当前位置:文档之家› 数字信号和模拟信号的区别详解

数字信号和模拟信号的区别详解

数字信号和模拟信号的区别详解

深圳市华天成科技有限公司

数字信号和模拟信号的区别详解

很多人就不懂模拟信号和数字的信号的区别,数字信号和模拟信号都是一样的传输方法。只是模拟信号是连续不断的传输,数字信号是一直断续的闪断式传输。数字信号的这个名字主要是区别和前面称做模拟的那个信号。不是真的就是有些人以为的成什么0102了。就象模拟电原和数字电源一样,数字电原只靠0102就发电了

模拟信号和数字信号的区别:模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。

数字通信有如下优点:(1)加强了通信的保密性。语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。(2)提高了抗干扰能力,尤其在中继时,数字信号可以再生而消除噪声的积累。(3)传输差错可以控制,从而改善了传输质量。(4)便于使用现代数字信号处理技术来对数字信息进行处理。(5)可构建综合数字通信网,综合传递各种消息,使通信系统功能增强。但数字通信也存在缺点,例如:占用频带较宽,技术要求复杂,进行模/数转换时会带来量化误差。

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

现代数字信号处理及其应用——LMS算法结果及分析

LMS 算法MATLAB 实现结果及其分析 一、LMS :为课本155页例题 图1.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图1.2滤波器权系数迭代更新过程曲线(步长075.0=μ) 图1.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图1.4滤波器权系数迭代更新过程曲线(步长015.0=μ) 分析解释: 在图1.1中,收敛速度最慢的是步长为015.0=μ的曲线,收敛速度最快的是步长075.0=μ的曲线,所以可以看出LMS 算法的收敛速度随着步长参数的减小而相应变慢。图1.2、1.3、1.4分别给出了步长为075.0=μ、025.0=μ、025.0=μ的滤波器权系数迭代更新过程曲线,可以发现其不是平滑的过程,跟最抖下降法不一样,体现了其权向量是一个随机过程向量。

LMS2:为课本155页例题,156页图显示结果 图2.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图2.2滤波器权系数迭代更新过程曲线(步长025.0=μ) 图2.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图2.4最陡下降法权值变化曲线(步长025.0=μ) 分析解释: 图2.1给出了步长为025.0=μ的学习曲线,图2.2给出了滤波器权向量的单次迭代结果。图2.3给出了一 次典型实验中所得到的权向量估计()n w ?=,以及500次独立实验得到的平均权向量()}n w ?E{=的估计,即()∑==T t n w T 1 t )(?1n w ?,其中)(?n w t 是第t 次独立实验中第n 次迭代得到的权向量,T 是独立实验次数。可以发现,多次独立实验得到的平均权向量()}n w ?E{=的估计平滑了随机梯度引入的梯度噪声,使得其结果与使用最陡下降法(图2.4)得到的权向量趋于一致,十分接近理论最优权向量[]T 7853.08361.0w 0-=。 LMS3:为课本172页习题答案

模拟信号和数字信号的特点分别是什么

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 1 1=== - 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 7 6 105.210221-?=??= 4、答: Hz s bit //21010241020483 3 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现

象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为? =93S i ,试 将其编成相应的码字,并求其编码误差与解码误 差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编成相应的码字,并求 其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,10 =-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

模拟信号和数字信号的对比

模拟信号是将源信号的一些特征未经编码直接通过载波的方式发出,是连续的数字信号则是通过数学方法对原有信号进行处理,编码成二进制信号后,再通过载波的方式发送编码后的数字流,是离散的特点:模拟信号:将26个字母对应26种不同的颜色要传递时用不同颜色的滤光片改变电筒射出的光的颜色这里就会表现出模拟信号不可靠(容错性差、易受干扰)的缺点人对颜色的识别可能会有偏差大气对不同颜色的光线吸收程度不同数字信号:将26个字母编码成二进制数字(可参考莫尔斯电码)通过电筒光线的闪烁来传递信号由于光线的闪烁很容易分辨且不容易受到干扰这个通信方案的可靠性就比模拟信号更强模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,时间上离散的模拟信号是一种抽样信号,数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1.模拟通信模拟通信的优点是直观且容易实现,但存在两个主要缺点。(1)保密性差模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。(2)抗干扰能力弱电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多2.数字通信(1)数字化传输与交换的优越性①加强了通信的保密性。②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。③可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。(2)数字化通信的缺点①占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20?64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM信号占了几个模拟话路。对某一话路而言,它的利用率降低了,或者详它对线路的要求提高了。②技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。③进行模/数转换时会带来量化误差。随着大规模集成电路的使用以及光纤等宽频带传输介质的普及,对信息的存储和传输,越来越多使用的是数字信号的方式,因此必须对模拟信号进行模/数转换,在转换中不可避免地会产生量化误差数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(AnalogSignal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(DigitalSignal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

