当前位置:文档之家› Linux设备驱动程序说明介绍

Linux设备驱动程序说明介绍

Linux设备驱动程序说明介绍
Linux设备驱动程序说明介绍

Linux设备驱动程序简介

Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel 中的函数,有些常用的操作要自己来编写,而且调试也不方便。本人这几周来为实验室自行研制的一块多媒体卡编制了驱动程序,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。

以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正.

一、Linux device driver 的概念

系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口.设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作.设备驱动程序是内核的一部分,它完成以下的功能:

1.对设备初始化和释放.

2.把数据从内核传送到硬件和从硬件读取数据.

3.读取应用程序传送给设备文件的数据和回送应用程序请求的数据.

4.检测和处理设备出现的错误.

在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备.字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作.块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待.

已经提到,用户进程是通过设备文件来与实际的硬件打交道.每个设备文件都都有其文件属性(c/b),表示是字符设备还蔤强樯璞?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们.设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序.

最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度.也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作.如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck.

读/写时,它首先察看缓冲区的内容,如果缓冲区的数据

如何编写Linux操作系统下的设备驱动程序

二、实例剖析

我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备驱动程序.不过我的kernel是2.0.34,在低版本的kernel上可能会出现问题,我还没测试过.

[code]#define __NO_VERSION__

#include

#include

char kernel_version [] = UTS_RELEASE;[/code]

这一段定义了一些版本信息,虽然用处不是很大,但也必不可少.Johnsonm说所有的驱动程序的开头都要包含,但我看倒是未必.

由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如open,read,write,close....,注意,不是fopen,fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:

[code]struct file_operations {

int (*seek) (struct inode * ,struct file *,off_t ,int);

int (*read) (struct inode * ,struct file *,char ,int);

int (*write) (struct inode * ,struct file *,off_t ,int);

int (*readdir) (struct inode * ,struct file *,struct dirent * ,int);

int (*select) (struct inode * ,struct file *,int ,select_table *);

int (*ioctl) (struct inode * ,struct file *,unsined int ,unsigned long);

int (*mmap) (struct inode * ,struct file *,struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}[/code]

这个结构的每一个成员的名字都对应着一个系统调用.用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数.这是linux的设备驱动程序工作的基本原理.既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域.

相当简单,不是吗?

下面就开始写子程序.

[code]#include

#include

#include

#include

#include

unsigned int test_major = 0;

static int read_test(struct inode *node,struct file *file,

char *buf,int count)

{

int left;

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count ; left > 0 ; left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}[/code]

这个函数是为read调用准备的.当调用read时,read_test()被调用,它把用户的缓冲区全部写1.buf 是read调用的一个参数.它是用户进程空间的一个地址.但是在read_test被调用时,系统进入核心态.所以不能使用buf这个地址,必须用__put_user(),这是kernel 提供的一个函数,用于向用户传送数据.另外还有很多类似功能的函数.请参考.在向用户空间拷贝数据之前,必须验证buf是否可用。

这就用到函数verify_area.

[code]static int write_tibet(struct inode *inode,struct file *file,

const char *buf,int count)

{

return count;

}

static int open_tibet(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT;

return 0;

}

static void release_tibet(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

[/code]

这几个函数都是空操作.实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。

[code]struct file_operations test_fops = {

NULL,

read_test,

write_test,

NULL,/* test_readdir */

NULL,

NULL,/* test_ioctl */

NULL,/* test_mmap */

open_test,

release_test,NULL,/* test_fsync */

NULL,/* test_fasync */

/* nothing more,fill with NULLs */

}; [/code]

设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(modules),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。

[code]int init_module(void)

{

int result;

result = register_chrdev(0,"test",&test_fops);

if (result < 0) {

printk(KERN_INFO "test: can't get major number\n");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}[/code]

在用insmod命令将编译好的模块调入内存时,init_module 函数被调用。在这里,init_module只做了一件事,就是向系统的字符设备表登记了一个字符设备。register_chrdev 需要三个参数,参数一是希望获得的设备号,如果是零的话,系统将选择一个没有被占用的设备号返回。参数二是设备文件名,参数三用来登记驱动程序实际执行操作的函数的指针。

