当前位置:文档之家› 并网光伏发电Matlab仿真PPT

并网光伏发电Matlab仿真PPT

三相光伏发电系统并网

光伏发电系统结构框图如图所示。系统可分为3个部分:光伏电池阵列(PV)、功率变换器和并网控制器

PV功率变换器

并网控制器电网

直流侧电压、电流

交流侧电压、电流

并网光伏系统逆变器

并网发电系统是与电网相连并向电网输送电力的光伏发电系统。通过光伏组件将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后转换后向电网输出与电网电压同频、同相的正弦交流电流。

逆变器的特点:

逆变器的主要特点包括:

(1)要求具有较高的效率

由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。

(2)要求具有较高的可靠性

目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。

(3)要求输入电压有较宽的适应范围

由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在

10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。

并网逆变器的电路结构:

上图为并逆变器内部功能模块框图。光伏输入在逆变器直流侧汇总,升压电路将输入直流电压提高到逆变器所需的值。MPP 跟踪器保证光伏阵列产生直流电能能最大程度地被逆变器所使用。IGBT 全桥电路将直流电转换成交流电压和电流。保护功能电路在逆变器运行过程中监测运行状况,在非正常工作条件下可触发内部继电器从而保护逆变器内部元器件免受损坏。

逆变器的控制方案:

逆变器的控制方法主要有采用经典控制理论的控制策略和采用现代控制理论的控制策略两种。

(1)经典控制理论的控制策略

1、电压均值反馈控制

他是给定一个电压均值,反馈采样输出电压的均值,两者相减得到一个误差,对误差进行PI调节,去控制输出。他是一个恒值调节系统,优点是输出可以达到无净差,缺点是快速性不好。

2、电压单闭环瞬时值反馈控制

电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输出电压瞬时值反馈,对误差进行PI调节,去输出控制。他是一个随动调节系统,由于积分环节存在相位滞后,系统不可能达到无净差,所以这种控制方法的稳态误差比较大,但快速性比较好。

3、电压单闭环瞬时值和电压均值相结合的控制方法

由于电压瞬时值单闭环控制系统的稳态误差比较大,而电压均值反馈误差比较小,可以再PI控制的基础上再增设一个均值电压反馈,以提高系统的稳态误差。

4、电压电流双闭环瞬时控制

电压单闭环控制在抵抗负载扰动方面的缺点与直流电机的转速单闭环控制比较类似,具体表现在只有当负载(电流、转矩)扰动的影响最终在系统输出端(电压、转速)表现出来后,控制器才开始有反应,基于这一点,可以再电压外环基础上加一个电流内环,利用电流内环快速,及时的抗扰性来抑制负载波动的影响,同时由于电流内环对被控对象的改造作用,使得电压外环调节可以大大的简化。

(2)现代控制理论的控制策略:

1、多变量状态反馈控制

多变量状态反馈控制的优点在于可以大大改善系统的动态品质,因为它可以任意的配置系统的极点,但是建立逆变器的状态模型时很难将负载的动态特性考虑在内,所以,状态反馈只能针对空载或假定负载进行,对此应采用负载电流前馈补偿,预先进行鲁棒性分析,才能使系统有好的稳态和动态性能。

2、无差拍控制

无差拍控制的基本思想是将给定的正弦参考波形等间隔的划分成若干个周期,根据每个采样周期的起始值采用预测算法计算出在采样结束时

正弦脉宽调制技术:

采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理

论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可以改变输出频率。

如果把一个正弦半波分成N等分,然后把每一等份的正弦曲线与横轴包围的面积,用与它等面积的等高而不等宽的矩形脉冲代替,矩形脉冲的中点与正弦波每一等分的中点重合,根据冲量相等,效果相同的原理,这样的一系列的矩形脉冲与正弦半波是等效的,对于正弦波的负半周也可以用同样的方法得到PWM波形。像这样的脉冲宽度按正弦规律变化而和正弦波等效

的PWM波形就是SPWM波。

SPWM 有两种控制方式,一种是单极式,一种双极式,两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样,采用单极式控制时,正弦波的半个周期内每相只有一个开关元器件开通或关断,而双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补工作方式,双极式比单极式调制输出的电流变化率较大,外界干扰较强。

光伏逆变器的应用:

