能够形成一定的自由表面;不可压缩性 ⑵气体;没有固定容积;总是充满所占容器的空间;可压缩性

二连续介质的模型 ⒈连续介质的概念 所谓连续介质即是将实际流体看成是一种假想的,由无限多流体质点所组成的稠密而无间隙的连续介质.而且这种连续介质仍然具有流体的一切基本力学性质. ⒉连续介质模型意义 所谓流体介质的连续性,不仅是指物质的连续不间断,也指一些物理性质的连续不间断性.即反映宏观流体的密度,流速,压力等物理量也必定是空间坐标的连续函数(可用连续函数解决流体力学问题)

第二节流体的性质 一密度—--表征流体质量性质 ⒈密度定义:单位体积内所具有的流体质量 ⑴对于均质流体:ρ=m/v 式中ρ-流体的密度(㎏/m 3) m-流体的质量(㎏) v —流体的体积(m 3) ⑵对于非均质流体:ρ=⒉比体积(比容):单位质量流体所具有的体积(热力学和 气体动力学概念) ⑴对于均质流体:v=V/m=1/ρ(m 3/㎏) 3.液体的密度在一般情况下,可视为不随温度或压强而变化;但气体的密度则随温度和压强可发生很大的变化。 二流体的压缩性和膨胀性 dv dm v m v =??→?0lim

流体力学与传热学复习题

表面张力的影响 在自然界中看到很多表面张力的现象。比如,露水总是呈球型,而某些昆虫漂浮在水面上。 在水中加入洗涤剂才能清除衣服上的油污,因为洗涤剂含有去污作用的化学物质及表面活性剂,表面活性剂能降低水的表面张力,发生润湿、乳化、分散和起泡等作用。 液体与固体壁接触时,液体沿壁面上升或下降的现象 (1)常见的毛细现象:植物茎吸水,粉笔吸墨水。 (2)有些情况下毛细现象是有害的: 建筑房屋的时候,地基中毛细管会把土壤中的水分引上来,使得室内潮湿。 土壤里有很多毛细管,地下的水分经常沿着这些毛细管上升到地面上来。 河道中水位和流量的变化 洪水期中水位、流量有涨落现象-非恒定流 平水期中水位、流量相对变化不大-恒定流 容器中液体 当其中的液体处于相对平衡-恒定流。 当容器的旋转角速度突然改变,则容器中的液体运动为--非恒定流 大海中潮起潮落现象-非恒定流 生产中为了安全生产等问题常设置一段液体柱高度封闭气体,称为液封。 作用: ①保持设备内压力不超过某一值; ②防止容器内气体逸出; ③真空操作时不使外界空气漏入。 导热 导热是依靠物质微粒的热振动而实现的。产生导热的必要条件是物体的内部存在温度差,因而热量由高温部分向低温部分传递。 发生导热时,沿热流方向上物体各点的温度是不相同的,呈现出一种温度场,对于稳定导热,温度场是稳定温度场,也就是各点的温度不随时间的变化而变化。 5)量纲与单位: 量纲:物理量所属种类,称为这个物理量的量纲,量纲也称因次(Demension)。 单位:度量各种物理量数值大小的标准。即单位是度量某一物理量的基值,预先人为选定的 6)量纲分类:基本量纲和导出量纲。基本量纲彼此独立(长度L,温度Θ,质量M,时间T),导出量纲由基本量纲组合而成(密度,粘度系数,速度等)。 7) 量纲的和谐性及其应用 一个物理量的量纲与这个量的特性有关,与它的大小无关。 不同量纲的物理量不能加减,任何一个正确的物理方程中,各项量纲一定相同。 如果一个物理方程量纲和谐,则方程的形式不随量度单位的改变而改变。 1、(从传热角度)住新房和旧房的感觉一样么? 1、由于水的导热系数远远大于空气,而新房墙壁含水较多,所以住新房感觉冷.