如果登记成功,返回设备的主设备号,不成功,返回一个负值。

[code]void cleanup_module(void)

{

unregister_chrdev(test_major,"test");

} [/code]

在用rmmod卸载模块时,cleanup_module函数被调用,它释放字符设备test在系统字符设备表中占有的表项。

一个极其简单的字符设备可以说写好了,文件名就叫test.c吧。

下面编译

[code]$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c[/code]

得到文件test.o就是一个设备驱动程序。

如果设备驱动程序有多个文件,把每个文件按上面的命令行编译,然后

[code]ld -r file1.o file2.o -o modulename.[/code]

驱动程序已经编译好了,现在把它安装到系统中去。

[code]$ insmod -f test.o[/code]

如果安装成功,在/proc/devices文件中就可以看到设备test,并可以看到它的主设备号。要卸载的话,运行

[code]$ rmmod test[/code]

下一步要创建设备文件。

[code]mknod /dev/test c major minor[/code]

c 是指字符设备,major是主设备号,就是在/proc/devices里看到的。

用shell命令

[code]$ cat /proc/devices | awk "}"[/code]

就可以获得主设备号,可以把上面的命令行加入你的shell script中去。

minor是从设备号,设置成0就可以了。

我们现在可以通过设备文件来访问我们的驱动程序。写一个小小的测试程序。[code]#include

#include

#include

#include

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file \n");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d\n",buf[i]);

close(testdev);

}[/code]

编译运行,看看是不是打印出全1 ?

以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。请看下节,实际情况的处理。

备注:

在Linux2.6内核中一个字符设备用cdev结构来描述,其定义如下:

[code]struct cdev {

struct kobject kobj;

struct module *owner; //所属模块

const struct file_operations *ops;

//文件操作结构,在写驱动时,其结构体内的大部分函数要被实现

struct list_head list;

dev_t dev; //设备号,int 类型,高12位为主设备号,低20位为次设备号

unsigned int count;

};[/code]

可以使用如下宏调用来获得主、次设备号:

[code]MAJOR(dev_t dev)

MINOR(dev_t dev)

MKDEV(int major,int minor) //通过主次设备号来生成dev_t[/code]

以上宏调用在内核源码中如此定义:

[code]#define MINORBITS 20

#define MINORMASK ((1U << MINORBITS) - 1)

//(1<<20 -1) 此操作后,MINORMASK宏的低20位为1,高12位为0

#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))

#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))

#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))[/code]

下面一组函数用来对cdev结构体进行操作:

[code]void cdev_init(struct cdev *, const struct file_operations *);

//初始化,建立cdev和file_operation 之间的连接

struct cdev *cdev_alloc(void); //动态申请一个cdev内存

void cdev_put(struct cdev *p); //释放

int cdev_add(struct cdev *, dev_t, unsigned);

//注册设备,通常发生在驱动模块的加载函数中

void cdev_del(struct cdev *);//注销设备,通常发生在驱动模块的卸载函数中[/code]

在注册时应该先调用:[code]int register_chrdev_region(dev_t from,unsigned count,const char *name)函数为其分配设备号,此函数可用:int alloc_chrdev_region(dev_t *dev,unsigned baseminor,unsigned count,const char *name)函数代替,他们之间的区别在于:register_chrdev_region()用于已知设备号时,另一个用于动态申请,其优点在于不会造成设备号重复的冲突。

在注销之后,应调用:void unregister_chrdev_region(dev_t from,unsigned count)函数释放原先申请的设备号。

他们之间的顺序关系如下:

register_chrdev_region()-->cdev_add() //此过程在加载模块中

cdev_del()-->unregister_chrdev_region() //此过程在卸载模块中[/code]