表光伏逆变器国内主要的应用领域

锁相环控制技术:

在光伏并网发电系统中,需要实时检测电网电压的相位和频率以控制并网逆变器,使其输出电流与电网电压相位及频率保持同步,即同步锁相。

同步锁相是光伏并网系统的一项关键技术,其控制精确度直接影响到系统的并网运行性能。倘若锁相环电路不可靠,在逆变器与电网并网工作切换中会产生逆变器与电网之间的环流,对设备造成冲击,缩短设备使用寿命,严重时还将损坏设备。

目前,对基于DSP 的数字锁相环的应用较多。

仿真电路

基于Matlab的光伏电池建模及MPPT方法研究

基于Matlab的光伏电池建模及MPPT方法研究 自工业化以来的近三百年间,世界能源工业飞速发展,有力支撑了全球经济与社会发展。在这个发展的过程中,传统化石能源的大量开发及使用导致了资源紧张、环境污染、气候变化等问题日益突出,严重的威胁了人类生存和可持续发展。近年来,太阳能作为一种高效无污染的新能源,逐渐受到各国乃至全球的广泛关注。本文首先简要介绍了光伏发电的背景及意义,对光伏发电历史以及国内外光伏发电发展现状进行了综述,然后阐述了光伏并网发电系统及其基本工作原理,并详细描述了运用Matlab/Simulink 建立光伏阵列仿真模型的过程,最后对光伏发电系统最大功率点跟踪的理论依据以及工作原理进行了分析,介绍了常见的MPPT方法及仿真分析,并根据文献[6]详细描述了一种改进的基于最优梯度的滞环比较法的原理,并对改进的基于最优梯度的扰动观察法与传统的扰动观察法做了仿真对比,验证了改进算法的优越性。 目录 1 绪论 (2) 1.1 光伏发电的背景及意义 (2) 1.1.1 研究背景 (2) 1.1.2 我国太阳能资源的分布 (3) 1.2太阳能发电发展概况 (4) 1.2.1 光伏发电的历史 (4) 1.2.2 太阳能发电的国内外发展概况 (4) 1.3 本文研究的主要内容 (5) 2 光伏并网发电系统及基本原理 (5) 2.1 光伏发电系统的分类 (5) 2.2光伏并网发电系统组成 (5) 2.3光伏电池 (7) 2.3.1光伏电池的工作原理 (7) 2.3.2 光伏电池的种类 (7) 3 光伏电池建模与仿真分析 (8) 3.1光伏电池数学模型 (8) 3.2 光伏电池模型 (10) 3.3 光伏电池仿真分析 (12) 4 光伏阵列最大功率点跟踪方法研究 (14) 4.1 最大功率点跟踪的理论依据 (14) 4.2 基于DC/DC 变换电路MPPT的实现 (15) 4.2.1 BOOST电路的基本工作原理 (16) 4.2.2 BOOST电路实现MPPT的理论依据 (16) 4.3常用最大功率点跟踪算法及其仿真 (17) 4.3.1 恒定电压法 (17)

基于Matlab软件平台的光伏并网系统仿真实训

绪论 新能源是21世纪世界经济发展中最具决定力的五大技术领域之一。随着世界经济的快速发展,对能源需求逐年增长,而地球上以石油和煤为主的矿物资源日渐枯竭,能源已成为制约各国经济发展的瓶颈。同时,随着化石燃料的燃烧,所产生的二氧化碳在大气中的浓度急剧增加,生态环境逐渐恶化,使地球逐渐变暖。随着人类社会的发展,改善生态环境的呼声越来越高,开发利用无污染的新能源,对促进社会文明与进步,发展经济,改善人民生活具有重大的意义。太阳能作为一种清洁、高效和永不衰竭的新能源,在日常生活中受到了各国政府的重视,各国都将太阳能资源利用作为国家可持续发展战略的重要内容。 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。

