当前位置:文档之家› 铍青铜的热处理及热处理的应力和影响

铍青铜的热处理及热处理的应力和影响

铍青铜的热处理及热处理的应力和影响
铍青铜的热处理及热处理的应力和影响

铍青铜的热处理

铍青铜是一种用途极广的沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500公斤)。其热处理特点是:固溶处理后具有良好的塑性,可进行冷加工变形。但再进行时效处理后,却具有极好的弹性极限,同时硬度、强度也得到提高。

(1)铍青铜的固溶处理

一般固溶处理的加热温度在780-820℃之间,对用作弹性元件的材料,采用760-780℃,主要是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在

±5℃。保温时间一般可按1小时/25mm计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后的力学性能影响不大,但会影响其冷加工时工模具的使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮的热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后的机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热的要求),当然形状复杂的零件为了避免变形也可采用油。

(2)铍青铜的时效处理

铍青铜的时效温度与Be的含量有关,含Be小于2.1%的合金均宜进行时效处理。对于Be大于 1.7%的合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0.5%的高导电性电极合金,由于溶点升高,最佳时效温度为

450-480℃,保温时间1-3小时。近年来还发展出了双级和多级时效,即先在高温短时时效,而后在低温下长时间保温时效,这样做的优点是性能提高但变形量减小。为了提高铍青铜时效后的尺寸精度,可采用夹具夹持进行时效,有时还可采用两段分开时效处理。

铍青铜的热处理

铍青铜得热处理 专业:冶金 姓名:易高松 学号:20061369 铍青铜就就是一种用途极广得沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500公斤)。其热处理特点就就是:固溶处理后具有良好得塑性,可进行冷加工变形。但再进行时效处理后,却具有极好得弹性极限,同时硬度、强度也得到提高。 一、铍青铜得固溶处理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 二、铍青铜得时效处理、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 三、铍青铜得去应力处理 一、铍青铜得固溶处理 一般固溶处理得加热温度在780-820℃之间,对用作弹性组件得材料,采用760-780℃,主要就就是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在±5℃。保温时间一般可按1小时/25mm 计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后得力学性能影响不大,但会影响其冷加工时工模具得使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮得热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后得机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热得要求),当然形状复杂得零件为了避免变形也可采用油。 二、铍青铜得时效处理 铍青铜得时效温度与Be得含量有关,含Be小于2、1%得合金均宜进行时效处理。对于Be大于1、7%得合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0、5%得高导电性电极合金,由于溶点升高,最佳时效温度为450-480℃,保温时间1-3小时。近年来

铍铜生产工艺

作 为一种可铸可锻合金铍铜合金及其加工材生产工艺分 为用碳热还原法生产铍-铜中间合金、铍铜合金的熔 炼、铜合金的铸锭和铍铜合金板、带、条材的生产四步。 1.用碳热还原法生产铍-铜中间合金是指在熔融铜中直接用碳还原氧化铍中的铍,接着在铜中实施合金化。工业上用碳热还原法制取铍-铜中间合金是在电弧炉中进行的,电弧炉置于密封容器内,操作人员戴防毒口罩,先将10%-13%的氧化铍与3%-7%的碳粉在球磨机中混匀并磨碎,然后一层铜、一层氧化铍和碳粉混合物分批装入电弧炉,通电熔化,熔化完后停电搅拌,炉内温度达到2000摄氏度。冷却到950摄氏度--1000摄氏度时,合金名的碳化铍、碳、残留粉末浮起、扒渣,然后在950摄氏度时出炉浇铸成225公斤或5公斤的锭块。 2.熔炼铍铜合金时所用的炉料包括新金属、废料、二次重熔料及中间合金。铍一般用铍-铜中间合金(含铍4%);镍有时用新金属,即电解镍,但最好用镍??铜中间合金(含镍20%);钴用钴-铜中间合金(钴55%),个别也有直接用纯钴的;钛以钛-铜中间合金(含钛15%,也有含钛274%)加入,个别也有直接加入海绵钛的;镁以镁-铜中间合金(含镁357%)加入。加工过程中产生的碎屑(铣屑、切削屑等)和较小的边角废料,一般要经过二次重熔后浇注成锭作为熔炼用炉料;除了再生的重熔料外,在配料时还通常往炉中直接加入