三、设备驱动程序中的一些具体问题

1. I/O Port.

和硬件打交道离不开I/O Port,老的ISA设备经常是占用实际的I/O端口,在linux下,操作系统没有对I/O口屏蔽,也就是说,任何驱动程序都可对任意的I/O口操作,这样就很容易引起混乱。每个驱动程序应该自己避免误用端口。

有两个重要的kernel函数可以保证驱动程序做到这一点。

1)check_region(int io_port,int off_set)

这个函数察看系统的I/O表,看是否有别的驱动程序占用某一段I/O口。

参数1:io端口的基地址,

参数2:io端口占用的范围。

返回值:0 没有占用,非0,已经被占用。

2)request_region(int io_port,int off_set,char *devname)

如果这段I/O端口没有被占用,在我们的驱动程序中就可以使用它。在使用之前,必须向系统登记,以防止被其他程序占用。登记后,在/proc/ioports文件中可以看到你登记的io 口。

参数1:io端口的基地址。

参数2:io端口占用的范围。

参数3:使用这段io地址的设备名。

在对I/O口登记后,就可以放心地用inb(),outb()之类的函来访问了。

在一些pci设备中,I/O端口被映射到一段内存中去,要访问这些端口就相当于访问一段内存。经常性的,我们要获得一块内存的物理地址。在dos环境下,(之所以不说是dos 操作系统是因为我认为DOS根本就不是一个操作系统,它实在是太简单,太不安全了)只要用段:偏移就可以了。在window95中,95ddk提供了一个vmm 调用_MapLinearToPhys,用以把线性地址转化为物理地址。但在Linux中是怎样做的呢?

2.内存操作

在设备驱动程序中动态开辟内存,不是用malloc,而是kmalloc,或者用get_free_pages直接申请页。释放内存用的是kfree,或free_pages. 请注意,kmalloc等函数返回的是物理地址!而malloc等返回的是线性地址!关于kmalloc返回的是物理地址这一点本人有点不太明白:既然从线性地址到物理地址的转换是由386cpu硬件完成的,那样汇编指令的操作数应该是线性地址,驱动程序同样也不能直接使用物理地址而是线性地址。但是事实上kmalloc返回的确实是物理地址,而且也可以直接通过它访问实际的RAM,我想这样可以由两种解释,一种是在核心态禁止分页,但是这好像不太现实;另一种是linux 的页目录和页表项设计得正好使得物理地址等同于线性地址。我的想法不知对不对,还请高手指教。

言归正传,要注意kmalloc最大只能开辟128k-16,16个字节是被页描述符结构占用了。kmalloc用法参见khg.

内存映射的I/O口,寄存器或者是硬件设备的RAM(如显存)一般占用F0000000以上的地址空间。在驱动程序中不能直接访问,要通过kernel函数vremap获得重新映射以后的地址。

另外,很多硬件需要一块比较大的连续内存用作DMA传送。这块内存需要一直驻留在内存,不能被交换到文件中去。但是kmalloc最多只能开辟128k的内存。

这可以通过牺牲一些系统内存的方法来解决。

具体做法是:比如说你的机器由32M的内存,在lilo.conf的启动参数中加上mem=30M,这样linux就认为你的机器只有30M的内存,剩下的2M内存在vremap之后就可以为DMA 所用了。

请记住,用vremap映射后的内存,不用时应用unremap释放,否则会浪费页表。

3.中断处理

同处理I/O端口一样,要使用一个中断,必须先向系统登记。

[code]int request_irq(unsigned int irq ,

void(*handle)(int,void *,struct pt_regs *),

unsigned int long flags,

const char *device);

irq: 是要申请的中断。

handle:中断处理函数指针。

flags:SA_INTERRUPT 请求一个快速中断,0 正常中断。

device:设备名。[/code]

如果登记成功,返回0,这时在/proc/interrupts文件中可以看你请求的中断。

4.一些常见的问题。

对硬件操作,有时时序很重要。但是如果用C语言写一些低级的硬件操作的话,gcc 往往会对你的程序进行优化,这样时序就错掉了。如果用汇编写呢,gcc 同样会对汇编代码进行优化,除非你用volatile关键字修饰。最保险的办法是禁止优化。这当然只能对一部分你自己编写的代码。如果对所有的代码都不优化,你会发现驱动程序根本无法装载。这是因为在编译驱动程序时要用到gcc的一些扩展特性,而这些扩展特性必须在加了优化选项之后才能体现出来。

