当前位置:文档之家› (完整word版)电磁炉工作原理及用到的传感器

(完整word版)电磁炉工作原理及用到的传感器

(完整word版)电磁炉工作原理及用到的传感器
(完整word版)电磁炉工作原理及用到的传感器

一、电磁炉工作原理

电磁炉作为厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理。

1.外部加热原理:

电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。

2.内部结构及加热原理:

电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

二、传感器类型

传感器主要是用于获取温度电压信息,调控电路或是保护电磁炉内部的元器件,起到反馈信息的作用。主要用到2种负温度系数的半导体热敏电阻 ,一种检测炉面温度,一种检测IBGT的工作温度。

(一)热敏电阻(热电式传感器)

此处为NTC热敏电阻(负温度系数热敏电阻),由金属氧化物组成(如铜)。按用途不同分成两大类,第一类用于测量温度,它的电阻值与温度之间呈负的指数关系;另一类为负的突变型,当其温度上升到某设定值时,其电阻值突然下降,多用于各种电子电路中抑制浪涌电流,起保护作用。

1.锅底温度监测电路

炉温热敏电阻:加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的NTC热敏电阻,该电阻阻值的变化影响电阻的分压,微处理器接收变化的电压信号,有效地测控锅具的温度。为使传感器温度真实地反映炉温,热敏电阻一般与玻璃板直接接触,且与线盘结合在一起。当锅具之温度达到140°C 时,则应进行关机保护。如图所示(中间是温度传感器):

2.IGBT温度保护

IGBT:绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘

栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,主要

是电路通断作用。

IGBT热敏电阻:该负温度系数热敏电阻放在紧贴着IGBT的正面。用

导热硅脂涂在它们之间,并压在PCB板上,IGBT产生的温度直接传

到了热敏电阻上,热敏电阻与RJ37电阻分压点的变化反映了热敏电阻的阻值变化,直接反映出IGBT的温度变化。

温度传感器采用100kW热敏电阻,当探测到IGBT 温度高于80°C 时,则关机停止加热,避免IGBT 由于温度过高而被烧坏。

(二)压敏电阻(电阻式传感器)

压敏电阻:一定范围内,阻值随电压而变化的电阻。

苏泊尔2MR101电磁炉的压敏电阻是10D471,压敏电阻可用于IGBT过压保护,电网高、低压保护,浪涌电压保护。

(三)其他传感器

由于有些电磁炉应用了触摸屏技术,如苏泊尔SDHCB06-210等,也可能使用了电容式传感器和压电式传感器。

综上所述,电磁炉中用到的传感器主要起测温和保护两个作用。

电磁炉工作原理及用到的传感器

一、电磁炉工作原理 电磁炉作为厨具市场的一种新型灶具,它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理。 1.外部加热原理: 电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。 2.内部结构及加热原理: 电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

二、传感器类型 传感器主要是用于获取温度电压信息,调控电路或是保护电磁炉内部的元器件,起到反馈信息的作用。主要用到2种负温度系数的半导体热敏电阻 ,一种检测炉面温度,一种检测IBGT的工作温度。 (一)热敏电阻(热电式传感器) 此处为NTC热敏电阻(负温度系数热敏电阻),由金属氧化物组成(如铜)。按用途不同分成两大类,第一类用于测量温度,它的电阻值与温度之间呈负的指数关系;另一类为负的突变型,当其温度上升到某设定值时,其电阻值突然下降,多用于各种电子电路中抑制浪涌电流,起保护作用。 1.锅底温度监测电路 炉温热敏电阻:加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的NTC热敏电阻,该电阻阻值的变化影响电阻的分压,微处理器接收变化的电压信号,有效地测控锅具的温度。为使传感器温度真实地反映炉温,热敏电阻一般与玻璃板直接接触,且与线盘结合在一起。当锅具之温度达到140°C 时,则应进行关机保护。如图所示(中间是温度传感器):

全面讲解电磁炉的工作原理(修正排版)

最详细电磁炉原理讲解 一、原理简介 电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。 二、电磁炉的原理方块图 三、电磁炉工作原理说明 1.主回路

图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT 由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。串联谐振的频率取之L2、C12的参数。 C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。 2.副电源 开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。 3.冷却风扇 主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。通电瞬间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