模拟信号和数字信号的优缺点

模拟信号和数字信号的优缺点 模拟信号好还是数字信号好,很多人都会说数字信号,但为 什么数字信号好呢?那就有相当一部分人答不出来了,究竟模拟信 号和数字信号的优缺点在哪呢? 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部 的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量 下降。线路越长,噪声的积累也就越多 3)不适宜远距离传输 数字化传输优点 1)加强了通信的保密性。 2)提高了抗干扰能力。 3)可构建综合数字通信网。采用时分交换后,传输和交换 统一起来,可以形成一个综合数字通信网 4)适宜远距离传输

由于数字信号在传输过程中可以不断地通过整形和判决再生,因此它可以实现无噪声积累和无非线性失真的高质量长途传输。光 纤所具有的极宽传输带宽和极小传输损耗,使数字通信的广泛应用 成为可能。数字视频光传输与传统的模拟光传输相比,具有如下显 著特性: 1)可级联,随距离的增加,SNR信噪比不会下降。 2)由于是数字传输方式,采用数字编码纠错方式,具有高 稳定性和高可靠性。 3)多路信号同传时,采用数字时分复用技术(TMD),不会 产生模拟传输时的交调失真。 4)稳定性好,环境适应性高,比模拟传输系统易于维护与 调节。 5)易于实现大容量传输,且性价比高。 6)采用无压缩编码,图像信号质量高,达广播级。 在传输中,如视频监控,数据传输等,基本上都是由光端机 来进行的,而视频监控中采用最多的则是视频光端机这类传输设备。

数字信号与模拟信号的特点

信号数据可以用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据幅度取什是否离散来确定。模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,如图1-1(a)所示。时间上离散的模拟信号是一种抽样信号,如图1-1(b)所示,它是对图1-1(a)的模拟信号每隔时间T抽样一次所得到的信号,虽然其波形在时间上是不连续的,但其幅度取值是连续的,所以仍是模拟信号,称之为脉冲幅度调制(PAM,简称脉幅调制)信号。 数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到广泛的应用。1.模拟通信 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 (1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 (2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。 2.数字通信 (1)数字化传输与交换的优越性 ①加强了通信的保密性。语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。 数字加密处理可简单描述如下,Y1表示语音变成的数字信号Y1=1011101100001,采用8位密码C=10001101。在送到传输线路之前,将密码“加”到语音码中去,X=Y1+C(密码C连续重复),则传输的数字信号为 X=Y1+C=1011101100001 Y1 +1000110110001 C ————————————— 0011011010000 X 显然X≠Y1,即便有人窃听到X码,也不能马上得到Y1码。在接收端,只要再将相同密码C与数码X相加,就能丰碑成原来的语音数码Y1,即 Y1=X+C=0011011010000 X +1000110110001 C ————————————— 1011101100001 Y1 可见,语音数字化为加密处理提供了十分有利的条件,且密码的位数越多,破译密码就越困难。 ②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过

现代数字信号处理及应用仿真题答案

仿真作业 姓名:李亮 学号:S130101083

4.17程序 clc; clear; for i=1:500 sigma_v1=0.27; b(1)=-0.8458; b(2)=0.9458; a(1)=-(b(1)+b(2)); a(2)=b(1)*b(2); datlen=500; rand('state',sum(100*clock)); s=sqrt(sigma_v1)*randn(datlen,1); x=filter(1,[1,a],s); %% sigma_v2=0.1; u=x+sqrt(sigma_v2)*randn(datlen,1); d=filter(1,[1,-b(1)],s); %% w0=[1;0]; w=w0; M=length(w0); N=length(u); mu=0.005; for n=M:N ui=u(n:-1:n-M+1); y(n)=w'*ui; e(n)=d(n)-y(n); w=w+mu.*conj(e(n)).*ui; w1(n)=w(1); w2(n)=w(2); ee(:,i)=mean(e.^2,2); end end ep=mean(ee'); plot(ep); xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1); hold; plot(w2); 仿真结果:

步长0.015仿真结果 0.10.20.30.4 0.50.60.7迭代次数 M S E 学习曲线

步长0.025仿真结果

步长0.005仿真结果 4.18 程序 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len);

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 11===- 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 76105.210 221-?=??= 4、答:Hz s bit //210 102410204833 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为?=93S i ,试将其编成相应的码字,并求其编码误差与解码误差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编