一些铸造废料和加工废料。 3.铍铜合金的铸锭分为非真空铸锭和真空铸锭。目前在铍铜合金生产实际中使用的非真空铸锭方法包括倾斜铁模铸锭、无流铸锭、半连续铸锭和连续铸锭。前两种方法只在生产规模较小的工厂使用。专家介绍说,要想获得含气量低、偏析小、夹杂量少、结晶组织均匀致密的铍铜合金铸锭,最好的办法是真空熔炼后进行真空铸锭。真空铸锭对保证易氧化元素如铍、钛的含量有显着效果,必要时还可以通入惰性气体对铸锭过程进行保护。 4.铍铜合金板、带、条材的生产的步骤依次是铸锭--表面铣削--加热(800摄氏度-900摄氏度)--热轧--水淬--铣面--冷轧--脱脂--固溶热处理--酸洗--钝化。

热处理应力及其影响

热处理应力及其影响热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状, ;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时, ;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀, ;工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压

应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。实践证明,任何工件在热处理过程中, ;只要有相变,热应力和组织应力都会发生。 ;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果, ;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。 ;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内( ;尤其是在最大拉应力下)才会表现出来,;若在压应力场内并无促裂作用。淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑

消除应力热处理作业指导书

消除应力热处理作业指导书 1.范围 1.1 本守则规定了膨胀节产品的消除应力热处理基本程序和要求。 1.2 本守则适用于膨胀节压制简体和成形的膨胀节消除应力热处理工序。 2.规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款,凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用本规程。 质技监局锅发[1999]154号《压力容器安全技术监察规程》 GBl50-1998《钢制压力容器》 JB/T4709-2000《钢制压力容器焊接工艺规程》 GBl6749《压力容器波形膨胀节》 3.工艺规范 3.1 工艺曲线 3.2 常用材料消除应力热处理温度及保温时间参见相关材料标准的推荐温度。 3.3 焊件进炉时炉内温度不得高于400℃。焊件出炉时,炉温不得高于400℃,出炉后应在静止的空气中冷却。 3.4 升温速度最大不得超过PWHT 5000 δ℃/h ,且不得超过200℃/h ,最小可为50℃/h 。降温速度最大不 得超过PWHT 6000 δ℃/h ,且不得超过260℃/h ,最小可为50℃/h 。 4.工艺操作 4.1 消除应力热处理应在焊接工作全部结束并检测合格后,于压制成形或在压力试验前进行。奥氏体不锈钢压制的波纹管、膨胀节一般不进行焊后消除应力热处理,工艺或客

户有特殊要求的按工艺处编制的热处理工艺卡执行。 4.2 消除应力热处理应尽可能采取整体热处理。 4.3 装炉时,工件距炉门不得小于****毫米,距炉墙不得小于****毫米,加热炉对炉温应能控制,对工件不得产生过度氧化和有害影响。 4.4 装炉时需要将工件垫平、垫稳。工件之间保持一定距离,不要靠紧。若需垛装时,上下工件之间要用垫板垫起。垫板厚度要大于*******毫米,上下垫板必须平行对正。 4.5 对于直径较大、壁厚较薄的筒体,内部没有支承圈或固定塔板时,应适当在内部支承,以防加热时变形。 4.6 产品焊接试板应随同工件同炉热处理,试板须放在能代表工件的适当位置。试板应有钢印标记,经核对并经检查员认可。 4.7 焊件升温期间,加热区内任意长度为*******毫米内的温差不得大于*****℃。焊件保温期间,加热区内最高与最低温度之差不宜大于*****℃。升温和保温期间应控制加热区气氛,防止焊件表面过度氧化。 5. 测温与记录 5.1 热处理炉应配有自动记录温度时间曲线的测温仪表。 5.2 热电偶应安装在能反映工件实际温度的适当位置。补偿导线的线径及长度要合适,并经常检查热电偶的老化情况。 5.3 测温仪表和热电偶必须定期检定,保证合格准确。 5.4 工件热处理曲线记录和检验记录应存档保管,且保存不得少于***年。

