当前位置:文档之家› 校本课 圆周运动中的连接体问题

校本课 圆周运动中的连接体问题

校本课  圆周运动中的连接体问题
校本课  圆周运动中的连接体问题

圆周运动中的连接体问题

(一)如图所示,支架质量为M,置于粗糙水平地面上,转轴O处悬挂一个质量为m的小球,拴球的细线长为L,当小球在竖直平面内做圆周运动时,支架始终保持静止状态。

(1)若小球以速度v通过最低点,求此时支架对地面的压力大小及方向。(2)若小球恰好能够到达最高点做圆周运动,求此时地面对支架的支持力。(3)若小球到最高点时,恰好支架对地面无压力,求小球到达最高点时的速度的大小.

(二)如图所示,支架质量为M,置于粗糙水平地面上,转轴O处有一长为L 的轻杆,杆的另一端固定一个质量为m的小球,使小球在竖直平面内做圆周运动,支架保持静止。若小球恰好能够到达最高点做圆周运动,求此时地面对支架的支持力。

(三)如图,两个质量均为m的小木块AB叠放在转盘上,各个接触面间的动摩擦因数均为μ。若AB同时随圆盘一起做匀速圆周运动,角速度为ω,且其到转盘圆心的距离为R。

(1)求物块B与转盘间的摩擦力大小f

1

(2)求物块B与物块A间的摩擦力大小f2

(3)若转盘转速越来越大,请判断是B与转盘先发生相对滑动?还

是A与B先发生相对滑动?

(四)“双星”是由两颗绕着共同的中心旋转的恒星组成,两恒星都在做匀速圆

周运动。对于其中一颗恒星来说,另一颗就是其“伴星”。双星运动有如下特点:

1.两颗恒星与旋转中心时刻三点共线,即两颗恒星角速度相同,周期相同。

2.两恒星之间万有引力分别提供了两恒星的向心力,即两颗恒星受到的向心力

大小相等。

3.两颗恒星做圆周运动的半径分别为r1、r2,恒星间距离为l。即r1+r2= l

例题1:已知两双星的质量m1、m2,他们之间的距离为L,求两双星各自圆周运动的半径r1和r2?

例题2:两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为L,其运动周期为T,求两星的总质量。(引力常量为G)

牛顿运动定律在连接体问题中的应用g3

牛顿运动定律在连接体问题中的应用 1.两物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水 平面上,如图1-26所示,对物体A 施于水平推力F ,则物体 A 对物体 B 的作用力等于: A. m 1F /(m 1+m 2) B. m 2F /(m 1+m 2) C. F D. m 1F /m 2 2.如图1-27所示,在倾角为θ的斜面上有A 、B 两个长方形物块,质量分别为m A 、m B ,在平行于斜面向上的恒力F 的推动下,两物体一起沿斜面向上做加速运 动。A 、B 与斜面间的动摩擦因数为μ。设A 、B 之间的相互作用为 T ,则当它们一起向上加速运动过程中: A. T =m B F /(m A +m B ) B. T=m B F /(m A +m B )+m B g (Sin θ+μCos θ) C. 若斜面倾角θ如有增减,T 值也随之增减。 D. 不论斜面倾角θ如何变化(0?≤θ<90?),T 值都保持不变。 3. n 个质量均为m 的木块并列地放在水平桌面上,如图1-43所示,木块与桌面间的动摩擦因数为μ。当木块受到水平力F 的作用向右做匀加速运动时,木块3对木块4的作用力大小是多少? 4.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示。设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终 保持图示姿态。在箱子下落过程中,下列说法正确的是 A .箱内物体对箱子底部始终没有压力 B .箱子刚从飞机上投下时,箱内物体受到的支持力最大 C .箱子接近地面时,箱内物体受到的支持力比刚投下时大 D .若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 5.如图所示,物体A B C 放在光滑水平面上用细线a b 连接,力F 作用在A 上,使三物体在水平面上运动,若在B 上放一小物体D,D 随B 一起运动,且原来的拉力F 保持不变,那么加上物体 D 后两绳中拉力的变化是 A.T a 增大 B.T b 增大 C.T a 变小 D.T b 不变 A B C F a b

抛体运动与圆周运动 专题卷(全国通用)

