当前位置:文档之家› 计算流体力学概述-转载

计算流体力学概述-转载

计算流体力学概述-转载
计算流体力学概述-转载

(计算流体力学概述)

CFD仿真 3月20日309

计算流体力学概述

流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。

计算流体力学的发展

计算流体动力学(Computational Fluid Dynamics)简写为CFD,是20世纪60年代起伴随计算科学与工程(Computational Science and Engineering, 简称CSE)迅速崛起的一门学科分支,经过半个世纪的迅猛发展,这门学科已经是相当的成熟了,一个重要的标志就是近几十年来,各种CFD通用软件的陆续出现,成为商品化软件,服务于传统的流体力学和流体工程领域,如航空、航天、船舶、水利等。随着CFD通用软件的性能日益完善,应用的范围也不断的扩大,在化工、冶金、建筑、环境等相关领域中也被广泛应用。

现代流体力学研究方法包括理论分析,数值计算和实验研究三个方面。这些方法针对不同的角度进行研究,相互补充。理论分析研究能够表述参数影响形式,为数值计算和实验研究提供了有效的指导;试验是认识客观现实的有效手段,验证理论分析和数值计算的正确性;计算流体力学通过提供模拟真实流动的经济手段补充理论及试验的空缺。

更重要的是,计算流体力学提供了廉价的模拟、设计和优化的工具,以及提供了分析三维复杂流动的工具。在复杂的情况下,测量往往是很困难的,甚至是不可能的,而计算流体力学则能方便的提供全部流场范围的详细信息。与试验相比,计算流体力学具有对于参数没有什么限制,费用少,流场无干扰的特点。出于计算流体力学如此的优点,我们选择它来进行模

拟计算。简单来说,计算流体力学所扮演的角色是:通过直观地显示计算结果,对流动结构进行仔细的研究。

计算流体力学在数值研究大体上沿两个方向发展,一个是在简单的几何外形下,通过数值方法来发现一些基本的物理规律和现象,或者发展更好的计算方法;另一个则为解决工程实际需要,直接通过数值模拟进行预测,为工程设计提供依据。理论的预测出自于数学模型的结果,而不是出自于一个实际的物理模型的结果。计算流体力学是多领域较差的学科,涉及计算机科学、流体力学、偏微分方程的数学理论、计算几何、数值分析等,这些学科的交叉融合,相互促进和支持,推动了学科的深入发展。

CFD方法是对流场的控制方程用计算数学的方法将其离散到一系列网格节点上求其离散的数值解的一种方法。控制所有流体流动的基本定律是:质量守恒定律、动量守恒定律和能量守恒定律。由它们分别导出连续性方程、动量方程(N-S方程)和能量方程。应用CFD方法进行平台内部空气流场模拟计算时,首先需要选择或者建立过程的基本方程和理论模型,依据的基本原理是流体力学、热力学、传热传质等平衡或守恒定律。

由基本原理出发可以建立质量、动量、能量、湍流特性等守恒方程组,如连续性方程、扩散方程等。这些方程构成连理的非线性偏微分方程组,不能用经典的解析法,只能用数值方法求解。

求解上述方程必须首先给定模型的几何形状和尺寸,确定计算区域并给出恰当的进出口,壁面以及自由面的边界条件。而且还需要适宜的数学模型及包括相应的初值在内的过程方程的完整数学描述。

求解的数值方法主要有有限差分法(FDM)和有限元(FEM)以及有限分析法(FAM),应用这些方法可以将计算域离散为一系列的网格并建立离散方程组,离散方程的求解是由一组给定的猜测值出发迭代推进,直至满足收敛标准。常用的迭代方法有Gauss-Seidel迭代法、TDMA方法、SIP法及LSORC法等。利用上述差分方程及求解方法既可以编写计算程序或选用现有的软件实施过程的CFD模拟。

CFD分析过程

进行CFD分析的一般过程如下所示:

1、将流动问题表示为表达式

分析的第一步是通过寻求以下问题的答案进将流动问题表示为表达式。

——分析的目的是?

——达到这些目的最简单的途径是?

——包含怎样的几何?

——来流和工作状态是怎样的?

——该使用何种空间模型(一维、准一维、二维,轴对称还是三维?)

——流域是怎样的?

——该使用何种时间模型?(定常或非定常)

——流动的粘性情况(无粘、层流还是湍流)

——该使用何种气体模型?

2、建立几何与流域的模型

进行流动分析的对象需进行建模。一般涉及CAD软件几何造型。付出合理的努力进行分析需要进行几何模型近似与简化。于此同时,应该对实施仿真的流域范围做一个确定。流域的部分边界应与几何模型曲面保持一致。其他曲面是自由边界,在自由边界上,流体流入或者流出。几何模型和流域以这样的方式建模,然后用于网格生成。这样,建模过程通常需要考虑网格生成的结构和拓扑。

3、设置边界条件与初始条件

当流域确定了的时候,需要给流域边界指定物理条件。仿真一般开始于初始条件,然后通过迭代的方式得到流场的最终解。

4、网格生成

流域离散成为网格。网格生成包括结构和拓扑确定,然后在该拓扑上生成网格。目前所有的案例都涉及多块网格和结构网格。然而,这些网格块可能是对接的,连续的,非连续的或者重叠的。网格必须满足最低的网格质量要求,如正交性(尤其是在边界上),相对网格间距(最大值不能超过15%到20%),网格扭曲率等等。最大的网格间距应该与流场重要特征的分辨率一致。边界层分辨率要求沿着物面法向的第一层网格点应恰好落在边界层的层流层内。对于湍流流动,沿着物面法向的第一层网格点必须满足y+<1的要求。

5、设置求解策略

执行仿真的策略包括以下内容:使用什么空间推进和时间推进方式,湍流或者化学模型的选择,算法的选择等。

6、设置输入参数和文件

CFD程序通常需要给定输入文件,输入文件的内容是与既定策略一致的输入参数值的列表。此外,还需要包含边界条件信息的网格文件。

7、执行仿真

仿真可以通过图形界面、批处理或者分布式的方式进行。

8、监视仿真直至完成

当仿真进行的时候,监测求解过程以确定是否得到了收敛的解,该解是一个迭代收敛解。

9、后处理得到结果

后处理的过程是从流场中提取出想获得的流场特性(如推力、升力、阻力等)的过程。

10、对结果进行比较

将求解得到的流场特性与理论分析、计算或者试验研究得到的结果进行比较,验证计算结果的可靠性。

11、重复上述过程,评价敏感性

为了了解计算结果精度可能的差异和与以下因素相关的计算表现,必须评价计算结果的敏感性。如:维度、流场条件、初始条件、推进策略、算法、网格拓扑和密度、湍流模型、化学模型、通量模型、人工粘性、边界条件和计算机系统等。