目录 第一章基于Matlab软件平台的光伏并网系统仿真实训......................... 错误!未定义书签。 1.1 Matlab软件介绍...................................... 错误!未定义书签。 1.2 光伏并网系统 (8) 第二章光伏并网逆变器电路工作原理 (13) 2.1 逆变器定义 (13) 2.3 逆变器功能作用 (13) 2.3.2 孤岛检测技术 (14) 2.3.3 智能电量管理及系统状况监控系统 (14) 第三章SG3525芯片 (15) 3.1芯片特点 (15) 3.2 管脚功能管脚图 (16) 3.3 结构设计内部结构图 (17) 第四章制图 (18) 4.1 用protel绘制原理图 (18) 4.2 根据原理图生成PCB电路板图 (18) 第五章焊接与调试 (19) 5.1 电路前面板的设计 (19) 5.2 调试结果 (20) 第六章实训结论 (21)

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

并网光伏发电系统设计与仿真

并网光伏发电系统设计分析与仿真 1、绪论 在能源形势日益严峻和环境污染问题日益严重的今天,开发利用绿色可再生能源以实现可持续发展是人类必须采取的措施,分布式发电成为世界各国争相发展的热点,其中太阳能无疑是符合可持续发展战略的理想的绿色能源。随着太阳能电池研究进程的加快和转换效率的不断提升,光伏发电成本呈现出快速下降趋势,社会普遍认同光伏发电作为可再生能源的作用与应用前景,开展光伏发电(Photovoltaic(PV))的应用推广也更具有现实意义。同时光伏发电正在由边远农牧区和特殊场合应用向并网发电规模化方向发展,由补充能源向替代能源方向过渡。光伏并网发电已经成为太阳能光伏利用的主要方式之一。开展并网光伏发电的研究,对于缓解能源和环境问题,研究高性能光伏发电系统,合理正确利用太阳能光伏发电,不仅具有理论意义同样也具有重大的现实意义。 光伏发电作为分布式发电的一种,其工作特点是利用并网逆变器将太阳能电池组件产生的直流电转换成符合电网要求的交流电并入公共电网,光伏系统产生的电能除供给交流负载外,将剩余电能反馈给电网。可任意组合光伏系统的容量,分散使用最佳,可作为大电厂、大电网集中式供能的重要补充,也是新一代能源体系的重要组成部分。 2、光伏系统介绍及阵列输出特性分析 光伏发电系统通常由光伏阵列、能量优化控制器、储能组件及逆变器等部分组成。光伏发电系统一般分为独立光伏发电系统和并网光伏发电系统两大类。独立光伏发电系统是指供用户单独使用的光伏发电系统,如在边远地区使用的家用光伏电源等。并网光伏发电系统是指与电网系统相连的光伏发电系统。

2.1独立光伏发电系统 不与电网相连的光伏发电系统称为独立光伏发电系统,如图2-1所示。由于独立光伏发电系统中太阳能是唯一的能量来源,为了保证系统的正常工作,系统中必定存在一个储能环节来储存和调节整个系统的能量。 图2-1 独立光伏发电系统 2.2并网光伏发电系统 并网光伏发电系统如图2-2所示,光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能。目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节。带有蓄电池环节的并网光伏发电系统称为可调度式并网光伏发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某些家庭用户来说具有重要意义;此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害的高次谐波分量从而提高电能质量。不带有蓄电池环节的并网光伏发电系统称为不可调度式并网光伏发电系统,在此系统中,并网逆变器将太阳能电池板产生的直流电能转化为和电网电压同频、同相的交流电能。当主电网断电时,系统自动停止向电网供电;当有日照照射、光伏系统所产生的交流电能超过负载所需时,多余的部分将送往电网;夜间当负载所需电能超过光伏系统产生的交流电能时,电网自动向负载补充电能。

电气工程及其自动化专业论文 基于MATLAB的光伏发电研究及其仿真

x大学 毕业论文基于MATLAB的光伏发电研究及其仿真 院部机械与电子工程学院 专业班级电气工程及其自动化5班 届次 2015届 学生姓名 xxxx 学号 xxxx 指导教师 xxxx 副教授 二〇一五年六月六日