铍青铜的热处理

铍青铜的热处理 专业:冶金 姓名:易高松 学号:20061369 铍青铜是一种用途极广的沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500 公斤)。其热处理特点是:固溶处理后具有良好的塑性,可进行冷加工变形。但再进行时效处理后,却具有极好的弹性极限,同时硬度、强度也得到提高。 一.铍青铜的固溶处理................................................................................................ 二.铍青铜的时效处理................................................................................................... 三.铍青铜的去应力处理 一.铍青铜的固溶处理 一般固溶处理的加热温度在780-820℃之间,对用作弹性组件的材料,采用760-780℃,主要是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在±5℃。保温时间一般可按1小时/25mm 计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后的力学性能影响不大,但会影响其冷加工时工模具的使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮的热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后的机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热的要求),当然形状复杂的零件为了避免变形也可采用油。 二.铍青铜的时效处理 铍青铜的时效温度与Be的含量有关,含Be小于2.1%的合金均宜进行时效处理。对于Be大于1.7%的合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0.5%的高导电性电极合金,由于溶点升高,最佳时效温度为450-480℃,保温时间1-3小时。近年来还发展出了双级和多级时效,即先在高温短时时效,而后在低温下长时间保温时效,这样做的优点是性能提高但变形量减小。为了提高铍青铜时效后的尺寸精度,可采用夹具夹持进行时效,有时还可采用两段分开时效处理。 三.铍青铜的去应力处理 铍青铜去应力退火温度为150-200℃,保温时间1-1.5小时,可用于消除因金属切削加工、校直处理、图表 1 坦克2006-6-17 2易高松计算机作业冷成形等产生的残余应力,稳定零件在长期使用

去应力和完全退火工艺

去应力和完全退火工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钢的退火工艺完全退火去应力退火工艺曲线及操作规程 退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。 一. 完全退火 完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。 完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。 完全退火工艺曲线见图1.1。 1. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。 2. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止加热开始降温时的全部时间。工件堆装时,主要根据装炉情况估定,一般取2~3h。 3. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出炉空冷。对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。 二. 去应力退火 去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。 1. 去应力退火工艺曲线见图1-3。

2. 不同的工件去应力退火工艺参数见表C。 3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。 4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。 5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。 表C 去应力退火工艺及低温时效工艺 类别加热速度加热温 度 保温时 间/h 冷却时间 焊接件 ≤300℃装炉 ≤100~150℃/h 500- 550 2-4炉冷至300℃出炉空冷 消除加工应力到温装炉400- 550 2-4炉冷或空冷 高精轴套、膛杆(38CrMoAlA)≤200℃装炉 ≤80℃/h 600- 650 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 精密丝杠(T10)≤200℃装炉 ≤80℃/h 550- 600 10-12 炉冷至200℃出炉 (在350℃以上冷速 ≤50℃/h) 主轴、一般丝杠(45、40Cr)随炉升温 550- 600 6-8炉冷至200℃出炉 量检具、精密丝杠 (T8、T10、CrMn、 GCr15)随炉升温 130- 180 12-16 空冷 (时效最好在油浴中进 行)

热处理变形的原因

热处理变形的原因 在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 一、热处理变形产生的原因 钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。淬火应力分为热应力和组织应力两种。由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。 1.热应力 在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。表里温差增大应力也增大。 2.组织应力 组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。由于奥氏体比容最小,淬火冷却时必然发生体积增加。淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。 二、减少和控制热处理变形的方法 1.合理选材和提高硬度要求 对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。 2.正确设计零件 零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。避免较深的不通孔。长形零件避免截面呈横梯形。 3.合理安排生产路线,协调冷热加工与热处理的关系

热处理--消除焊接应力

1总则 1.1本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。 1.2本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。 2要求 2.1人员及职责 2.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 2.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 2.1.3 热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。 2.2 设备及装置 2.2.1能满足焊后热处理工艺要求; 2.2.2在焊后热处理过程中,对被加热件无有害的影响; 2.2.3 能保证被加热件加热部分均匀热透; 2.2.4能够准确地测量和控制温度; 2.2.5在整个热处理过程中应当连续记录; 2.2.6炉外加热时,热电偶的布置应满足工艺标准的要求; 2.2.7被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3焊后热处理方法 3.1炉内热处理 3.1.1 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。3.1.2 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 3.1.3为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。 3.1.4有密封面和有高精度螺孔的部位应加以保护,可用机油和石墨粉膏剂涂于被保护面,然后用石棉布包扎。