12、归档

将以上的分析整理成文档。

数值模拟方法和分类

在运动CFD方法对一些实际问题进行模拟时,常常需要设置工作环境,设置边界条件和选择算法等,特别是算法的选择,对模拟的效率及其正确性有很大的影响,需要特别的重视。要正确设置数值模拟的条件,有必要了解数值模拟的过程。

随着计算机技术和计算方法的发展,许多复杂的工程问题都可以采用区域离散化的数值计算并借助计算机得到满足工程要求的数值解。数值模拟技术是现代工程学形成和发展的重要动力之一。

区域离散化就是用一组有限个离散的点来代替原来连续的空间。实施过程是把所计算的区域划分成许多许多互不重叠的子区域,确定每个子区域的节点位置和该节点所代表的控制体积。

节点是指需要求解的未知物理量的几何位置、控制体积、应用控制方程或守恒定律的最小几何单位。一般把节点看成控制体积的代表。控制体积和子区域并不总是重合的。在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域成为子区域。网格是离散的基础,网格节点是离散化物理量的存储位置。

常用的离散化方法有有限差分法、有限元法和有限体积法。对这三种方法分别介绍如下。

?有限差分法

有限差分法是数值解法中最经典的方法。它是将求解区域划分为差分网格,用于有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。

该方法的产生和发展比较早,也比较成熟,较多用于求解双曲线和抛物线型问题。用它求解边界条件复杂,尤其是椭圆型问题不如有限元法或有限体积法方便。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有四种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

?有限单元法

有限单元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。

对椭圆型问题有更好的适应性。有限元求解的速度比有线差分法和有线体积法慢,在商用C FD软件中应用并不广泛。目前常用的商用CFD软件中,只有FIDAP采用的是有线单元法。

?有线体积法

有线体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。其中的未知数是网格节点上的因变量。子域法加离散,就是有限体积法的基本思想。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。

有限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制集体都得到满足,对整个计算区域,自然也得到满足,这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言,有限体积法可视作有线单元法和有限差分法的中间产物。三者各有所长。?有限差分法:直观,理论成熟,精度可选,但是不规则区域处理繁琐,虽然网格生成可以使有限差分法应用于不规则区域,但是对于区域的连续性等要求较严。使用有限差分法的好处在于易于编程,易于并行。

?有限单元法:适合于处理复杂区域,精度可选。缺点是内存和计算量巨大,并行不如有限差分法和有限体积法直观。

?有限体积法:适用于流体计算,可以应用于不规则网格,适用于并行。但是精度基本上只能是二阶。有线单元法在应力应变,高频电磁场方面的特殊优点正在被人重视。

计算流体力学应用领域

近十多年来,CFD有了很大的发展,替代了经典流体力学中的一些近似计算法和图解法,过去的一些典型教学实验,如Reynolds实验,现在完全可以借助CFD手段在计算机上实现。

所有涉及流体流动、热交换、分子输运等现象的问题,几乎都可以通过计算流体力学的方法进行分析和模拟。CFD不仅作为一个研究工具,而且还作为设计工具在水利工程、土木工程、环境工程、食品工程、海洋结构工程、工业制造等流域发挥作用。典型的应用场合及相关的工程问题包括:

航空工程

CFD在航空和国防工业中的应用经历了一个长期的发展过程,取得了令人瞩目的成绩。在激烈的竞争环境中,CFD在改进飞行设计中起到了关键性的作用。实际上,很多工程师已将C FD和空气动力学结合起来用于诸如飞机机翼升力的计算。随着CFD计算技术和计算机能力的提高,其使用更为简便,人们在计算升力之外,其应用范围已经得到很大拓展。今天,C FD正用于求解很多困难的实际问题,而这些问题用过去的计算工具是难以分析或求解的。

汽车工程

现在,汽车工程师们正在依靠更多的模拟技术将提出的新车设计概念付诸实施。计算机辅助工程已经处于革新汽车内部系统的技术前沿,可以更好地全面提升驾驶体验,改善驾破员和乘客的舒适性和安全性,井且进一步降低油耗,计算流体力学长期以来一直是汽车设计和制造中的一个基本要素。除了航空航天工业外,汽车工业在研究制造中也大量使用了CFD技术。因此,作为工程模拟工具,即使面对最困难的挑战,CFD仍然在许多工业领域中得到很好的应用。

生物科学工程

医学研究者现在依靠模拟工具帮助预测人体中血液循环流动状态,数值模拟能够提供实验难以得到的有价值的信息,而且CFD还可以对很多流体动力学参数进行研究。同时,CFD 在制药工业也有广泛的应用。

化学和采矿工程

很多世界必需品源于化学工业和采矿业,这些工业通过物理或化学方法加工原材料,消耗大量的热能和电能,为食品、保健品以且先进的计算技术设备和生物技术设备提供初级产品,面对不断加剧的竞争,这些工业面临的主要挑战是既要满足当前世界性的需求,同时时未来发展丑不造成损害,这就要求生产过程更高效、更安全以及更少污染物的排放。

民用和环境工程

政府、研究机构以且企业正在职融寻求途径满足环境保护法,在维持一定生产水平、满足市场不断增加需靠的同时,保证减少环境污染。在很多时候,CFD模拟已经成为解决环境问题的核心技术。

能源工程

在不断竞争的能源市场中,设备制造商们转向CFD寻求技术支持,以便更好地了解和提升能源工业中的设备和工艺。尽管传统的发电方式仍在广泛使用,但已经出现了具有潜力的可再生能源,如凤力发电。为使投资得到最大回报,CFD已经被用于风力发电涡轮叶片的优化设计当中,使之在不同的来风条件下能产生恒定的功率。通过CFD的风能资源评估,工程师可以更好地研究风力发电站的经济性,正确的模拟结果可以减少投资风险。