备注:驱动编译

2.6 内核的源码树目录下一般都会有两个文文:Kconfig和Makefile。分布在各目录下的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文件相关的内核配置菜单。在内核配置make menuconfig(或xconfig等)时,从Kconfig中读出配置菜单,用户配置完后保存到.config(在顶层目录下生成)中。在内核编译时,主Makefile 调用这个.config,就知道了用户对内核的配置情况。

上面的内容说明:Kconfig就是对应着内核的配置菜单。假如要想添加新的驱动到内核的源码中,可以通过修改Kconfig来增加对我们驱动的配置菜单,这样就有途径选择我们的驱动,假如想使这个驱动被编译,还要修改该驱动所在目录下的Makefile。

因此,一般添加新的驱动时需要修改的文件有两种(注意不只是两个)

*Kconfig

*Makefile

要想知道怎么修改这两种文件,就要知道两种文档的语法结构。

First: Kconfig

每个菜单项都有一个关键字标识,最常见的就是config。

语法:

[code]config symbol

options

[/code]

symbol就是新的菜单项,options是在这个新的菜单项下的属性和选项

其中options部分有:

1、类型定义:

每个config菜单项都要有类型定义,bool:布尔类型,tristate三态:内建、模块、移除,string:字符串,hex:十六进制,integer:整型

例如config HELLO_MODULE

bool "hello test module"

bool 类型的只能选中或不选中,tristate类型的菜单项多了编译成内核模块的选项,假如选择编译成内核模块,则会在.config中生成一个CONFIG_HELLO_MODULE=m的配置,假如选择内建,就是直接编译成内核影响,就会在.config中生成一个CONFIG_HELLO_MODULE=y的配置.

2、依赖型定义depends on或requires

指此菜单的出现是否依赖于另一个定义

[code]config HELLO_MODULE

bool "hello test module"

depends on ARCH_PXA[/code]

这个例子表明HELLO_MODULE这个菜单项只对XScale处理器有效,即只有在选择了ARCH_PXA,该菜单才可见(可配置)。

3、帮助性定义

只是增加帮助用关键字help或---help---

更多详细的Kconfigconfig语法可参考:

Second: 内核的Makefile

内核的Makefile分为5个组成部分:

Makefile 最顶层的Makefile

.config 内核的当前配置文档,编译时成为顶层Makefile的一部分

arch/$(ARCH)/Makefile 和体系结构相关的Makefile

s/ Makefile.* 一些Makefile的通用规则

kbuild Makefile 各级目录下的大概约500个文档,编译时根据上层Makefile传下来的宏定义和其他编译规则,将源代码编译成模块或编入内核。

顶层的Makefile文档读取.config文档的内容,并总体上负责build内核和模块。Arch Makefile则提供补充体系结构相关的信息。s目录下的Makefile文档包含了任何用来根据kbuild Makefile 构建内核所需的定义和规则。

(其中.config的内容是在make menuconfig的时候,通过Kconfig文档配置的结果)

在linux2.6.x/Documentation/kbuild目录下有详细的介绍有关kernel makefile的知识。

最后举个例子:

假设想把自己写的一个flash的驱动程式加载到工程中,而且能够通过menuconfig配置内核时选择该驱动该怎么办呢?能够分三步:

第一:将您写的flashtest.c 文档添加到/driver/mtd/maps/ 目录下。

第二:修改/driver/mtd/maps目录下的kconfig文档:

config MTD_flashtest

tristate “ap71 flash"

这样当make menuconfig时,将会出现ap71 flash选项。

第三:修改该目录下makefile文档。

添加如下内容:obj-$(CONFIG_MTD_flashtest) += flashtest.o

这样,当您运行make menucofnig时,您将发现ap71 flash选项,假如您选择了此项。该选择就会保存在.config文档中。当您编译内核时,将会读取.config文档,当发现ap71 flash 选项为yes 时,系统在调用/driver/mtd/maps/下的makefile 时,将会把flashtest.o 加入到内核中。即可达到您的目的。