流体力学与传热学教学课程大纲

课程名称:流体力学与传热学 课程编号:130 200040 课程学分:36学分 适用专业:测控技术与仪器 流体力学与传热学教学课程大纲 一、课程性质与任务: 本课程是自动化装置、过程控制系统方向的技术基础课。 通过该课程的学习,使学生对流体平衡、运动规律及能量守恒与转换规律方面具备必要的基本知识,获得传热的一些基本理论、基本知识及传热计算的初步能力,学会运用基本规律来处理和解决实际问题的方法和技能,培养分析问题的能力和创新能力,为学生学习后续课程,从事工程技术工作和进行科学研究打下必2要的基础。 二、课程内容及要求: 总学时数:36; 2学时/端午节放假一天。即共17次课。 第一章绪论(2) a) 流体力学工程应用及其主要的物理性质 基本要求 了解:流体力学的研究对象 流体力学:研究流体平衡、机械运动的规律以及在工程实际中的运用、 任务 研究流体的运动规律; 流体之间或流体与固体之间的相互作用力; 流动过程中动量、能量和质量的传输规律等。 和研究方法; 熟悉:流体宏观模型─连续介质 假定流体是由无穷多个、无穷小的、紧密毗邻、连续不断的流体质点所构 成的一种绝无间隙的连续介质。

、理想流体、不可压缩流动; 掌握:流体的粘性 流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质 和压缩性 温度一定时,流体在外力作用下,其体积缩小的性质 等物理性质。 教学及考核内容 流体的定义,在静力平衡时,不能承受拉力或剪力的物体。 连续介质的概念,流体的主要物理性质(粘性-牛顿内摩擦定律、 流体相对运动 时,层间内摩擦力T 的大小与接触面积、速度梯 而与接触面 压缩性),(质量力、表面力)。 第二章 流体静力学理论基础(4) a) 流体的平衡微分方程 ;流体静力学基本方程;

(完整版)流体力学与传热学试题及答案

流体力学与传热学试题及参考答案 一、填空题:(每空1分) 1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的 和边界层外的 合并考虑,并命名为给热。 答案:热传导;对流传热 2、在工程计算中,对两侧温度分别为t1,t2的固体,通常采用平均导热系数进行热传导计算。平均导热系数的两种表示方法是 或 。 答案;2 2 1λλλ+= - ;2 2 1t t += - λ 3、图3-2表示固定管板式换热器的两块管板。由图可知,此换热器为 管程,管程流体的走向为 或 。 1 2 3 图3-2 3-18 附图 答案:4;2→4 →1→5→3;3→5→1→4→2 4、黑体的表面温度从300℃升至600℃,其辐射能力增大到原来的 倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的4次方成正比, 而非 摄氏温度,即4 273300273600?? ? ??++=5.39。 5、3-24 用0.1Mpa 的饱和水蒸气在套管换热器中加热空气。空气走管内,由20℃升至60℃,则管内壁的温度约为 。 答案:100℃ 6、热油和水在一套管换热器中换热,水由20℃升至75℃。若冷流体为最小值流体,传热效率0.65,则油的入口温度为 。 答案:104℃ 分析:Θε= 20 20 751--T =0.65 ∴1T =104℃ 1 2 3