3.2分段热处理 焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于1.5米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。 3.3炉外热处理 产品整体炉外热处理热处理时,在满足2.2的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.4局部热处理 3.4.1 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。 3.4.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。 3.4.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 4热处理工艺规范 4.1工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。 4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。 4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。 4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。 4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。 4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h. 4.7 焊件按出炉温度出炉后应在静止空气中继续冷却。 4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1

铍铜热处理

锡青铜的热处理锡青铜不能经热处理强化,而要通过冷却变形来提高强度和弹性性能。 主要方式有: (1)完全退火,用于中间软化工序,以保证后续工序大变形量加工的塑性变形性能. (2)不完全退火,用于弹性元件成型前得到与后续工序成形相一致的塑性,以保证后续工序一定的成型变形量,并使弹簧达到使用性能。 (3)稳定退火,用于弹簧成形后的最终热处理,以消除冷加工应力,稳定弹簧的外形尺寸及弹性性能。 锡青铜弹簧材料的热处理规范 注:*不完全退火的规范可以根据弹簧后续成形变形量来进行调整。 2.铍青铜的热处理 铍青铜的热处理可以分成退火处理、固溶处理和固溶处理以后的时效处理。 退(回)火处理又分成: (1)中间软化退火,可以用来做加工中间的软化工序。 (2)稳定化回火,用于消除精密弹簧和校正时所产生的加工应力、稳定外形尺寸。 (3)消除应力回火,用于消除机械加工和校正时产生的加工应力。 铍青铜弹簧材料的热处理规范

铍青铜弹簧材料的固溶处理和时效率处理的规范 注:固溶处理的保温时间对材料的晶粒度和沉淀硬化后的性能影响很大,应该按材料的直径和厚度并通过试验来确定。时效处理保温时间结束后可以在空气中冷却。 3.硅青铜线的热处理 硅青铜是一种Cu-si-Mn三元合金。有较好的强度、硬度、弹性、塑性和耐磨性,它的冷热加工性能也比较好。它不能热处理强化,只能在退火和加工硬状态下使用。弹簧成形后只需要进行200~280℃消应力回火处理。说明:本连载的部分资料曾参考《航空制造工程手册》,并且又通过实践后,加以修正、补充、完善总结而成。

铍青铜发明专利(17条) 实用新型(24条) 记录号申请号专利名称 1 200410012261.1 防爆锹 2 200410012291.2 青铜防磁工具 3 200410053071. 4 一种新型弹性导电合金及其制备方法 4 200410064548.9 一种高强度铜合金防爆工具模锻生产工艺 5 87100204 弹性元件用变形铜合金 6 90102785.5 廉价防爆工具的制造方法 7 91105605.X 高强度弹性材料铜基合金 8 92108525.7 新型接插件复合材料 9 200310109687.4 防爆手拉葫芦 10 200510041793.2 基于压接互连技术的电力电子集成模块的制备方法 11 02138396.0 制作弹簧导电触头的方法 12 02103706.X 防爆手工具材料及其制造方法 13 98114100.5 异种金属钎焊高尔夫球头方法 14 00134013.1 生产稀土铜基合金材料的方法 15 02113214.3 用热模连铸薄坯工艺及横向磁场感应加热工艺生产铍青铜板带材 16 98104639.8 一种高强度高软化温度铜基弹性材料 17 200510026721.0 卫星光学遥感仪器中的平动装置 18 85201272 四探针头 19 89215890.5 铍青铜光亮淬火时效炉 20 91232238.1 新型微动开关 21 93219937.2 小直径测井仪多芯直插式电缆接头 22 92235224.0 双缸高速电动试压泵 23 96222838.9 线簧式射频同轴连接器 24 97221474.7 一种线簧式射频同轴连接器 25 97250097.9 弹性射频同轴连接器 26 97221475.5 射频同轴连接器