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

linux简单的gpio驱动实例

今天完成了嵌入式linux的第一个驱动的编写和测试,虽然是个简单的程序,但是麻雀虽小,五脏俱全,希望可以给刚开始接触驱动编写的人一些提示,共同进步。 源代码: 分析如下: 下面是我的驱动程序: #include //配置头文件 #include /*内核头文件,作为系统核心的一部分,设备驱动程序在申请和释放内存时,不是调用malloc和free,而是调用kmalloc和 kfree*/ #include //调度,进程睡眠,唤醒,中断申请,中断释放 #include //时钟头文件 #include //用户定义模块初始函数名需引用的头文件 #include //模块加载的头文件 #include #include //这个是2440的寄存器头文件,asm/srch只是个链接 //实际根据自己的情况查找,一般 是../../linux2.*.*/include/asm/arch-s3c2440里编译器 //自己会查询链接,以前不知道,找了半天 // GPIO_LED DEVICE MAJOR #define GPIO_LED_MAJOR 97 //定义主设备号 //define LED STATUS 我的板子 LED在GPB0 与GPB1 处大家根据自己情况改 #define LED_ON 0 //定义LED灯的状态开 #define LED_OFF 1 // // ------------------- READ ------------------------ 这个前面要加static 否则警告 static ssize_t GPIO_LED_read (struct file * file ,char * buf, size_t count, loff_t * f_ops) {

Linux设备驱动程序简介

第一章Linux设备驱动程序简介 Linux Kernel 系统架构图 一、驱动程序的特点 ?是应用和硬件设备之间的一个软件层。 ?这个软件层一般在内核中实现 ?设备驱动程序的作用在于提供机制,而不是提供策略,编写访问硬件的内核代码时不要给用户强加任何策略 o机制:驱动程序能实现什么功能。 o策略:用户如何使用这些功能。 二、设备驱动分类和内核模块 ?设备驱动类型。Linux 系统将设备驱动分成三种类型 o字符设备 o块设备 o网络设备 ?内核模块:内核模块是内核提供的一种可以动态加载功能单元来扩展内核功能的机制,类似于软件中的插件机制。这种功能单元叫内核模块。 ?通常为每个驱动创建一个不同的模块,而不在一个模块中实现多个设备驱动,从而实现良好的伸缩性和扩展性。 三、字符设备 ?字符设备是个能够象字节流<比如文件)一样访问的设备,由字符设备驱动程序来实现这种特性。通过/dev下的字符设备文件来访问。字符设备驱动程序通常至少需要实现 open、close、read 和 write 等系统调用 所对应的对该硬件进行操作的功能函数。 ?应用程序调用system call<系统调用),例如:read、write,将会导致操作系统执行上层功能组件的代码,这些代码会处理内核的一些内部 事务,为操作硬件做好准备,然后就会调用驱动程序中实现的对硬件进 行物理操作的函数,从而完成对硬件的驱动,然后返回操作系统上层功 能组件的代码,做好内核内部的善后事务,最后返回应用程序。 ?由于应用程序必须使用/dev目录下的设备文件<参见open调用的第1个参数),所以该设备文件必须事先创建。谁创建设备文件呢? ?大多数字符设备是个只能顺序访问的数据通道,不能前后移动访问指针,这点和文件不同。比如串口驱动,只能顺序的读写设备。然而,也 存在和数据区或者文件特性类似的字符设备,访问它们时可前后移动访