电磁炉原理图和工作原理

目录 一、简介 1.1 电磁加热原理 1.2 458系列简介 二、原理分析 2.1 特殊零件简介 2.1.1 LM339集成电路2.1.2 IGBT 2.2 电路方框图 2.3 主回路原理分析 2.4 振荡电路 2.5 IGBT激励电路 2.6 PWM脉宽调控电路2.7 同步电路 2.8 加热开关控制 2.9 VAC检测电路 2.10 电流检测电路 2.11 VCE检测电路 2.12 浪涌电压监测电路2.13 过零检测 2.14 锅底温度监测电路2.15 IGBT温度监测电路

2.16 散热系统 2.17 主电源 2.18辅助电源 2.19 报警电路 三、故障维修 3.1 故障代码表 3.2 主板检测标准 3.2.1主板检测表 3.2.2主板测试不合格对策 3.3 故障案例 3.3.1 故障现象1 一、简介 1.1 电磁加热原理 电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,

然后再加热器皿内的东西。 1.2 458系列简介 458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED 数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT 温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE 抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。 458系列虽然机种较多,且功能复杂,但不同的机种

电磁炉原理图和工作原理

电磁炉原理图和工作原 理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

目录 一、简介 电磁加热原理 458系列简介 二、原理分析 特殊零件简介 2.1.1 LM339集成电路 IGBT 电路方框图 主回路原理分析 振荡电路 IGBT激励电路 PWM脉宽调控电路 同步电路 加热开关控制

VAC检测电路 电流检测电路 VCE检测电路 浪涌电压监测电路过零检测 锅底温度监测电路 IGBT温度监测电路散热系统 主电源 辅助电源 报警电路 三、故障维修 故障代码表 主板检测标准

故障案例 故障现象1 一、简介 电磁加热原理 电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。 458系列简介

458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等 料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频 率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、 锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。 458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单 且零件极少,并设有故障报警功能,故电路可靠性高,维修容易, 维修时根据故障报警指示,对应检修相关单元电路,大部分均可 轻易解决。

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

电磁炉工作原理说明之电路分析

电磁炉工作原理说明之电路分析 1、主回路 图中整流桥BI将工频(50HZ)电压变成脉动直流电压,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。IGBT截止时,L2、C21发生串联谐振,IGBT的C极对地产生高压脉冲。当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。上述过程周而复始,最终产25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。串联谐振的频率取之L2、C21的参数。 C5为电源滤波电容。CNR1为压敏电阻(突波吸收器),当AC电源电压因故突然升高时,瞬间短路,使保险丝迅速熔断,以保护电路。 2、副电源

开关电源提供有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT 的驱动回路,同步比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。 3、冷却风扇 当电源接通时主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。通电瞬间CPU会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。 4、定温控制及过热保护电路

该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT上的热敏电阻(负温度系数)感测温度而改变电阻的一随温度变化的电压单位传送至主控IC(CPU),CPU经A/D转换后对照温度设定值比较而作出运行或停止运行信号。 5、主控IC(CPU)主要功能 18脚主控IC主要功能如下: (1)电源ON/OFF切换控制 (2)加热火力/定温温度控制 (3)各种自动功能的控制 (4)无负载检知及自动关机 (5)按键功能输入检知 (6)机内温升过高保护 (7)锅具检知 (8)炉面过热告知 (9)散热风扇控制 (10)各种面板显示的控制 6、负载电流检知电路 该电路中T2(互感器)串接在DB(桥式整流器)前的线路上,因此T2二次侧的AC电压可反映输入电流的变化,此AC电压再经D13、D14、D15、D5全波整流为DC电压,该电压经分压后直接送CPU的AD转换后,CPU根据转换后的AD 值判断电流大小经软件计算功率并控制PWM输出大小来控制功率及检知负载

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使 数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值, 将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 X(mm) V(v) 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量 程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据: X(mm) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 V(v)0.00 0.08 0.19 0.32 0.45 0.59 0.76 0.92 1.13 1.27 X(mm) 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 V(v) 1.39 1.50 1.59 1.65 1.70 1.78 1.84 1.88 1.91 1.91