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

铍青铜的热处理及热处理的应力和影响

铍青铜的热处理 铍青铜是一种用途极广的沉淀硬化型合金。经固溶及时效处理后,强度可达1250-1500MPa(1250-1500公斤)。其热处理特点是:固溶处理后具有良好的塑性,可进行冷加工变形。但再进行时效处理后,却具有极好的弹性极限,同时硬度、强度也得到提高。 (1)铍青铜的固溶处理 一般固溶处理的加热温度在780-820℃之间,对用作弹性元件的材料,采用760-780℃,主要是防止晶粒粗大影响强度。固溶处理炉温均匀度应严格控制在±5℃。保温时间一般可按1小时/25mm计算,铍青铜在空气或氧化性气氛中进行固溶加热处理时,表面会形成氧化膜。虽然对时效强化后的力学性能影响不大,但会影响其冷加工时工模具的使用寿命。为避免氧化应在真空炉或氨分解、惰性气体、还原性气氛(如氢气、一氧化碳等)中加热,从而获得光亮的热处理效果。此外,还要注意尽量缩短转移时间(此淬水时),否则会影响时效后的机械性能。薄形材料不得超过3秒,一般零件不超过5秒。淬火介质一般采用水(无加热的要求),当然形状复杂的零件为了避免变形也可采用油。 (2)铍青铜的时效处理 铍青铜的时效温度与Be的含量有关,含Be小于2.1%的合金均宜进行时效处理。对于Be大于 1.7%的合金,最佳时效温度为300-330℃,保温时间1-3小时(根据零件形状及厚度)。Be低于0.5%的高导电性电极合金,由于溶点升高,最佳时效温度为

450-480℃,保温时间1-3小时。近年来还发展出了双级和多级时效,即先在高温短时时效,而后在低温下长时间保温时效,这样做的优点是性能提高但变形量减小。为了提高铍青铜时效后的尺寸精度,可采用夹具夹持进行时效,有时还可采用两段分开时效处理。 (3)铍青铜的去应力处理 铍青铜去应力退火温度为150-200℃,保温时间1-1.5小时,可用于消除因金属切削加工、校直处理、冷成形等产生的残余应力,稳定零件在长期使用时的形状及尺寸精度。 热处理应力及其影响 热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状,&127;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,&127;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而

热处理应力及其影响

热处理应力及其影响 热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状, ;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时, ;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀, ;工件各部位先后相变,造成体积长

大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。 实践证明,任何工件在热处理过程中, ;只要有相变,热应力和组织应力都会发生。;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果, ;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响 存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内( ;尤其是在最大拉应力下)才会表现出来, ;若在压应力场内并无促裂作用。 淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临

热处理应力及其影响

热处理应力及其影响 热处理残余力就是指工件经热处理后最终残存下来得应力,对工件得形状, ;尺寸与性能都有极为重要得影响。当它超过材料得屈服强度时, ;便引起工件得变形,超过材料得强度极限时就会使工件开裂,这就是它有害得一面,应当减少与消除。但在一定条件下控制应力使之合理分布,就可以提高零件得机械性能与使用寿命,变有害为有利。分析钢在热处理过程中应力得分布与变化规律,使之合理分布对提高产品质量有着深远得实际意义.例如关于表层残余压应力得合理分布对零件使用寿命得影响问题已经引起了人们得广泛重视。 一、钢得热处理应力 工件在加热与冷却过程中,由于表层与心部得冷却速度与时间得不一致,形成温差,就会导致体积膨胀与收缩不均而产生应力,即热应力。在热应力得作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力得作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分与热处理工艺等因素得影响。当冷却速度愈快,含碳量与合金成分愈高,冷却过程中在热应力作用下产生得不均匀塑性变形愈大,最后形成得残余应力就愈大。另一方面钢在热处理过程中由于组织得变化即奥氏体向马氏体转变时,因比容得增大会伴随工件体积得膨胀,;工件各部位先后相变,造成体积长大不一

致而产生组织应力。组织应力变化得最终结果就是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力得大小与工件在马氏体相变区得冷却速度,形状,材料得化学成分等因素有关. 实践证明,任何工件在热处理过程中, ;只要有相变,热应力与组织应力都会发生. ;只不过热应力在组织转变以前就已经产生了,而组织应力则就是在组织转变过程中产生得,在整个冷却过 程中,热应力与组织应力综合作用得结果, ;就就是工件中实际存在得应力。这两种应力综合作用得结果就是十分复杂得,受着许多因素得影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力与组织应力,作用方向相反时二者 抵消,作用方向相同时二者相互迭加。不管就是相互抵消还就是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时得作用结果就是工件心部受拉,表面受压。;组织应力占主导地位时得作用结果就是工件心部受压表面受拉。 二、热处理应力对淬火裂纹得影响?存在于淬火件不同部位上能引起应力集中得因素(包括冶金缺陷在内),对淬火裂纹得产生都有促进作用,但只有在拉应力场内(;尤其就是在最大拉应力下)才会表现出来, ;若在压应力场内并无促裂作用。 淬火冷却速度就是一个能影响淬火质量并决定残余应力得重要 因素,也就是一个能对淬火裂纹赋于重要乃至决定性影响得因素。为了达到淬火得目得,通常必须加速零件在高温段内得冷却速度,并使之超过钢得临界淬火冷却速度才能得到马氏体组织。