成相应的码字,并求其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,100=-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥ 若kHz f s 10=,抽样信号的频谱为: 此频谱的一次下边带与原始频带重叠,即没有防卫带。 2、 e e e x x x N N S N l lg 2059lg 205123lg 20lg 203lg 20)/(512 ,9q +=+?=+?===均匀 3、 x x x N N S A N l q lg 2047lg 201283lg 20lg 203lg 20)/(6 .87,128,7+=+?=+?====均匀 246.87ln 16.87lg 20ln 1lg 20=+=+=A A Q )39lg 20(dB x -≤

模拟信号与数字信号的特点

第1章概述 一、模拟信号与数字信号的特点 模拟信号——幅度取值是连续的连续信号 离散信号 数字信号——幅度取值是离散的二进码 多进码 连续信号 离散信号 ●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。 ●离散信号与连续信号的区别是根据时间取值上是否离散而定的。 二、模拟通信与数字通信 ●根据传输信道上传输信号的形式不同,通信可分为 模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。 数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。 ●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信 号。 所要解决的首要问题 模拟信号的数字化,即模/数变换(A/D变换) 三、数字通信的构成 ●话音信号的基带传输系统模型 四、数字通信的特点 1、抗干扰能力强,无噪声积累 对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。由于无噪声积累,可实现长距离、高质量的传输。

2、便于加密处理 3、采用时分复用实现多路通信 4、设备便于集成化、小型化 5、占用频带较宽 五、数字通信系统的主要性能指标 ● 有效性指标 P7 ·信息传输速率——定义、公式l n f f s B ??=、物理意义 ·符号传输速率——定义、公式(B B t N 1= )、关系:M N R B b 2 log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性) 频带宽度符号传输速率= η Hz Bd / 频带宽度 信息传输速率= η Hz s bit // ● 可靠性指标 P8 ·误码率——定义 ·信号抖动 例1、设信号码元时间长度为s 7106-?,当(1)采用4电平传输时,求信息传输速率和符号传输速率。(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。 解:(1)符号传输速率为 Bd t N B B 6 7 1067.110 611?=?= = - 数据传信速率为 s Mbit M N R B b /34.34log 1067.1log 2 6 2 =??== (2)Hz s bit //67.110 20001034.33 6=??= = 频带宽度 信息传输速率η 例2、接上题,若传输过程中2秒误1个比特,求误码率(误比特率)。 解:误码率(误比特率)=差错比特数/传输总比特数 7 6 10 5.110 34.321-?=??=

西安电子科技大学数字信号处理大作业

数字信号处理大作业 班级:021231 学号: 姓名: 指导老师:吕雁

一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会 1、采样定理 在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频 率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定 理又称奈奎斯特定理。 (1)在时域 频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各 采样值完全恢复原始信号。 (2)在频域 当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列 采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。 2、奈奎斯特采样频率 (1)概述 奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须 大于信号最高频率的两倍(即奈奎斯特频率)。 奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可 以真实的还原被测信号。反之,会因为频谱混叠而不能真实还原被测信号。 采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或 带宽,就可以避免混叠现象。从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。但是,重建信号的过程需要以一个低 通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还 要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实 现的。在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分 量在采样和信号重建的过程中可能会发生畸变。因此信号带宽通常会略小于奈 奎斯特频率,具体的情况要看所使用的滤波器的性能。需要注意的是,奈奎斯 特频率必须严格大于信号包含的最高频率。如果信号中包含的最高频率恰好为

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

现代数字信号处理-第七章-7.17 仿真题

仿真题7.17 现有一个在二维平面内运动的目标,它从(60000m,40000m )处,以 (-172m/s,246m/s )的速度出发。在400s 的运动过程中,目标运动速率保持为300m/s ,并在56~105s,182~245s,285~314s 和348~379s 期间分别以1g,-1.5g,3g 和-2.5g(g=9.8m/2s )的转弯速率进行机动,其余时间段则进行匀速运动。系统在两个方向的观测噪声标准差为m y x 100==σσ。采用IMM 算法实现对该目标的跟踪,其中的模型集合由具有不同转弯速率的协同转弯模型构成。定义状态向量由目标在各方向的位置和速度分量构成,即 ()()()[] T y x n v n y n v n x n x )()(= 在协同转弯模型中,状态转移矩阵及状态噪声输入矩阵分别为 ()()()??????? ?????????T T T T -T -T T --T =-ωωωωωωωωωωωωωcos 0sin 0)sin(1) cos(10)sin(0cos 0)cos(10)sin(1)1,(n n F ()?????? ????????T T T T =-Γ2/00002/1,22n n 其中,ω为转弯速率,T 为采样周期。模型集合由7个协同转弯模型组成,转弯速率分别为 s s s s s s s /6.5,/74.3,/87.1,/0,/87.1,/74.3,/6.57654321 ====-=-=-=ωωωωωωω。转速0ω对应模型的系统状态噪声标准差为1.8m/2s ,其余模型的系统状态噪声标准差为2.5m/2s 。模型初始概率为{0.03,0.03,0.03,0.92,0.03,0.03,0.03},转移概率矩阵为 ?????????? ????????????=0.90.1000000.10.80.10000 00.10.80.1000000.10.80.1000000.10.80.1000000.10.80.1000000.10.9π 请给出: (1)目标的真实运动轨迹。