体育

随着体育水平的不断提高,特别是在奥运赛场上,运动员的水平都在伯仲之间,体育比赛的胜负差距非常微小,为了在比赛中获得胜利,不得不为提高器材的性能投入大量的资金。体育器材的流体动力性能越来越重要,越来越多的优秀运动员、运动队以及体育设备制造商们都在努力从先进的流体模型中获取比赛空气动力的有利条件,越来越多的体育器材外形的研究成果逐渐为人们所认可。同时,CFD不仅可以研究体育运动器械等硬件设备,还可以对运动员的运动技巧进行分析,针对不同运动员的自身条件,通过计算分析,制定更为科学量化的竞技动作和训练内容。

CFD软件工具

为了完成CFD计算,过去多是用户自己编写计算程序,但由于CFD的复杂性及计算机硬件条件的多样性,使得用户各自的应用程序往往缺乏通用性,而CFD本身又有其鲜明的系统性和规律性,因此,比较适合于被制成通用的商用软件。

在1981年以来,出现了如PHOENICS、STAR-CD、STAR-CCM+、CFX、FLUENT等多个商用CFD 软件,这些软件的特点是:

?功能比较全面、适用性强,几乎可以求解工程界中的各种复杂问题

?具有比较易用的前后处理系统和与其它CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。同时,还可让用户扩展自己的开发模块。

?具有比较完备的容错机制和操作界面,稳定性高。

?可在多种计算机、多种操作系统,包括并行环境下运行。

随着计算机技术的快速发展,这些商用软件在工程界正在发挥着越来越大的作用。

PHOENICS

一般认为是Spalding主持的英国CHAM公司是CFD软件商业化的先驱。Spalding与Patank ar提出的SIMPLE算法(半隐式压力校正解法)在70年代己被广泛用于热流问题求解,CHAM 公司在80年代初以该方法为基础推出了计算流体力学与传热学的商业化软件PHOENICS的早期版本。这是CFD通用软件包的雏型,具有一定通用性,尽管功能还很不完备,但问世后很受欢迎。

如今,PHOENICS已经发展成为一款能够模拟传热、流动、反应、燃烧过程的通用CFD软件。

主要特点:

1、开放性:Phoenics最大限度地向用户开放了程序,用户可以根据需要任意修改添加用户

程序、用户模型。PLANT及INFORM功能的引入使用户不再需要编写FORTRAN源程序,GROUN D程序功能使用户修改添加模型更加任意和方便。

2、CAD接口:Phoenics可以读入任何CAD软件的图形文件。

3、MOVOBJ:运动物体功能可以定义物体运动,避免了使用相对运动方法的局限性。

4、大量的模型选择:20多种湍流模型,多种多相流模型,多流体模型,燃烧模型,辐射模

型。

5、提供了欧拉算法也提供了基于粒子运动轨迹的拉格朗日算法。

6、计算流动与传热时能同时计算浸入流体中的固体的机械和热应力。

7、VR(虚拟现实)用户界面引入了一种崭新的CFD建模思路。

8、PARSOL(CUT CELL):部分固体处理。

9、软件自带1000多个例题,附有完整的可读可改的原始输入文件。

10、Phoenics专用模块:建筑模块(FLAIR)电站锅炉模块(COFFUS)

应用领域:

能源动力两相、多相流航空航天传热传质化工燃烧、爆炸船舶水利化学反应建筑、暖通空调流体机械冶金磁流体环境材料

最新版本:

Phoenics2014于2014年12月正式发布。 Phoenics模拟软件是一款集室内、室外通风、热岛分析功能于一体的绿色建筑节能评估软件,可准确模拟建筑内部、建筑周围风速、风速放大系数、风压、温度等分布情况,为优化建筑布局,改善建筑物朝向、开窗位置等提供方案指导。同时Phoenics软件在消防安全火灾、烟雾、城区污染物扩散等方面也有广泛应用。

FLUENT

FLUENT软件是当今世界CFD仿真领域最为全面的软件包之一,具有广泛的物理模型,以及能够快速准确的得到CFD分析结果。

FLUENT软件拥有模拟流动,湍流,热传递和反应等广泛物理现象的能力,在工业上的应用包括从流过飞机机翼的气流到炉膛内的燃烧,从鼓泡塔到钻井平台,从血液流动到半导体生产,以及从无尘室设计到污水处理装置等等。软件中的专用模型可以用于开展缸内燃烧,空气声学,涡轮机械和多相流系统的模拟工作。

现今,全世界范围内数千计的公司将FLUENT与产品研发过程中设计和优化阶段相整合,并从中获益。先进的求解技术可提供快速、准确的CFD结果、灵活的移动和变形网格,以及出众的并行可扩展能力。用户自定义函数可实现全新的用户模型和扩展现有模型。

FLUENT中的交互式的求解器设置、求解和后处理能力可轻易暂停计算过程,利用集成的后处理检查结果,改变设置,并随后用简单的操作继续执行计算。ANSYS CFD-Post可以读入C ase和Data文件,并利用其先进的后处理工具开展深入分析,同时对比多个算例。

ANSYS Workbench集成ANSYS FLUENT后给用户提供了与所有主要CAD系统的双向连接功能,其中包括ANSYS DesignModeler强大的几何修复和生成能力,以及ANSYS Meshing先进的

网格划分技术。该平台通过使用一个简单的拖放操作便可以共享不同应用程序的数据和计算结果。

最新版本:ANSYS FLUENT 18.0

CFX

CFX是全球第一个通过ISO9001质量认证的大型商业CFD软件,由英国AEA Technology公司开发。2003年,CFX软件被ANSYS公司收购。诞生在工业应用背景中的CFX一直将精确的计算结果、丰富的物理模型、强大的用户扩展性作为其发展的基本要求,并以其在这些方面的卓越成就,引领着CFD技术的不断发展。目前,CFX已经遍及航空航天、旋转机械、能源、石油化工、机械制造、汽车、生物技术、水处理、火灾安全、冶金、环保等领域,为其在全球6000多个用户解决了大量的实际问题。