消除焊接应力热处理工艺守则

消除焊接应力热处理工艺守则 (总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1总则 1.1本守则适用于本公司碳素钢及低合金钢压力容器及受压元件的焊后热处理。 1.2本守则规定了钢制压力容器热处理通用工艺要求,具体实施应按图纸设计的要求和专业工艺文件的规定执行。 2要求 2.1人员及职责 2.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 2.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 2.1.3 热处理操作人员应严格按照焊后热处理工艺进行操作,并认真填写原始操作记录。 2.2 设备及装置 2.2.1能满足焊后热处理工艺要求; 2.2.2在焊后热处理过程中,对被加热件无有害的影响; 2.2.3 能保证被加热件加热部分均匀热透; 2.2.4能够准确地测量和控制温度; 2.2.5在整个热处理过程中应当连续记录; 2.2.7被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3焊后热处理方法 3.1炉内热处理 3.1.1 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。3.1.2 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 3.1.3为了防止拘束应力及变形,对薄壁大直径容器,内部应加支撑。卧式容器底部应放鞍式支座,支座间距不大于2米且底部应垫平。

3.2分段热处理 焊后热处理允许在炉内分段进行。对于超出炉子长度需要分段热处理的大件,其重复加热长度应不小于1.5米;露在炉外靠近炉门处应采取合适的保温措施,保温长度不得小于1米。 3.3炉外热处理 产品整体炉外热处理热处理时,在满足2.2的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.4局部热处理 3.4.1 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。 3.4.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不得小于钢材厚度δs的6倍。 3.4.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 4热处理工艺规范 4.1工件装炉温度和出炉温度应低于400℃。但对厚度差较大、结构复杂、尺寸稳定性要求较高、残余应力值要求较低的被加热件,其入炉或出炉时的炉内温度一般不宜超过300℃。 4.2 焊件升温至400℃后,加热区升温速度不得超过(5000/δs)℃/h,且不得超过200℃/h,最小可为50℃/h。 4.3 升温时,加热区内任意5000mm长度内的温差不得大于120℃。 4.4 保温时,加热区内最高与最低温度之差不宜超过65℃。 4.5 升温保温期间,应控制加热区气氛,防止焊件表面过度氧化。 4.6 炉温高于400℃时,加热区降温速度不得超过(6500/δs)℃/h,且不得超过260℃/h,最小可为50℃/h. 4.7 焊件按出炉温度出炉后应在静止空气中继续冷却。 4.8 常用钢号推荐的焊后热处理保温温度和保温时间见表1