7、因次分析法的基础是 ,又称因次的和谐性。 答案:因次的一致性 8、粘度的物理意义是促使流体产生单位速度梯度的_____________。 答案:剪应力 9、如果管内流体流量增大1倍以后,仍处于滞流状态,则流动阻力增大到原来的 倍。 答案:2 10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时的 倍。 答案:4 11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的_______________,即使____________很小,____________仍然很大,不容忽视。 答案:速度梯度;粘度;内摩擦应力 12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的______ 与__ ____ 之比。 答案:惯性力;粘性力 13、滞流与湍流的本质区别是 。 答案:滞流无径向运动,湍流有径向运动; 二、问答题:(每小题8分) 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么? 答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。这是因为饱和蒸汽与低于其温度的壁面接触后,冷凝为液体,释放出大量的潜在热量。虽然蒸汽凝结后生成的凝液覆盖着壁面,使后续蒸汽放出的潜热只能通过先前形成的液膜传到壁面,但因气相不存在热阻,冷凝传热的全部热阻只集中在液膜,由于冷凝给热系数很大,加上其温度恒定的特点,所以在工业上得到日益广泛的应用。 如要加热介质是过热蒸汽,特别是壁温高于蒸汽相应的饱和温度时,壁面上就不会发生冷凝现象,蒸汽和壁面之间发生的只是通常的对流传热。此时,热阻将集中在靠近壁面的滞流内层中,而蒸气的导热系数又很小,故过热蒸汽的对流传热系数远小于蒸汽的冷凝给热系数,这就大大限制了过热蒸汽的工业应用。 2、下图所示的两个U 形管压差计中,同一水平面上的两点A 、B 或C 、D 的压强是否相等? 水银 图1-1 1-1附图 12

流体力学与传热200612A(附参考答案)

,考试作弊将带来严重后果! 华南理工大学期末考试 《 流体力学与传热 》试卷 1. 考前请将密封线内填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷; 、 流体在圆形管道中作完全湍流流动,如果只将流速增加一倍,阻力损失为原来的 4 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/2 倍。 、离心泵的特性曲线通常包括 H-Q 曲线、 N-Q 和 η-Q 曲线等。 、气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。 、测量流体体积流量的流量计有 转子流量计 、 孔板流量计 和 涡轮流量计。 、(1)离心泵最常用的调节方法是 B (A ) 改变吸入管路中阀门开度 (B ) 改变压出管路中阀门的开度 (C ) 安置回流支路,改变循环时的大小 (D ) 车削离心泵的叶轮 2)漩涡泵常用的调节方法是 B (A ) 改变吸入管路中阀门开度 (B ) 安置回流支流,改变循环量的大小 (C ) 改变压出管路中阀门的开度 (D ) 改变电源的电压。 6、沉降操作是指在某种 力场 中利用分散相和连续相之间的 密度 差异, 、最常见的间歇式过滤机有 板框过滤机和叶滤机 连续式过滤机有 真空转筒过滤机 。 、在一卧式加热器中,利用水蒸汽冷凝来加热某种液体,应让加热蒸汽在 壳程流动,加热器顶部 排放不凝气,防止壳程α值大辐度下降。 、(1)为了减少室外设备的热损失,保温层外所包的一层金属皮应该是 A (A )表面光滑,颜色较浅; (B )表面粗糙,颜色较深 (C )表面粗糙,颜色较浅 (2)某一套管换热器用管间饱和蒸汽加热管内空气,设饱和蒸汽温度为C ?100,空气进口温度为C ?,出口温度为C ?80,问此套管换热器内管壁温应是_C__。 (A )接近空气平均温度 (B )接近饱和蒸汽和空气的平均温度 (C )接近饱和蒸汽温度 、举出三种间壁式换热器 套管 、 夹套换热器 、 蛇管换热器 。