和大多数CFD软件不同的,CFX除了可以使用有限体积法之外,还采用了基于有限元的有限体积法。基于有限元的有限体积法保证了在有限体积法的守恒特性的基础上,吸收了有限元法的数值精确性。在CFX中,基于有限元的有限体积法,对六面体网格单元采用24点插值,而单纯的有限体积法仅仅采用6点插值;对四面体网格单元采用60点插值,而单纯的有限体积法仅仅采用4点插值。在湍流模型的应用上,除了常用的湍流模型外,CFX最先使用了大涡模拟(LES)和分离涡模拟(DES)等高级涡流模型。

CFX可计算的物理问题包括可压与不可压流体、耦合传热、热辐射、多相流、粒子输送过程、化学反应和燃烧问题。还拥有诸如气蚀、凝固、沸腾、多孔介质、相间传质、非牛顿流、喷雾干燥、动静干涉、真实气体等大批负责现象的使用模型。

在其湍流模型中,纳入了k-?模型、低Reynolds数k-?模型、低Reynolds数Wilcox模型、代数Reynolds应力模型、微分Reynolds应力模型、微分Reynolds通量模型、SST模型和大涡模型。

作为世界上唯一采用全隐式耦合算法的大型商业软件。算法上的先进性,丰富的物理模型和前后处理的完善性使ANSYS CFX在结果精确性,计算稳定性,计算速度和灵活性上都有优异的表现。

除了一般工业流动以外,ANSYS CFX还可以模拟诸如燃烧,多相流,化学反应等复杂流场。ANSYS CFX还可以和ANSYS Structure及ANSYS Emag等软件配合,实现流体分析和结构分析,电磁分析等的耦合。ANSYS CFX也被集成在ANSYS Workbench环境下,方便用户在单一操作界面上实现对整个工程问题的模拟。

ANSYS CFX不仅是一款强大的CFD软件。ANSYS Workbench平台融合了ANSYS DesignModel er强大的几何修复和ANSYS Meshing先进的网格划分技术,为所有主流的CAD系统提供优质的双向连接,使数据的拖-放转换以及不同的应用程序间共享结果更为容易。

最新版本:ANSYS CFX 18.0

STAR-CCM+

STAR-CCM+是CD-adapco集团推出的新一代CFD软件。采用最先进的连续介质力学算法(com putational continuum mechanics algorithms),并和卓越的现代软件工程技术结合在一起,拥有出色的性能、精度和高可靠性。

STAR-CCM+拥有一体化的图形用户界面,从参数化CAD建模、表面准备、体网格生成、模型设定、计算求解一直到后处理分析的整个流程,都可以在同一个界面环境中完成。

基于连续介质力学算法的STAR-CCM+,不仅可以进行热、流体分析,还拥有结构应力、噪声等其它物理场的分析功能,功能强大而又易学易用。

STAR-CCM+创新性的表面包面功能、全自动生成多面体网格或六面体为核心的体网格功能、在计算过程中实时监控后处理结果的功能,甚至细微到使用复制、粘贴功能传递设定参数等等,处处体现了STAR-CCM+为了最小化用户的人工操作时间、更方便更直接地将结果呈现在用户面前而精心设计的理念。

最新版本:STAR-CCM+ v11.06

XFLOW

XFlow是Next Limit Technologies公司开发的新一代的基于无网格、拉格朗日粒子法和大涡模拟(LES) 技术的流体力学计算软件,它省去了划分复杂网格的时间,能真实地模拟复杂的几何和运动物体,大大提高流体计算效率和精确性, 为客户节省价格昂贵的试验成本。

重要特点包括:

?无网格方法

XFlow中的无网络方法是基于粒子和具有完整拉格朗日函数的方法,这意味着将不再需要对经典的流体区域划分网格,同时表面复杂性不再是一种限制因素。XFlow能够解决运动的物体和可变形部分,能够适应低质量的输入几何。

?基于粒子动力式解算器

XFlow以一种全新的、基于粒子的动力算法为特征,对波尔兹曼方程和可压缩的纳维-斯托克斯方程进行求解。该解算器的特点是具有现代化的大涡模拟(LES)建模能力,以及具有高级非平衡隔离型模型。

?高级建模能力

XFlow能够处理大规模复杂模型,并且结合移动部分、强制或关联运动或接触建模过程,极大地简化分析结构。

?高级分析能力

XFlow的求解器还支持热分析,热交换,辐射,跨音速和超音速流动,在多孔介质中流动,非牛顿流,离散相模型和复杂边界条件,如多孔介质中跳动或风扇类模型。

?自适应踪迹改良

XFlow的引擎可根据用户需求自动适应解算规模,在各项隔离附近精确解算质量,并且在流动发展同时动态适应其踪迹。

?单独一致的隔离模型

XFlow使用一种统一的非平衡隔离函数对边界层进行建模。该隔离模型可用于所有情况下,这意味着在不同的算法间无需进行选择,也无需处理每个体系相关的不同限制。

?近似线性的可扩展性能

XFlow使用近似线性的可扩展能力,对于多核心技术实现完全的平行处理。

PowerFLOW

PowerFLOW是美国EXA公司基于LBM(格子-波尔兹曼方法)开发的CFD求解器。LBM相对于FVM(有限体积法)的先进性使PowerFLOW具有无需简化复杂的CAD模型、全自动生成笛卡尔网格、非定常模拟、几乎线性的并行效率、精确度极高等优点。另外它还具有在初始结构上增加并减少部件方便地进行参数化研究、利用同一个模型可以进行空气动力学、气动声学和热管理等多学科模拟等独特优势。对CAD无需做任何修改和简化、网格自动生成、专业化的咨询服务团队服务使得PowerFLOW变得非常易于使用,让企业使用CFD软件的门槛降到最低。这使PowerFLOW已经成为全球顶尖地面交通工具公司在气动、噪声及热管理等方面数值模拟的首选软件。它能为空气动力学优化提供一个真实的数字风洞求解,在全球占有统治地位。PowerFLOW进行内外空气动力学模拟的独特优势已经使得Exa成为该领域的领先者。

PowerFLOW的主要特点求解快速、完全的几何细节和瞬态分析–已经使得流体力学模拟成为一种真正可用于生产设计的工具,改变了空气动力学开发的方式。

主要特点:

?高速的流体计算功能

做整车的CAD流体分析时间小于5天;

优化时间小于1天。

?无需简化的CAD模型

考虑完全的外部特征、底盘特征和内部特征;

所有设计细节完全考虑在内。

?准确的计算精度

与风洞试验曲线的完全吻合。

?同一个模型可用于多学科的优化

利用同一个模型可进行空气动力学优化、气动噪声优化、散热分析优化。

?可进行参数化研究

在初始结构上增加并减少部件方便地进行参数化研究

?全自动生成笛卡尔网格

全自动网格生成节省时间和费用

?非定常模拟

真实的瞬态模拟特性能改善功能设计。

?多处理器的性能呈线性增加

多处理器机器的性能与单处理器的相比,呈线性增加,可达上百倍。

?易于使用

PowerFLOW的使用者无需对CAD及CAE网格划分有高深的理解,且除了软件销售和安装之外,Exa全球的工程咨询服务机构会为企业提供全面的咨询服务。

?数值稳定性好

求解结果不依赖于几何及网格的优劣,不管几何多么复杂,PowerFLOW都能提供可信的结果。

?兼容性好

带有CAD通用接口,能够跨平台使用,PowerFLOW可以用于现有的工程学环境。

除了上述提到的一些通用CFD软件,还有一些在特定领域起到巨大作用的专业化CFD软件,这些软件不仅对于具体工程问题更有针对性,而且方便一些不具备专业流体知识的工程师快速上手使用。

AVL FIRE

AVL FIRE是一款专业的发动机CFD软件,能解决所有和发动机有关的CFD问题。它能对发动机系统及部件内部的流动、喷雾、混合气形成、壁膜、燃烧、和排放物的形成进行详细的模拟分析。还有专业的尾气后处理模块用于各类催化转化器的研究和优化。

CONVERGE

CONVERGE是由美国Convergent Science公司开发的发动机缸内CFD专业分析软件。

如何快速、高效地生成高质量的计算网格一直是提高CFD分析工作效率的瓶颈,而CONVERG E拥有强大的自动化生成网格功能,可大量节省用户的网格生成时间。CONVERGE的网格体系完全基于正交化网格,可采用自适应加密等等多种网格控制策略,以最小的计算负荷量实现高精度的仿真分析。

CONVERGE拥有喷雾模型,燃烧模型等发动机缸内分析所必须的各种丰富的物理模型,可用来模拟汽油机,柴油机,天然气及HCCI等任何类型的发动机。

FLACS

FLACS是一款用于CFD爆炸建模的行业标准软件,同时还是一种适用于易燃、有毒物质排放的技术安全上下文建模的最佳验证工具。

FLACS是一个全面的、易于使用的3D建模软件工具,用于分散和爆炸的影响分析,是针对所有典型的易燃和有毒物质排放的解决方案。它广泛用于石油和天然气及过程工业,也越来越多的用于核工业,以及粉尘爆炸的潜力分析和许多其他领域的设施。CFD过程全部采用3 D建模,可以更准确的预测后果,并减轻限制和拥塞真实的几何体的影响。更好的获取更高精确度的结果,不仅有助于提高安全性的真实水平,也可以让设计人员能够选择真正有效的设计方案和缓解措施,从而提高安全性和成本效益的。

Fluidyn

Fluidyn是为专门满足石化、石油和天然气工业的需求,应对潜在的高风险,应用计算流体动力学原理开发的软件。

这款软件可以专门用于:

?定量和定性的风险评估

?失效模式和影响分析

?后果模拟

?污染扩散模拟

这个行业广泛采用的一些Fluidyn软件如下:

?过程工业风险分析和规划软件(fluidyn ASSESSRISK)

?研究由工业事故导致的瞬态排放扩散模式或稠密气体扩散、火灾 (fluidyn PANEPR)

?火灾研究和燃烧副产品扩散软件(fluidyn PANFIRE)

?由于炼油厂、储罐区事故导致的波浪作用及后果的仿真 (fluidyn PANWAVE)

?复杂流体流动分析软件(fluidyn MP)

2020-2021年中国科学院大学(中科院)计算数学考研招生情况、分数线、参考书目、经验指导

一、中国科学院数学与系统科学研究院简介 中国科学院数学与系统科学研究院由中科院数学研究所、应用数学研究所、系统科学研究所及计算数学与科学工程计算研究所四个研究所整合而成,此外还拥有科学与工程计算国家重点实验室、中科院管理决策与信息系统重点实验室、中科院系统控制重点实验室、中科院数学机械化重点实验室、华罗庚数学重点实验室、随机复杂结构与数据科学重点实验室,以及中科院晨兴数学中心和中科院预测科学研究中心等。2010年11月成立国家数学与交叉科学中心,旨在从国家层面搭建一个数学与其它学科交叉合作的高水平研究平台。数学与系统科学研究院拥有完整的学科布局,研究领域涵盖了数学与系统科学的主要研究方向。共有16个硕士点和13个博士点(二级学科),分布在经济学、数学、系统科学、统计学、计算机科学与技术、管理科学与工程六个一级学科中,可以在此范围内招收和培养硕士与博士研究生。在2006年全国学科评估中,我院数学学科的整体评估得分为本学科的最高分数。数学与系统科学研究院硕士招生类别为硕士研究生、硕博连读生和专业学位硕士研究生。2019年共计划招收122名。 二、中国科学院大学计算数学专业招生情况、考试科目

三、中国科学院大学计算数学专业分数线 2018年硕士研究生招生复试分数线 2017年硕士研究生招生复试分数线 四、中国科学院大学计算数学专业考研参考书目 616数学分析 现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。 801高等代数 [1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷. [2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988. [3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社, 1997. 五、中国科学院大学计算数学专业复试原则 在中国科学院数学与系统科学研究院招生工作小组领导下,按研究所成立招收硕士研究生复试小组,设组长1人、秘书1人。 复试总成绩按百分制计算,其中专业知识成绩占60%,英语听力及口语测试成绩占20%,综合素质成绩占20%。 在面试环节,每位考生有5分钟自述,考查内容主要包括专业知识、外语(口语)水平

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

科学与工程计算国家重点实验室(中科院数学与系统科学研究所)