目录 摘要 (Ⅰ) 1课题背景 (1) 1.1能源与环境危机 (1) 1.1.1能源 (1) 1.1.2环境 (1) 1.2太阳能光伏发电技术发展简介 (1) 1.3太阳能光伏发电利用的优势 (2) 1.4光伏发电系统的分类级组成 (3) 1.5国内外研究产业现状及规划 (5) 2光伏发电系统 (7) 2.1光伏发电系统介绍 (7) 2.2 太阳能光伏发电系统的应用 (7) 2.2.1屋顶光伏发电系统 (7) 2.2.2户用光伏发电系统、小型光伏电站 (8) 2.2.3大型并网光伏发电系统 (8) 2.3带有最大功率跟踪功能的光伏发电系统的基本组成 (9) 3光伏阵列特性及其仿真模型的研究 (10) 3.1太阳能电池的等效电路分析 (10) 3.2电池板matlab仿真 (12) 3.3 蓄电池充电方法 (12) 4新型变步长MPPT控制方法研究 (15) 4.1 MPPT 原理研究 (15) 4.1.1MPPT (15) 4.1.2基于Boost拓扑的MPPT原理 (16) 4.2常见的两种MPPT控制技术 (18) 4.2.1扰动观察法 (19) 4.2.2电导增量法 (21) 5光伏充、放电控制器的硬、软件设计 (25) 5.1控制器的整体设计及预期技术指标 (25) 5.2 Boost电路实现光伏阵列MPPT的仿真模型 (26) 5.3软件设计 (26) 参考文献 (34) 致谢 (35)

并网光伏发电Matlab仿真PPT

三相光伏发电系统并网 光伏发电系统结构框图如图所示。系统可分为3个部分:光伏电池阵列(PV)、功率变换器和并网控制器 PV功率变换器 并网控制器电网 直流侧电压、电流 交流侧电压、电流

并网光伏系统逆变器 并网发电系统是与电网相连并向电网输送电力的光伏发电系统。通过光伏组件将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后转换后向电网输出与电网电压同频、同相的正弦交流电流。 逆变器的特点: 逆变器的主要特点包括:

(1)要求具有较高的效率 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。

并网逆变器的电路结构: 上图为并逆变器内部功能模块框图。光伏输入在逆变器直流侧汇总,升压电路将输入直流电压提高到逆变器所需的值。MPP 跟踪器保证光伏阵列产生直流电能能最大程度地被逆变器所使用。IGBT 全桥电路将直流电转换成交流电压和电流。保护功能电路在逆变器运行过程中监测运行状况,在非正常工作条件下可触发内部继电器从而保护逆变器内部元器件免受损坏。

基于MATLABSimulink光伏电池模型的研究

龙源期刊网 https://www.doczj.com/doc/808697673.html, 基于MATLAB/Simulink光伏电池模型的研究 作者:章政杰 来源:《科学与财富》2013年第11期 摘要:提出一种以太阳能电池数学模型为基础,在MATLAB/Simulink环境下建立的光伏电池仿真模型。该模型与其他常用建模方法相比,该模型结构简化,易于操作,能更好的描述光伏阵列的电气特性。与传统方法相比,精度有所提高,为整个光伏系统进一步研究提供参考价值。 关键词:太阳能电池;数学模型;matlab 1引言 随着经济的发展,人口的增加,化石能源逐步消耗,能源危机问题日益严重。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国政府正在逐步推动太阳能光伏发电产业的发展。但是,大多数的光伏发电系统都是基于经验公式进行设计的,为了对整个设计系统进行验证和优化,有必要研究适用于光伏发电系统工程设计应用的仿真模型。由于太阳能电池阵列是光伏发电系统的核心部件,所以在光伏发电系统中,对太阳能电池阵列仿真模型的研究至关重要。太阳能电池技术发展很快,目前比较成熟且广泛应用的是经归类的太阳能电池。在2009年,全球太阳能电池的产量为10231MWP,到2011年预计达到1.5GWP,比2010年增加50%。其中,单晶硅电池占43.86%,多晶硅电池占46.62%,薄膜电池占9.52%。国内外太阳能行业都在围绕提高太阳能电池的光转换效率和降低成本这两大目标开展研究工作。太阳能电池通过串并联组合成光伏阵列使用,但针对单个太阳能电池的模型往往很少,且无法应用于各种仿真和电力工程计算中。目前,多晶硅太阳能电池的实验室效率已超过17%,前景很好[1-2]。本模型以数据参考手册参数为基准,用到了厂商提供的多晶硅太阳能电池标准下的参数[3]。 本文从光伏电池数学模型入手,在MATLAB/Simulink的仿真系统中,建立了一种实用性较强的光伏电池模块仿真模型,该模型忽略了一些次要因素的影响,在不同太阳辐射强度和温度下模拟出太阳电池阵列的输出特性,为光伏系统研究提供了较有用的参考价值。 2 光伏电池特性 硅太阳能电池的特性可用一个等效电路来描述,如图1所示: 图1 太阳能电池等效电路