计算流体力学与传热学结课论文

计算流体力学及传热学结 课论文 题目:岩石破碎与破岩工具 姓名:XX 老师:XX 学号:XX 专业:XX 日期:2014.6.5

螺旋槽纹管基于FLUENT的流体分析 XX (西南石油大学,成都,610500) 摘要:根据螺旋槽纹管的特点,以高温水为介质,用GAMBIT建立了三维螺旋 槽纹管的几何模型模型,采用SIMPLE算法,数值模拟了高温水介质在三维螺 旋槽纹管中流动过程;紊流模型采Realiable k—ε用型,揭示了热水在受到螺旋槽纹影响时的流动规律。通过数值模拟结果可知:螺旋槽纹管内热水主要通过加强壁面水层附近流体动,使管内换热得以强化;螺旋槽纹管与光滑管阻力损失系数比约为4,与实验数据很好地相吻合,可为优化以水为介质的换热器参数的设计,提高换热效率提供一定的理论依据。 关键词:螺旋槽纹管;换热效率;数值模拟 0引言 高效强化传热管的研究一直是传热领域最活跃和最有生命力的重要研究课题,为此人们开发了各种高效异形强化管[1],其中的一个重要分支螺旋槽纹管(亦称螺纹管)。螺旋槽纹管是一种管壁上具有外凸内凹的螺旋形槽的高效传热异型管,其螺旋槽所导致的形体阻力产生逆向压力梯度,近壁流体流经管壁上螺旋状凸肋时,使边界层出现分离,破坏了流动边界层,加强了流体的径向混合,从而提高了传热速率[2]。目前螺旋槽纹管已广泛应用在动力、船舶、车辆、石水和化学工业中的许多换热器设备上。流体在各类螺旋槽纹管中的流动过程较为复杂,虽然许多学者建立了数学模型和相关的关系式,但仍不能表征流体在管内的实际流动情况,本文采用FLUENT软件分析热水在螺纹槽管中的流动情况,为螺纹 槽管的紊流流动和换热提供理论依据[3]。 1螺旋槽纹管基于FLUENT的流体分析FLUENT用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度 和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。本文采用GAMBIT 建模与划分网格,采用FLUENT分析与后处理[4]。 1.1螺旋槽纹问题分析 问题分析:流体流过螺旋槽纹管时,由于受到螺旋槽的影响,使流动受到扰

流体力学与传热学考试题目

流体力学与传热学考试题目 1-1 下图所示的两个U 形管压差计中,同一水平面上的两点A 、B 或C 、D 的压强是否相等? 答:在图1—1所示的倒U 形管压差计顶部划出一微小空气柱。 空气柱静止不动,说明两侧的压强相等,设为P 。 由流体静力学基本方程式: 1 1gh gh p p A 水空气ρρ++= 1 1gh gh p p B 空气空气ρρ++= 空气水ρρ> ∴ B A p p > 即A 、B 两点压强不等。 而 1 gh p p C 空气ρ+= 1 gh p p D 空气ρ+= 也就是说, C p 、 D p 都等于顶部的压强p 加上1h 高空气柱所引起的压强,所以C 、D 两点压强相等。 同理,左侧U 形管压差计中, B A p p ≠ 而D C p p =。 分析:等压面成立的条件—静止、等高、连通着的同一种流体。两个U 形管压差计的A 、B 两点虽然在静止流体的同一水平面上,但终因不满足连通着的同一种流体的条件而非等压。 1-2 容器中的水静止不动。为了测量A 、B 两水平面的压差,安装一U 形管压差计。图示这种测量方法是否可行?为什么? 答:如图1—2,取1—1/ 为等压面。 由 1' 1p p =可知: ) (2H R g p O H B ++ρ =gR H h g p Hg O H A ρρ+++)(2 gh p p O H A B 2ρ+= 将其代入上式,整理得 0 )(2=-gR O H Hg ρρ ∵ 2≠-O H Hg ρρ ∴0=R R 等于零,即压差计无读数,所以图示这种测量方法不可行。 分析:为什么压差计的读数为零?难道A 、B 两个截面间没有压差存在吗?显然这不符合事实。A 、B 两个截面间确有压差存在,即h 高的水柱所引起的压强。 问题出在这种测量方法上,是由于导管内充满了被测流体的缘故。连接A 平面测压口的导管中的水在下行过程中,位能不断地转化为静压能。此时,U 型管压差计所测得的并非单独压差,而是包括位能影响在内的“虚拟压强”之差。当该导管中的水引至B 平面时,B —B ’已为等压强面,再往下便可得到无数个等压面。压差计两侧的压强相等,R 当然等于零。 这个结论很重要,在以后的讨论中常遇到。 水银 图1-1 1-1附图 12 1’ 图1-2 1-2 附图

相关主题
文本预览
相关文档 最新文档