科学与工程计算国家重点实验室 简介 中国科学院科学与工程计算国家重点实验室(简称LSEC)是在已故著名数学家、中国计算数学的奠基人和开拓者冯康院士的倡导、并亲自筹备和组织下,由原中科院计算中心从事计算数学研究的部分课题组成的。实验室筹建于1990年,1993年10月经中科院验收后正式投入运行,1994年向国内外开放,1995年9月和 2005年3月两次通过国家验收。 实验室主要开展科学与工程计算中具有重要意义的基础理论研究,解决科学与工程领域中的重大计算问题,着重研究计算方法的构造、理论分析及实现。研究内容包括:动力系统与数值方法,研究各类保结构算法的理论、算法的构造和数值试验;有限元边界元方法,针对具有应用背景的椭圆边值问题及其它相关问题,提出适合于这些问题的有限元边界元新型高性能计算方法;非线性最优化,主要研究求解非线性规划的新算法以及算法的收敛性;计算流体力学,研究非定常不可压N-S方程和可压缩流的计算方法;并行计算方法和科学计算可视化;非均匀多孔介质中渗流问题的多尺度计算方法。 实验室主任是陈志明研究员。实验室学术委员会主任是中国工程院院士崔俊芝。 实验室建设以来在动力系统几何算法,非线性优化,有限元边界元,数理方程反问题,计算流体力学,并行算法,科学计算可视化等方面取得了大量的研究成果,十分突出的是关于哈密尔顿系统的辛几何算法的研究。其成果荣获“国家自然科学一等奖”。实验室在设备研制方面也取得了显著的成绩。 实验室现有科研人员19人,中科院院士2人(石钟慈、林群),中国工程院院士1人(崔俊芝),其中研究员16人,此外,实验室还获得多项其它重要奖项,其中石钟慈院士在 2000年获“何梁何利科学与技术进奖”,林群院士获2001年获捷克科学院“数学科学成就荣誉奖”、2004年获“何梁何利科学与技术进奖”。实验室十分重视队伍建设和人才培养工作,尤其注重青年学术骨干的培养和引进。目前通过中科院“百人计划”已引进3位年轻的学科带头人,其中实验室主任陈志明研究员被国家科技部任命为973计划项目“高性能科学计算研究”首席科学家,一批优秀青年学术骨干脱颖而出,他们在各自的研究领域取得了可喜的成果,并因此获得了荣誉。例如,袁亚湘研究员曾获1995年首届“冯康科学计算奖”、1996年度“中国青年科学家奖”、“国家杰出青年科学基金”、1998年度“全国十大杰出青年”称号;2005年度“北京市科学技术一等奖”;张林波研究员曾获1995年度“中科院青年科学家二等奖”、1997年度“中科院优秀青年”奖、2000年度“国家科技进步奖二等奖”;白中治研究员获得1998年度“中科院自然科学三等奖”、1999年度“中科院青年科学家二等奖”、“中科院优秀青年”称号、2005年度“国家杰出青年科学基金”;许学军研究员获2000年度“钟家庆数学奖”;陈志明研究员获2000年度“国家杰出青年科学基金”、2001年度“第四届冯康科学计算奖”、2003年度“第七届中科院杰出青年”称号、2004年度“新世纪百千万人才工程国家级人选”、2005年度“海外青年学者合作研究基金”;周爱辉研究员获2004年度“国家杰出青年科学基金”。

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

流体力学-中国科学院海洋研究所研究生部

中科院海洋研究所硕士研究生入学考试 《流体力学》考试大纲 本流体力学考试大纲适用于中国科学院研究生院力学专业的硕士研究生入学考试。流体力学是现代力学的重要分支,是许多学科专业的基础理论课程,本科目的考试内容主要包括流体的物理性质、流体运动学、动力学和静力学,无粘不可压缩、可压缩流动,粘性不可压缩流动及湍流、流体波动和漩涡理论等方面。要求考生对其基本概念有较深入的了解,能够熟练地掌握基本方程的推导,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试内容: (一)流体的物理性质 固液气体的宏观性质与微观结构,连续介质假设及其适用条件,流体的物理性质(粘性、可压缩性与热膨胀性、输运性质、表面张力与毛细现象) ,质量力与表面力。 (二)流体运动学 流体运动的描述(拉格朗日描述与欧拉描述及其间的联系、物质导数与随体导数、迹线、流线及脉线),流场中的速度分解,涡量,涡量场,涡线、涡管、涡通量,涡管强度及守恒定理。 (三)流体动力学 连续性方程(雷诺输运定理),动量方程(流体的受力、应力张量),能量方程(热力学定律),本构关系,状态方程,流体力学方程组及定解条件,正交曲线坐标系,量纲分析与流动相似理论,流体力学中的无量纲量及其物理意义、相似原理的应用。 (四)流体静力学 控制方程,液体静力学规律,自由面的形状,非惯性坐标系中的静止液体。 (五)无粘流动的一般理论 无粘流动的控制方程,Bernoulli方程,Bernoulli方程和动量定理的应用。 (六)无粘不可压缩流体的无旋流动 控制方程及定解条件,势函数及无旋流动的性质,平面定常无旋流动(流函数、源汇、点涡、偶极子、镜像法、保角变换),无旋轴对称流动,非定常无旋流动。 (七)液体表面波 控制方程(小振幅水波) 及定解条件,平面单色波,水波的色散和群速度,水波的能量及其传输,速度与压力场特性,表面张力波及分层流体的重力内波,非线性水波理论。 (八)旋涡运动 涡量动力学方程和涡量的产生,涡量场(空间特性、时间特性),典型的涡模型。 (九)粘性不可压缩流动 控制方程及定解条件,定常的平行剪切流动(Couette流动、Poiseuille流动等),非定常的平行剪切流动(Stokes第一和第二问题、管道流动的起动问题),圆对称的平面粘性流动(圆柱Couette流及其起动过程),小雷诺数粘性流动。 (十)层流边界层和湍流 边界层的概念,层流边界层方程(Blasius平板边界层),边界层的分离,湍流的发生,层流到湍流的转捩,雷诺方程和雷诺应力。 (十一)无粘可压缩流动 声速和马赫数,膨胀波、弱压缩波的形成及其特点,一维等熵流(定常和非定常),激波(正激波和斜激波),拉瓦尔喷管流动的特征。 二、考试要求:

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

计算数学研究方向

计算数学研究方向 网上摘抄:计算数学研究方向及网上资料 计算数学目的为物理学和工程学作计算。主要研究方向包括: 数值泛函分析;连续计算复杂性理论;数值偏微与有限元;非线性数值代数及复动力系统; 非线性方程组的数值解法;数值逼近论;计算机模拟与信息处理等;工程问题数学建模与计算等等。 目前发展最好的方向已经与应用数学的CAGD 方向合二为一。现在最热的方向应该是微分方程的数值求解、数值代数和流形学习,数值计算名校:西安交通大学、北京大学、大连理工大学 从计算数学的字面来看,应该与计算机有密切的联系,也强调了实践对于计算数学的重要性。 也许Parlett 教授的一段话能最好地说明这个问题: How could someone as brilliant as von Neumann think hard about a subject as mundane as triangular factoriz-ation of an invertible matrix and not perceive that, with suitable pivoting, the results are impressively

good Partial answers can be suggested-lack of hands-on experience, concentration on the inverse rather than on the solution of Ax = b -but I do not find them adequate. Why did Wilkinson keep the QR algorithm as a backup to a Laguerre-based method for the unsymmetric eigenproblem for at least two years after the appearance of QR Why did more than 20 years pass before the properties of the Lanczos algorithm were understood I believe that the explanation must involve the impediments to comprehension of the effects of finite-precision arithmetic. ( 引自既然是计算数学专业的学生,就不能对自己领域内的专家不有所了解。早些年华人在计算数学领域里面占有一席之地是因为冯康院士独立于西方,创立了有限元方法,而后又提出辛算法。这里只是列出几位比较年轻的华人计算数学专家,因为他们代表了当前计算数学的研究热点,也反映华人对计算数学的发展的贡献。 侯一钊(加州理工) 研究方向:计算流体力学、多尺度计算与模拟、多相流 鄂维南(Princeton 大学) 北京大学长江学者,研究方向:多尺度计算与模拟 包刚(Michigan 州立大学) 吉林大学长江学者,研究方向:光学与电磁场中的计算等 金石(Wisconsin 大学)

流体力学计算软件报告

三维方管内部二次流特征分析 ——基于NUMECA 数值仿真 2120130457 李明月 【摘 要】运用NUMECA 数值仿真的方法,通过在有粘与无粘的工况下三维方管的内部三维流线对比分析,重点在分析粘性工况下方管内部沿流向各截面上的切向速度矢量分布特征和总压系数分布特征对二次流机理进行讨论和分析。 【关键字】数值仿真 二次流 欧拉方程 N-S 方程 压力梯度 0 前言 在边界层内流体质点向着压力梯度相反并与主流运动方向大致垂直的方向流动,称为二次流。几乎所有的过流通到里面都存在着速度和压力分布不均的情况,压力分布不均则产生一个从高压指向低压的作用力,它与惯性力的大小关系是能否形成二次流的关键。而二次流会使叶轮机械叶片的边界层增厚从而导致分离和损失,而二次流在换热器中增强了对流换热,从而强化了传热,故对二次流的成因和特征的研究具有很大的现实意义。而运用NUMECA 软件对一个简单的三维方管在不同工况下进行数值运算,能够直观地观察得到二次流的结果,并对此进行对比和分析,对流体初学者而言,一方面可以熟悉NUMECA 软件的基本操作,一方面可以基于此加深对二次流的理解。 1 几何描述 如图一所示为三维方管的三维图与所需设定的边界条件。在此算例中,最大的特点在于 中部有一个90°的弯道,且出流部分较长。 10m m 30m m 80m m r20m m r10m m 图1 几何模型

2 网格划分与边界条件 在调入IGG data 文件生成几何文件之后,用网格功能中生成网格块的功能用对应网格顶点与几何顶点重合的方式将网格块贴附在几何模型上,再调整网格数量,和Cluster Points 功能调整边界网格大小,使得近壁面的网格较密,使数值计算时能更好地捕捉到近壁面的参数。生成的网格如图2所示。网格生成后一共33×33×129个网格,网格质量为:最小的正交角度为50.68°,最大宽高比为200,最大膨胀比为1.51,多重网格数为3。在边界条件上,管壁设为SOL 类型,另外短管端面设为INL 类型,剩下那一面设为OUT 类型。 3 边界设定及收敛特性 在NUMECA Fine Turbo 里面建立两个工况并命名为一个无粘一个有粘。在无粘的工况下,选择的流动模型为基于Euler 方程的数学模型。在有粘工况下,流动模型选择的是湍流N-S 方程,并且湍流模型为Spalart-Allmaras 模型。两个工况皆为理想气体的定常流动,进口边界设为总量下(total quantities imposed )马赫数推断(mach number extrapolated ),进口压力为1.3bar ,进口温度为340K 。出口设定为由静压推断(static pressure imposed ),出口压力为1.0bar 。固壁面在欧拉方程下为无粘的欧拉壁,在N-S 方程里为绝热壁。经初始化后选择计算后输出的参数,除了常规的静压静温和速度外,在壁面数据(solid data )里额外输出一个粘性压力(viscous stress )。选择500次迭代后,两种工况下的收敛曲线如图3~图6所示。 图2 三维方管网格划分示意图 图3 Euler 方程下残差收敛曲线