Linux驱动框架及驱动加载

本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。 Linux设备驱动概述 1. 内核和驱动模块 操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。 Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。 如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。 我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。 理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。 lsmod

linux简单gpio驱动实例

Led test 今天完成了嵌入式linux的第一个驱动的编写和测试,虽然是个简单的程序, 但是麻雀虽小,五脏俱全,希望可以给刚开始接触驱动编写的人一些提示,共 同进步。 源代码: 分析如下: 下面是我的驱动程序: #include //配置头文件 #include /*内核头文件,作为系统核心的一部分,设备驱动程序在申请和释放内存时,不是调用malloc和free,而是调用kmalloc和 kfree*/ #include //调度,进程睡眠,唤醒,中断申请,中断释放 #include //时钟头文件 #include //用户定义模块初始函数名需引用的头文件 #include //模块加载的头文件 #include #include //这个是2440的寄存器头文件,asm/srch只是个链接 //实际根据自己的情况查找,一般 是../../linux2.*.*/include/asm/arch-s3c2440里编译器 //自己会查询链接,以前不知道,找了半天 // GPIO_LED DEVICE MAJOR #define GPIO_LED_MAJOR 97 //定义主设备号 //define LED STATUS 我的板子 LED在GPB0 与GPB1 处大家根据自己情况改 #define LED_ON 0 //定义LED灯的状态开 #define LED_OFF 1 // // ------------------- READ ------------------------ 这个前面要加static 否则警告 static ssize_t GPIO_LED_read (struct file * file ,char * buf, size_t count, loff_t * f_ops) {

如何实现Linux设备驱动模型

文库资料?2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd. 如何实现Linux 设备驱动模型 设备驱动模型,对系统的所有设备和驱动进行了抽象,形成了复杂的设备树型结构,采用面向对象的方法,抽象出了device 设备、driver 驱动、bus 总线和class 类等概念,所有已经注册的设备和驱动都挂在总线上,总线来完成设备和驱动之间的匹配。总线、设备、驱动以及类之间的关系错综复杂,在Linux 内核中通过kobject 、kset 和subsys 来进行管理,驱动编写可以忽略这些管理机制的具体实现。 设备驱动模型的内部结构还在不停的发生改变,如device 、driver 、bus 等数据结构在不同版本都有差异,但是基于设备驱动模型编程的结构基本还是统一的。 Linux 设备驱动模型是Linux 驱动编程的高级内容,这一节只对device 、driver 等这些基本概念作介绍,便于阅读和理解内核中的代码。实际上,具体驱动也不会孤立的使用这些概念,这些概念都融合在更高层的驱动子系统中。对于大多数读者可以忽略这一节内容。 1.1.1 设备 在Linux 设备驱动模型中,底层用device 结构来描述所管理的设备。device 结构在文件中定义,如程序清单错误!文档中没有指定样式的文字。.1所示。 程序清单错误!文档中没有指定样式的文字。.1 device 数据结构定义 struct device { struct device *parent; /* 父设备 */ struct device_private *p; /* 设备的私有数据 */ struct kobject kobj; /* 设备的kobject 对象 */ const char *init_name; /*设备的初始名字 */ struct device_type *type; /* 设备类型 */ struct mutex mutex; /*同步驱动的互斥信号量 */ struct bus_type *bus; /*设备所在的总线类型 */ struct device_driver *driver; /*管理该设备的驱动程序 */ void *platform_data; /*平台相关的数据 */ struct dev_pm_info power; /* 电源管理 */ #ifdef CONFIG_NUMA int numa_node; /*设备接近的非一致性存储结构 */ #endif u64 *dma_mask; /* DMA 掩码 */ u64 coherent_dma_mask; /*设备一致性的DMA 掩码 */ struct device_dma_parameters *dma_parms; /* DMA 参数 */ struct list_head dma_pools; /* DMA 缓冲池 */ struct dma_coherent_mem *dma_mem; /* DMA 一致性内存 */ /*体系结构相关的附加项*/ struct dev_archdata archdata; /* 体系结构相关的数据 */ #ifdef CONFIG_OF