模拟信号与数字信号的优缺点及之间的转化

模拟信号与数字信号之间的优缺点及两者之间的转换 概述:信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据幅度取值是否离散来确定。 模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号: (1)模拟信号与数字信号: 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点数字信号,只要走了,则为有信号,不走则为无信号,走的时间越长则信号越强,脉冲宽度越短同样信号也越强。 总之数字信号的优点:容量大,抗干扰能力强,保密性好,同样的发射功率传输距离更远,受地形或障碍物影响较小,接口丰富,扩展能力强等等。 (2)模拟信号与数字信号之间的相互转换: 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数

DSP与数字信号处理作业

1、什么是DSP?简述DSPs的特点?简述DSPs与MCU、FPGA、ARM的区别?学习DSP开发需要哪些知识?学习DSP开发需要构建什么开发环境?(15分) 答:(1)DSP是Digital Signal Processing(数字信号处理的理论和方法)的缩写,同时也是Digital Signal Processor(数字信号处理的可编程微处理器)的缩写。通常流过器件的电压、电流信号都是时间上连续的模拟信号,可以通过A/D器件对连续的模拟信号进行采样,转换成时间上离散的脉冲信号,然后对这些脉冲信号量化、编码,转化成由0和1构成的二进制编码,也就是常说的数字信号。DSP能够对这些数字信号进行变换、滤波等处理,还可以进行各种各样复杂的运算,来实现预期的目标。 (2)DSP既然是特别适合于数学信号处理运算的微处理器,那么根据数字信号处理的要求,DSP芯片一般具有下面所述的主要特点:1)程序空间和数据空间分开,CPU可以同时访问指令和数据; 2)在一个指令周期内可以完成一次乘法和一次加法运算; 3)片内具有快速RAM,通常可以通过独立的数据总线在程序空间和数据空间同时访问; 4)具有低开销和无开销循环及跳转的硬件支持; 5)具有快速的中断处理和硬件I/O支持; 6)可以并行执行多个操作; 7)支持流水线操作,使得取址、译码和执行等操作可以重复执行。(3)DSP采用的是哈佛结构,数据空间和存储空间是分开的,通过

独立的数据总线在数据空间和程序空间同时访问。而MCU采用的是冯·诺依曼结构,数据空间和存储空间共用一个存储器空间,通过一组总线(地址总线和数据总线)连接到CPU)。很显然,在运算处理能力上,MCU不如DSP;但是MCU价格便宜,在对性能要求不是很高的情况下,还是很具有优势的。 ARM是Advanced RISC(精简指令集)Machines的缩写是面向低运算市场的RISC微处理器。ARM具有比较强的事务管理功能,适合用来跑跑界面、操作系统等,其优势主要体现在控制方面,像手持设备90%左右的市场份额均被其占有。而DSP的优势是其强大的数据处理能力和较高的运算速度,例如加密/解密、调制/解调等。 FPGA是Field Programmable Gate Array(现场可编程门阵列)的缩写,它是在PAL、GAL、PLD等可编程器件的基础上进一步发展的产物,是专用集成电路中集成度最高的一种。FPGA采用了逻辑单元阵列LCA(Logical Cell Array)的概念,内部包括了可配置逻辑模块CLB、输入/输出模块IOB、内部连线三个部分。用户可以对FPGA内部的逻辑模块和I/O模块进行重置配置,已实现用户自己的逻辑。它还具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。使用FPGA来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性;同时FPGA可以用VHDL或Verilog HDL来编程,灵活性强。由于FPGA能够进行编程、除错、再编程和重复操作,因此可以充分地进行设计开发和验证。当电路有少量改动时,更能显示出FPGA的优势,其现场编程能力可

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

相关主题
文本预览
相关文档 最新文档