光伏发电并网系统Simulink仿真实验报告

word文档整理分享 光伏发电并网系统Simulink仿真实验报告 电气工程学院 王安2011302540086 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\D(BOOS升压电路)转化将电压升高,再经DC\AC 逆变产生交流电压供给负载使用。在这中间需要用MPPT£光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原 理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect 将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子一空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALA中的simulink软件包,可以对10KW,380V光伏发电系统进行仿 真,建立仿真模型如下:

word文档整理分享 也PVJ1 昭!! 输入参数如下: Subsyst BJR (mmsk) Paranet ers Vm 380 Im 27, 1 Voc 420 Isc Tref 25 a (VC) 0. 0025 bWO 0? 00288 Simulink提供的子系统圭寸装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 参考资料

基于MATLAB的光伏发电研究及其仿真

基于MATLAB的光伏发电研究及其仿真 摘要:近些年来,随着社会生产的发展,对新能源光伏产业的要求越来越大。本文针对如何提高太阳能光伏发电系统的转换效率,利用MATLAB建模仿真部分对最大功率点跟踪(MPPT)的控制器进行了研究。论文分析了常用的蓄电池充电控制方法、光伏电池的特性及其最大功率点跟踪的原理和方法。通过MATLAB软件对不同环境下的光伏电池输出特性进行了建模、仿真。分析了最大功率点跟踪的工作原理,介绍了常用的最大功率点跟踪方法,并在此基础上提出了一种新的扰动观察法。最后,通过比较三种常用的DC/DC变换器的工作原理,提出利用BOOST型DC-DC变换器实现转换,对参数进行分析后建立了BOOST型DC/DC变换器的仿真模型。 关键词:太阳能光伏发电MATLAB仿真最大功率点跟踪Boost型DC-DC变换器

目录 摘要 (Ⅰ) 1课题背景 (2) 1.1能源与环境危机 (2) 1.1.1能源 (2) 1.1.2环境 (2) 1.2太阳能光伏发电技术发展简介 (2) 1.3太阳能光伏发电利用的优势 (3) 1.4光伏发电系统的分类级组成 (4) 1.5国内外研究产业现状及规划 (6) 2光伏发电系统 (7) 2.1光伏发电系统介绍 (7) 2.2 太阳能光伏发电系统的应用 (8) 2.2.1屋顶光伏发电系统 (8) 2.2.2户用光伏发电系统、小型光伏电站 (8) 2.2.3大型并网光伏发电系统 (9) 2.3带有最大功率跟踪功能的光伏发电系统的基本组成 (9) 3光伏阵列特性及其仿真模型的研究 (10) 3.1太阳能电池的等效电路分析 (10) 3.2电池板matlab仿真 (12) 3.3 蓄电池充电方法 (12) 4新型变步长MPPT控制方法研究 (15) 4.1 MPPT 原理研究 (15) 4.1.1MPPT (15) 4.1.2基于Boost拓扑的MPPT原理 (16) 4.2常见的两种MPPT控制技术 (18) 4.2.1扰动观察法 (19) 4.2.2电导增量法 (21) 5光伏充、放电控制器的硬、软件设计 (25) 5.1控制器的整体设计及预期技术指标 (25) 5.2 Boost电路实现光伏阵列MPPT的仿真模型 (26) 5.3软件设计 (26) 参考文献 (34) 致谢 (35)