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

Linux设备驱动程序学习(10)-时间、延迟及延缓操作

Linux设备驱动程序学习(10)-时间、延迟及延缓操作 Linux设备驱动程序学习(10) -时间、延迟及延缓操作 度量时间差 时钟中断由系统定时硬件以周期性的间隔产生,这个间隔由内核根据HZ 值来设定,HZ 是一个体系依赖的值,在中定义或该文件包含的某个子平台相关文件中。作为通用的规则,即便如果知道HZ 的值,在编程时应当不依赖这个特定值,而始终使用HZ。对于当前版本,我们应完全信任内核开发者,他们已经选择了最适合的HZ值,最好保持HZ 的默认值。 对用户空间,内核HZ几乎完全隐藏,用户HZ 始终扩展为100。当用户空间程序包含param.h,且每个报告给用户空间的计数器都做了相应转换。对用户来说确切的HZ 值只能通过/proc/interrupts 获得:/proc/interrup ts 的计数值除以/proc/uptime 中报告的系统运行时间。 对于ARM体系结构:在文件中的定义如下: 也就是说:HZ 由__KERNEL__和CONFIG_HZ决定。若未定义__KERNEL__,H Z为100;否则为CONFIG_H Z。而CONFIG_HZ是在内核的根目录

的.config文件中定义,并没有在make menuconfig的配置选项中出现。Linux的\arch\arm\configs\s3c2410_defconfig文件中的定义为: 所以正常情况下s3c24x0的HZ为200。这一数值在后面的实验中可以证实。 每次发生一个时钟中断,内核内部计数器的值就加一。这个计数器在系统启动时初始化为0,因此它代表本次系统启动以来的时钟嘀哒数。这个计数器是一个64-位变量( 即便在32-位的体系上)并且称为“jiffies_64”。但是驱动通常访问jiffies 变量(unsigned long)(根据体系结构的不同:可能是jiffies_64 ,可能是jiffies_64 的低32位)。使用jiffies 是首选,因为它访问更快,且无需在所有的体系上实现原子地访问64-位的jiffies_64 值。 使用jiffies 计数器 这个计数器和用来读取它的工具函数包含在,通常只需包含,它会自动放入jiffi es.h 。 jiffies 和jiffies_64 必须被当作只读变量。当需要记录当前jiffies 值(被声明为volatile 避免编译器优化内存读)时,可以简单地访问这个unsigned long 变量,如: 以下是一些简单的工具宏及其定义:

基于Linux系统的HHARM9电机驱动程序设计

收稿日期:2005-09-22 作者简介:朱华生(1965-),男,江西临川人,副教授. 文章编号:1006-4869(2005)04-0051-03 基于Linux 系统的HHARM9电机驱动程序设计 朱华生,胡凯利 (南昌工程学院计算机科学与技术系,江西南昌330099) 摘 要:对嵌入式Linux 操作系统驱动程序的组成进行分析,讨论了驱动程序的基本框架,以HHARM9电机控制为实例,详细论述了电机驱动程序的实现过程. 关键词:嵌入式;Linux;驱动程序 中图分类号:TP316 文献标识码:A Linux System -Based Design of HHARM 9Electromotor Driver ZHU Hua -sheng,HU Ka-i li (Department of Computer and Science,Nanchang Institute of Technology,Nanchang 330099,China) Abstract:The paper analyses the composition of driver in embedded linux system,disuses its basic frame of driver,and illustrales the process of driver design of HHARM9electromotor in detail. Key words:Embedded;Linux; driver 嵌入式Linux 操作系统因具有免费、开放源代码、强大的网络功能等 特点,在嵌入式产品中得到越来越广泛的应用.基于Linux 操作系统的嵌入 式产品结构[1]如图1所示.本文主要探讨嵌入式系统驱动程序的设计. 1 嵌入式Linux 操作系统驱动程序简介 1)驱动程序和应用程序的区别 驱动程序的设计和应用程序的设计有很大的区别[2].首先,驱动程序 的设计要对硬件的结构、信号的工作流程十分清楚,而在应用程序的设计 中,一般不需要了解这些.其次,应用程序一般有一个main 函数,从头到尾 执行一个任务;驱动程序却不同,它没有main 函数,通过使用宏module _init(初始化函数名),将初始化函数加入内核全局初始化函数列表中,在内核初始化时执行驱动的初始化函数,从而完成驱动的初始化和注册,之后驱动便停止等待被应用软件调用.应用程序可以和GLIB C 库连接,因此可以包含标准的头文件,比如等;在驱动程序中,不能使用标准C 库,因此不能调用所有的C 库函数,比如输出打印函数只能使用内核的printk 函数,包含的头文件只能是内核的头文件,比如. 2)Linux 系统设备文件 为了方便应用程序的开发,在Linux 操作系统中,使用了设备文件这一概念来管理硬件设备.Linux 操 第24卷 第4期 2005年12月南昌工程学院学报Journal of Nanchang Institute of Technology Vol.24No.4Dec.2005