2015—2016学年鲁科版选修3-2 常见传感器的工作原理 教案

5.2 常见传感器的工作原理 [课时安排]1课时 [教学目标]: (一)知识与技能 1.通过实物认识光敏电阻,了解光传感器的工作原理。了解光传感器的用途。2.通过实物认识热电偶和热敏电阻,了解温度传感器的工作原理。了解温度传感器的用途。 3.利用传感器制作简单的自动控制装置,通过实验认识传感器,体会非电学量转换成电学量好处。 (二)过程与方法 实验探究及要求学生使用多种资源去收集信息,多整理信息,最后形成书面报告在课堂上与教师和同学交流。 (三)情感、态度与价值观 激发学生的学习兴趣,拓展他们的视野,培养学生收集信息、与他人进行交流的能力,提高他们的创新意识。 通过分析事例,培养学生全面认识和对待事物的科学态度。 [教学重难点]:光敏电阻和热敏电阻的工作原理及实验设计 [教学器材]:光敏电阻和热敏电阻,小灯炮,干簧管,欧姆表,烧杯,导线,二极管,干电池,开水等 [教学方法]:实验探究,讲授 [教学过程] (一)引入新课 通过教师演示实验,用光敏电阻控制小灯炮的亮暗。 (二)进行新课 一、.光电传感器原理 1、工作原理:光电传感器是指能够感受光信号,并按照一定规律把光信号 转换成电学量信号器件。 光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。光电式传感器是以光电器件作为转换元件的传感器。它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。 2、干簧管: 3、光敏电阻: A:实验探究及见课件: 用多用电表测量光敏电阻的阻值,改变入射到光敏电阻上光的强度,再次测量阻值,并将各数据记人表格

电流传感器的工作原理

电流传感器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电流传感器工作原理 电流传感器是传感器的一种分类,其主要信号源是采集信号的电流大小!主要参数为其电流大小!检测方法一般是检测电流特性的器件,一般有电流表之类的! 工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP 其中,IS—副边电流; IP—原边电流; NP—原边线圈匝数; NS—副边线圈匝数; NP/NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比, IS一般很小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压VA VA指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN。 二、电流传感器主要特性参数 1、标准额定值IPN和额定输出电流ISN

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.doczj.com/doc/8314737129.html, 。 846--

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的

测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光敏电

电磁炉工作原理及常见故障及检修方法

前言 本章一共2节主要介绍电磁炉的工作原理、系统部件组成以及常见故障及检修方法,希望能够帮助到技术工作人员。 第1节 电磁炉工作原理 电磁炉是利用电磁感应原理,电流经过线盘产生变化磁场,磁场感应到炉面上的铁质锅具底部产生涡流,从而产生大量的热量,直接使得锅具底部迅速发热,进而使得食物得到加热。电磁炉由交流电输入部分、大电流整流滤波输出部分、线盘高频振荡电路部分 、开关电源部分 等功能模块组成。下面将介绍电磁炉的不同功能模块工作原理以及电磁炉的常见故障及检修方法。如下图是电磁炉的结构图。 工作结构图 电路原理图(见附图 1)

交流电输入部分 市电220V经接插件L1、N1接入电路。电路开始通电。由于电磁炉工作电流较大,接插件N1、L1和保险管两端引脚焊接必须牢固,目的是避免接触不良。电磁炉的保险丝是个保护装置,在更换的过程中要选用同型号的更换。(过小电流不够过、易熔断。过大保护失去作用)。所以16A/250V的保险丝不能随意改动或代换(更不能直接短路)。 L1、N1之间有电容C1,该电容既能防止电磁炉工作产生的高频干扰脉冲窜入市电网干扰其他电器,又防止市电网的干扰脉冲窜入电磁炉电路影响其工作。该电容的容量通常为2uF—5 uF。如图所示

大电流整流滤波输出部分 市电经过桥式整流器BG1(桥堆)整流出来再经过L1、C4滤波后输出300V 直流电,为线盘高频振荡供电。BG1是个大电流高耐压器件,其规格为20A800V。当其烧坏后,不能随意用其它整流器代替。一定要用同型号或比它更大电流高耐压的整流器(外观、管脚、接口相同)替换。L1扼流圈、C4电容组成倒L型滤波电路。作用是把整流出来的直流脉动成分滤去,使输出波形更加平滑。当C4、8uF/400V(DC)电容击穿短路时,保险丝会烧断,整流器也会因电流过大而烧坏。此电容容量变值时(变小),直流输出300V电压会明显下降,当C4没有容量时,也会导致烧IGBT,维修时要特别注意。如图所示

相关主题
文本预览
相关文档 最新文档