铍青铜零件电镀银的工艺与前处理配方技巧

铍青铜零件电镀银的工艺与前处理配方技巧 现代电镀网讯: 1.电子、航空、航天等领域的电镀运用 铍青铜是指含1.7%~2.5%铍、0.2%~0+5%镍的特殊青铜合金。铍青铜经淬火和时效处理后具有很高的强度、硬度、弹性、耐磨、耐热性和抗疲劳强度,还具有优良的导电、导热性及无铁磁性能。特别是温度变化对其弹性影响很小,因此铍青铜材料多用来制造重要的弹性零件,广泛应用于电子、航空、航天等领域。为进一步提高铍青铜弹性零件的导电性,往往在其表面镀覆一层银镀层,银镀层的厚度一般为5—8微米。但是,若按照铜或黄铜零件镀银的常用方法,很难在铍青铜零件电镀结合良好的银镀层。因此,铍青铜镀银除解决镀银层的变色外,还要从分析铍青铜的特殊性入手,提高铍青铜镀银层的结合力,防止鼓泡、起皮及脱落等疵病的发生。 2.铍青铜在镀银过程中易出现以下问题: 1)零件表面腐蚀,尺寸变化大;镀层出现小黑点,影响产品外观质量; 2)镀层与基体材料结合力差,镀层起皮。 造成上述问题的主要原因是材料本身含有大量的铍及镍元素,在热处理过程中,表面产生了一层暗红带褐色的氧化膜(其主要成分为CuO、Cu20、BeO、氧化镍等);另外,零件表面有大量油污,若热处理前清洗不干净,则氧化严重,所形成的氧化膜比较致密,采用常规的电镀前处理清洗工序很难去除。 2.1铍青铜材料的特殊性 铍青铜是一种含有易于钝化的铍和镍元素的特殊铜合金。以最常用的QBe1.9铍 青铜弹性材料为例,它含有1.85%~2.1%铍.0.2%~0.4%镍,还含有约0.02.5%~0.1%的钛,其余为铜。尽管铍、镍、钛的含量在合金中所占比例较小,但却使铍青铜大大有别于黄铜。镀青铜材料即便在常温大气条件下.表面也会生成一层肉眼看不到的致密氧化膜。该氧化膜主要由CuO、COBeO、NiO、Ni2o3及n02等组成。若热处理之前除油不净,还会产生碳黑等油渍烧结物。电镀前若不彻底清理干净,就会使银镀层发生结合不良,起皮、起泡及脱落等故障所以为确保银镀层的结合力,必须对铍青铜镀银采用有别于铜或黄铜的前处理工艺。 3.铍青铜电镀工艺流程: 超声波清洗一电化学除油一盐酸活化一碱煮一除膜一混酸腐蚀一化学抛光一盐酸出光一氰化预镀铜一预镀银一镀银一后处理(防银变色)。 3.1工序说明 A.超声波清洗 超声波清洗介质为LJ-28型中性超声波专用清洗剂,浓度为5%,温度为40~50。C,超声波频率为25kHz。 B.电化学除油 其目的是进一步去除干净零件表面油污,工艺流程为:阴极除油3min+阳极电解反拔除油30S。电解除油工艺配方及操作条件如下:FM一3型弱碱性电解除油粉50g/L,温度60~80。C,pH10.0~11.5。 C.盐酸活化 采用30%的稀盐酸溶液,在室温下浸泡5~10S,目的是去除零件表面在除油过程中产生的氧化物薄膜,为后续加工活化表面。 D.碱煮 在含500~550g/L氢氧化钠与200~250g/L亚硝酸钠的溶液中碱煮20min,使零件表面因热处理而产生的氧化皮松动。 E.除膜 采用10%的稀硫酸溶液,在室温下浸泡5~10S,目的是除去零件表面氧化膜。 F.混酸腐蚀

10-45去应力退火热处理

苏州海陆重工股份有限公司作业指导书 文件编号:HL/WI-10-45 版号:1-2008 修改状态:0 去应力退火热处理 Stress relieving annealing heat treatment 2008 - 07 - 25发布 2008 - 08 - 20实施苏州海陆重工股份有限公司发布

苏州海陆重工股份有限公司作业指导书 去应力退火热处理 苏州海陆重工股份有限公司2008 - 07 - 25批准 2008- 08-20实施 文件编号:HL/WI-10-45 版 号:1-2008 修改状态:0

1目的purpose 对厂内的去应力退火作业作出规定,并指导热处理操作工正确的执行去应力热处理工艺。Regulate on stress relieving operation within company and instruct heat treatment operator to correctly perform stress relieving heat treatment procedure. 2适用范围applicable range 适用于我公司产品在焊后或缩径或弯后进行的所有去应力热处理。 It applies to all stress relieving heat treatment performed after welding, shrinking or bending. 3去应力退火热处理工艺stress relieving heat treatment procedure 退火热处理规范的制订应根据合同要求的制造规范及技术规范要求进行。HLHI主要应用规范有ASME SECTION I,METI 标准,中国规范等。结合各种规范后本厂的要求见下表; The stipulation of annealing heat treatment specification shall be according to contract required fabrication and technical specification. HLHI main applied code and standards are ASME SECTION I,METI standard, GB standard etc. our company’s requirements are that of combination of various standards.

相关主题
文本预览
相关文档 最新文档