光伏并网发电系统的建模与数字仿真

光伏并网发电系统的建模与数字仿真 一、电力系统数字仿真概述 系统数字仿真是一门新兴学科,是计算机科学、计算数学、控制理论和专业应用技术等学科的综合。生产和科学技术的发展使完成某种特定功能的各事物相互之间产生了一定的联系,形成各种各样的系统。为研究、分析和设计系统,需要对系统进行试验。 由于电力系统数字仿真具有不受原型系统规模和结构复杂性的限制,能保证被研究、试验系统的安全性和具有良好的经济性、方便性等许多优点,正被愈来愈多的科技人员所关注,并已在研究、试验、工程、培训等多方面获得广泛的应用。电力系统数字仿真技术(器)的研究、开发,包括数学模型、仿真软件、模型结构、仿真算法分析方法等,不断有新的成果涌现。各种培训仿真器和研究用实时仿真器的研制和应用也大大推动了电力系统数字仿真技术的发展。随着电力系统的发展和一些最新的计算机技术、人工智能技术、新的数值计算方法和实时仿真技术在电力系统数字仿真中的应用,数字仿真对电力工业的发展将会做出更大的贡献。 1.1系统仿真的含义 仿真(simulation)这个词被引入科技领域,受到广大科技人员的认可,但是其含义在许多科技文献中说法并不一致。其中认为仿真的广义定义为“仿真是用模型研究系统”。精确的定义为“仿真是用数值模型研究系统在规定时间内的工作特征”。有的论著把在数字计算机上的“活的”模型做试验称为系统数字仿真。 1.2系统数字仿真的用途 由于系统数字仿真作为一种研究、试验和培训手段具有极好的经济性和实用性,几乎可以应用于任何一种工程与非工程领域。就工程领域应用而言,它的应用范围主要在以下几个方面: a.系统规划、设计与试验; b.系统动态特征的分析与研究; c.系统在运行中的辅助决策、管理与控制; d.系统运行人员的教学培训,例如载体的操纵、系统的控制与操作、系统过程的博奕决策等。 1.3系统数字仿真的特点 a.不受原型系统规模和结构复杂性的限制; b.保证被研究和试验系统的安全性; c.系统数字仿真试验具有很好的经济性、有效性和方便性; d.可用于对设计中未来系统性能的预. 1.4建立数学模型和仿真模型的任务 建立数学模型的任务是根据系统仿真目的和原型与模型的数学相似原则构造模型的数学描述。在具体做法上应考虑以下几个问题。 明确仿真目的,考虑数学模型的简化条件,确定数学模型的规模;如果系统是由若干子系统组成,应保证整个系统数学模型的统一性,例如系统的统一坐标系;系统模型的数学描述有明确的逻辑关系,有灵活和可扩充的模型结构;数学模型有利于数值计算程序的设计,尽可能减少计算工作量。 建立仿真模型指的是根据数学模型设计一个可在数字计算机上执行的仿真程序,成为在

光伏并网发电仿真平台-精品

光伏并网发电仿真平台-精品 2020-12-12 【关键字】情况、环节、条件、空间、文件、质量、模式、监控、监测、运行、系统、机制、有效、继续、整体、良好、配合、保持、掌握、了解、研究、特点、位置、安全、稳定、基础、权利、工程、项目、体系、能力、需求、方式、作用、结构、设置、分析、调节、保护、保证、支持、优化、实现、提高、改进、中心、核心、创造性 光伏并网发电仿真平台是南京研旭面向各大高校以及实验室机构的科研人员所研发的一种实验仿真平台,能够良好模拟光伏发电的具体情境,对于实验论证和理论探究有着非常现实的意义。 平台简介: 并网光伏发电系统如图 1所示,光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能。目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节。带有蓄电池环节的并网光伏发电系统称为可调度式并网光伏发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某家庭用户来说具有重要意义;此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害的高次谐波分量从而提高电能质量。不带有蓄电池环节的并网光伏发电系统称为不可调度式并网光伏发电系统,在此系统中,并网逆变器将太阳能电池板产生的直流电能转化为和电网电压同频、同相的交流电能,当主电网断电时,系统自动停止向电网供电。 当有日照照射、光伏系统所产生的交流电能超过负载所需时,多余的部分将送往电网;夜间当负载所需电能超过光伏系统产生的交流电能时,电网自动向负载补充电能。 一、光伏并网发电实验仿真平台组成 光伏发电实验仿真平台主要由以下设备组成: 光伏阵列PV模拟源或者太阳能组件电池板:

光伏并网发电系统的MPPT_电压控制策略仿真

第26卷第1期农业工程学报V ol.26No.1 2010年1月Transactions of the CSAE Jan.2010267光伏并网发电系统的MPPT-电压控制策略仿真 吴红斌,陶晓峰,丁明 (合肥工业大学教育部光伏系统工程研究中心,合肥230009) 摘要:在配电网络的末端,负载的无功波动将会对电网供电电压产生较大的影响,对光伏发电系统并网处系统侧的交流电压进行控制,可以提高系统的电压水平。根据光伏并网系统的结构,采用外环为电压环、内环为并网电流环的双环控制。通过abc/dq0变换将并网电流解耦为有功分量和无功分量,引入最大功率点跟踪(maximum power point tracking,MPPT)提供的直流侧电压参考量的闭环控制调节并网电流的有功分量,引入交流侧电压参考量的闭环控制调节并网电流的无功分量,实现了具有MPPT和电压控制能力的三相光伏并网发电技术。仿真结果表明MPPT-电压控制策略既能够实现光伏并网的最大功率点跟踪,也能够控制光伏发电系统接入点的交流电压,进一步提升了光伏并网发电系统的应用前景。 关键词:发电系统,电压控制,算法,光伏并网,最大功率点跟踪(MPPT),仿真 doi:10.3969/j.issn.1002-6819.2010.01.047 中图分类号:TM615文献标识码:A文章编号:1002-6819(2010)-01-0267-05 吴红斌,陶晓峰,丁明.光伏并网发电系统的MPPT-电压控制策略仿真[J].农业工程学报,2010,26(1):267-271. Wu Hongbin,Tao Xiaofeng,Ding Ming.Simulation of photovoltaic grid-connected generation system with maximum power point tracking and voltage control strategy[J].Transactions of the CSAE,2010,26(1):267-271.(in Chinese with English abstract) 0引 言 近年来,农村能源的不足引起了有关部门的关注。为了解决农村能源的不足,建沼气池、兴建小水电等都是行之有效的途径,而太阳能等清洁能源的开发无疑是潜在的、有希望的一个领域[1-5]。在中国西北、西藏和内蒙古等远离电网的偏远农村地区,生活用电比较困难,而这些地区太阳能资源非常丰富,因此,充分利用丰富的太阳能资源,发展光伏并网发电技术是解决农村用电困难、能源短缺等问题的有效手段。 光伏并网发电系统是一个综合的控制过程,它不仅涉及到太阳能电池和并网逆变技术,还涉及到系统的控制和优化问题。文献[6]设计了以数字信号处理(digital signal processing,DSP)芯片控制的并网系统,该系统具有可靠性强,工作效率高,稳定性好等优点。文献[7]根据三相桥电路工作原理,提出了三相光伏并网发电系统的设计方案。文献[8]将光伏并网发电与无功补偿一体化的理论,构成了光伏并网功率调节系统,以提高供电质量和减少功率损耗。文献[9-11]则提出了将光伏并网发电与瞬时电流、无功补偿和有源滤波一体化的理论,构成光伏并网发电系统,以提高光伏并网发电的用途。 在配电网络的末端,特别是远离电网的边远地区,负载的无功波动将会对电网供电电压产生较大的影响,进而影响到该节点上的其他负荷[12-14]。如果能够利用光伏发电系统调节并网节点的交流电压,将会对光伏发电 投稿日期:2009-11-12修订日期:2009-12-14 基金项目:国家自然科学基金资助项目(50607002,50837001) 作者简介:吴红斌(1972-),男,湖北鄂州人,博士,副教授,主要研究方向为分布式发电技术、电力系统安全性分析。合肥合肥工业大学电气与自动化工程学院,230009。Email:hfwuhongbin@https://www.doczj.com/doc/808697673.html, 系统的应用产生积极的影响,具有十分重要的意义。 针对上述问题,本文提出一种基于最大功率点跟踪(MPPT)与电压控制相结合的三相光伏并网控制策略,使光伏系统在实现最大功率点跟踪的同时,还能够控制并网接入点处系统侧的交流电压,维持系统的电压恒定,以此节省相应设备的投资,提升光伏并网发电系统的应用前景。 1 三相光伏并网发电系统的结构 三相光伏并网发电系统的结构如图1所示。图中光伏阵列PV将太阳能转换成直流电,经过稳压电容C后,逆变器将其转换成交流电,经开关KM后与配电网络并网运行。其中,L f、C f构成LC滤波回路,R+jX为输电线路的交流等效阻抗。

相关主题
文本预览
相关文档 最新文档