linux 驱动程序开发

1 什么是驱动 a)裸板驱动 b)有系统驱动linux 将驱动封装了一套框架(每个驱动) c)大量和硬件无关的代码已写好只需要编程实现和硬件相关的代码 d)难点:框架的理解代码的理解 e)需要三方面的知识: i.硬件相关的知识 1.电路原理图 2.芯片的数据手册 3.总线协议rs232 i2c等 ii.内核的知识 1.内核驱动属于内核的一部分,它运行在内核态需要对内核知识有了解 2.内存管理 3.解决竞争状态(如上锁) 4.。。。 iii.驱动框架的知识 1.内核中已经实现了大量硬件驱动完成了驱动的框架编程只需要根据硬 件进行添加 2 搭建linux驱动开发工具 a)安装交叉编译环境 i.arm-linux-gcc uboot PATH b)移植uboot c)移植内核 d)制作根文件系统然后通过nfs方式让开发板可以加载 3 内核驱动开发的基本知识 a)如何学驱动编程? i.最好的老师就是内核源码(没有man 功能) 1.要是用某个函数就去查看某个函数的定义注释 2.查看内核中其他模块儿时如何使用该函数的 3.专业书籍: a)内核开发:linux内核的设计与实现机械工程出版社 b)驱动开发:圣经级别的-LDD3:LINUX DEVICE c)操作性别叫强的:精通linux设备驱动程序开发

关于linux内核: 1)linux内核中所使用的函数都是自身实现的它肯定不会调用c库中的函数 2)linux中代码绝大多数代码时gun c语言完成的不是标准c语言可以理解为标c的扩展版和少部分汇编 需要注意的问题: 1)内核态不能做浮点数运算 2)用户空间的每个进程都有独立的0-3G的虚拟空间 多个进程共享同一个内核 内核使用的地址空间为3G-4G 3)每个线程有独立的栈空间 4 写一个最简单的内核模块儿(因为驱动时内核的一个模块套路都一样) a)几个宏 i.__FUNCTION__:展开为所在函数的名称 ii.__LINE__:展开为printk所在的行号 iii.__DATE__:展开为编译程序的日期 b)通用头文件 i.#include ii.#include c)没有main函数 然后写一个makefile 其中:obj -m +=helloworld.o -m表示生成模块儿 make -C 内核路径编译对象路径modules(固定表示模块儿) 例子:make -C /home/changjian/dirver/kernel M=$(PWD) modules 报错:如taints kernel(污染内核)因为写的驱动没有声明license 因为linux为开源所以写的驱动也必须声明为开源可以在程序里加入:MODULE_LICENSE(“GPL”);声明为开源 模块儿驱动开发 1、模块儿参数 a)内核中安装模块时也可以传递参数 i.insmod xx.ko var=123 b)模块参数的使用方法 i.首先在模块中定义全局变量 ii.然后使用module_param 或者module_param_array来修饰该变量 这样一个普通的全局变量就变成可以安装模块时传递参数的模块参数 module_param(name,type,perm) name:变量名称 type: name的类型(不包括数组) perm:权限类型rwxr-x 等类型内核做了相关的宏定义形如efine S_IRWXG 表示r w x g(同组) module_param_array(name,type,nump,perm)将某个数组声明为模块 参数

相关主题
文本预览
相关文档 最新文档