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体力学-中国科学院力学所研究生教育网

计算流体力学 Computational Fluid Dynamics 类型: 属性:专业基础课课时/学分:60/3 一、预修课程 流体力学;空气动力学;偏微分方程数值解法 二、内容简介和教学要求 本课程包含基础及应用两个部分。基础部分讲述流体力学方程组及其物理含义,双曲型方程组的数理性质,有限差分法及有限体积法的理论基础及计算方法等;应用部分介绍国内外当前流行的高速流动和不可压缩流动的主要解法,网格生成技术,计算流体力学当前的主要问题、最新计算方法、及发展动向等。此外还介绍了并行计算的基础知识及湍流计算方法等。 本课程的特点是强调基础、突出应用,希望学生通过学习这一课程,对计算流体力学有一个系统深入的理解,具有一定的理论基础和较强的解决实际问题的能力。同时,在这一课程中也注意把课程学习和研究所的工作结合起来,使学生到研究所后能立即开展和计算流体力学有关的研究工作。本课程还将讲授并行程序设计的基本内容,使得学生们能够了解并行程序设计的基本思想及编程方法,并能编制基本的并行计算程序。 为培养学生独立思考和独立工作的能力,本课程采用启发的课程讲习方法,鼓励学生在掌握基础知识的基础上自己动手编制程序,以便加深对计算流体力学本质的理解和增强对实际问题的感性认识。力求学生们学完该课程后,能够独立编写计算流体力学程序。 三、简要目录 第一章引论 1.1 计算流体力学及其特征 1.2 计算流体力学的发展 第二章流体力学方程组及模型方程 2.1 流体力学基本方程 2.2 模型方程及其数学性质 2.3 双曲型方程组的初边值问题 2.4 Riemann 间断解 第三章有限差分方法 3.1 差分方法基本概念 3.2 差分方程的有效性及稳定性分析 3.3 数值解的精度及分辨率分析 3.4 数值解中的耗散效应、色散效应及群速度控制 第四章有限体积法 4.1有限体积法的基本思 4.2 表面积近似及体积积分近似 4.3 插值算法 4. 4 边界条件处理

计算流体力学简介

計算流體力學主要有以下幾個主要問題大家比較關心 1.關於瞬態計算的問題 2.關於建模的問題 3.關於網格化的問題 4.關於動畫顯示的問題 5.關於交變載荷的問題 一、關於第一個問題的解答: 計算瞬態設置參數與穩態不同,主要設置的參數爲: 1.FLDATA1,SOLU,TRAN,1設置爲瞬態模式 2.FLDATA4,TIME,STEP,0.02,自定義時間步時間間隔0.02秒 3.FLDATA4,TIME,TEND,0.1,設置結束時間0。1秒 4.FLDATA4,TIME,GLOB,10,設置每個時間步多少次運算 5.fldata4a,time,appe,0.02設置記錄時間間隔 6.SET,LIST,2查看結果 7.SET,LAST設爲最後一步 8.ANDATA,0.5,,2,1,6,1,0,1動態顯示結果 以上爲瞬態和穩態不同部分的設置和操作,特別是第五步。爲了動態顯示開始到結束時間內氣流組織的情況,還是花了我們很多時間來找到這條命令。如果你是做房間空調送風計算的,這項對你來說非常好,可以觀察到從開空調機到穩定狀態的過程。 二.關於建模的問題 大家主要關心的建模問題是模型的導入和導出,及存在的一些問題。這些問題主要體現在:1.AUTOCAD建模導出後的格式與ANSYS相容的只有SAT格式。PROE可以是IGES格式或SAT格式。當然還有其他格式,本人使用的限於正版軟體,只有上述兩種格式。SAT格式可由PROE中導出爲IGES格式。ANSYS默認的導入模型爲IGES格式的圖形模型。 2.使用AUTOCAD一般繪製介面比較複雜的拉伸體非常方便。如果是不規則體,用PROE和ANSYS都比較方便,當然本人推薦用ANSYS本身的建模功能。對於PROE,因爲它的功能強大,本人推薦建立很複雜的模型如變截面不規則曲線彎管(如血管)。 3.導入過程中會出現默認選項和自定義選項,一般本人推薦使用自定義選項,以避免一些操作帶來的問題。有時出現顯示只有線而沒有面顔色的問題,可以用命令: /FACET,NORML來解決這個問題。 三.關於網格化的問題。 網格化對結果影響很大,如果網格化不合理,出現的結果會不準確,或者計算時不收斂。更甚者,網格數量太大,減慢求解速度。對計算流體力學來說,實際應用中三維問題偏多,計算量一般非常大,由於ANSYS採用的是有限元,所以同有限差分比較來說,收斂慢,記憶體需要量大。但這並不是說水平不如有限差分的流體計算軟體。ANSYS的計算結果直觀性較好,特別對渦流的處理很形象很準確(其他軟體往往看不到該有的渦流,給人的感覺太粗糙)。當然對於稍大的模型,就有點力不從心的感覺。

MIT计算流体力学

J.Peraire 16.07Dynamics Fall2004 Version1.1 Lecture D1-Introduction Introduction In this course we will study Classical Mechanics.Particle motion in Classical Mechanics is governed by Newton’s laws and is sometimes referred to as Newtonian Mechanics.These laws are empirical in that they combine observations from nature and some intuitive concepts.Newton’s laws of motion are not self evident.For instance,in Aristotelian mechanics before Newton,a force was thought to be required in order to maintain motion.A lot of the foundations for Newtonian mechanics were laid by Galileo at the end of the16th century.Newton,in the middle of the17th century stated the laws of motion in the form we know and use them today,and shortly after,he formulated the law of universal attraction.This led to a complete theory with which he was able to explain many observed phenomena,and in particular the motion of the planets.Nevertheless,these laws still left many unanswered questions at that time,and it was not until later years that the principles of classical mechanics were deeply studied and rationalized.In the eighteen century,there were many contributions in this direction,such as the principle of virtual work by Bernouilli, D’Alambert’s principle and the theory of rigid body dynamnics developed by Euler.In the nineteen century, Lagrange and later Poisson,Hamilton and Jacobi developed the so called analytical or rational mechanics and gave to the theory of Newtonian mechanics a much richer mathematical structure. Classical Mechanics has its limitations and breaks down where more modern theories such as relativity and quantum mechanics,developed in the twentieth century,are successful.Newtonian mechanics breaks down for systems moving at speeds comparable with the speed of light,and also fails for systems of dimensions comparable to the size of the atom.Nevertheless,for practical engineering applications Newtonian mechanics provides a very good model to represent reality,and,in fact,it is hard to?nd examples in our?eld where Newtonian mechanics is not adequate.The most notable perhaps are the relativistic corrections that need to be made for modelling satellite communications. In this lecture we will introduce Newton’s laws of motion and the law of Universal Attraction.Before doing so however,we will de?ne some of the terms which appear in these laws. Particles,Rigid Bodies and“Real Bodies” In this course real bodies will be idealized either as particles or as rigid bodies. 1

相关主题
文本预览
相关文档 最新文档