物理二轮抛体运动与圆周运动专题卷(全国通用) 一、单项选择题 1.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为(B) A.西偏北方向,1.9×103 m/s B.东偏南方向,1.9×103 m/s C.西偏北方向,2.7×103 m/s D.东偏南方向,2.7×103 m/s 解析:设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1v cos30°,代入数据解得v2≈1.9×103 m/s.选项B正确. 2.(2017·新课标全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球

网,速度较小的球没有越过球网.其原因是(C) A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 解析:发球机从同一高度水平射出两个速度不同的乒乓球,根据 平抛运动规律,竖直方向上,h=1 2gt 2,可知两球下降相同距离h所 用的时间是相同的,选项A错误;由v2y=2gh可知,两球下降相同距离h时在竖直方向上的速度v y相同,选项B错误;由平抛运动规律,水平方向上,x=v t,可知速度较大的球通过同一水平距离所用的时间t较少,选项C正确;由于做平抛运动的球在竖直方向的运动为自由落体运动,两球在相同时间间隔内下降的距离相同,选项D 错误. 3.(2018·山东潍坊统一考试)如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离 为x,v水与x的关系为v水=3 400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法中正确的是(B) A.小船渡河的轨迹为直线 B.小船在河水中的最大速度是5 m/s C.小船在距南岸200 m处的速度小于其在距北岸200 m处的速

圆周运动中的临界问题和周期性问题

圆周运动中的临界问题和周期性问题 一、圆周运动问题的解题步骤: 1、确定研究对象 2、画出运动轨迹、找出圆心、求半径 3、分析研究对象的受力情况,画受力图 4、确定向心力的来源 5、由牛顿第二定律r T m r m r v m ma F n n 222)2(π ω====……列方程求解 二、临界问题常见类型: 1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有 绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题 1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少? 2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题: 汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度 gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力. 例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。今给小物体一个水平初速度0v = ) A.沿球面下滑至 M 点 B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动 3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题 物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态. (一)轻杆模型 如图所示,轻杆一端连一小球,在竖直面内作圆周运动. (1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =. (2) 当0v << mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

高中物理—连接体运动问题

连接体运动问题的讨论 “连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。 在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法”和“隔离法”。 教师可以采用下列这样一个既简单又典型的“连接体运动”例题,给学生讲解两种解题方法。 如图1-15所示:把质量为M 的的物体放在光.滑.的水平.. 高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大? ⒈ “整体法”解题 采用此法解题时,把物体M 和m 看作一个整.体.,它们的总质量为(M+m )。把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。 现将牛顿第二定律用于本题,则可写出下列关系式: mg=(M+m)a 所以物体M 和物体m 所共有的加速度为: g m M m a += ⒉ “隔离法”解题 采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相互..作用力T 必须标出,而且对M 和m 单独..来看都是外力..(如图1-16所示)。 根据牛顿第二定律对物体M 可列出下式: T=M a ① 根据牛顿第二定律对物体m 可列出下式: mg-T=m a ② 将①式代入②式: mg-Ma=ma mg=(M+m)a

所以物体M 和物体m 所共有的加速度为: g m M m a += 最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。 如果学生能不在老师提示的情况下独立地导出:g m M m M a +-=,就表明学生已经初步地掌握了“连接体运动的解 题方法了。(如果教师是采用小测验的方式进行考察的,还可 统计一下:采用“整体法”解题的学生有多少?采用“隔离法” 解题的学生有多少?从而了解学生的思维习惯。)” ⒈ 既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢? 这有两方面的原因: ①采用“整体法”解题只能求加速度a ,而不能直接.... 求出物体M 与m 之间的相互作用力T 。采用“隔离法”解联立方程,可以同时解出a 与T 。因此在解答比较复杂的连接体运动 问题时,还是采用“隔离法”比较全面。 ②通过“隔离法”的受力分析,可以复习巩固....作用力和反作用力的性质,能够使学生加深对“牛顿第三定律”的理解。 ⒉ 在“连接体运动”的问题中,比较常见的连接方式.... 有哪几种? 比较常见的连接方式有三种: ①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。在“抛砖引玉”中所举的两个例题就属于这种连接方式。 ②两个物体通过“摩擦力”连接在一起。 ③两个物体通互相接触推压连接在一起,它们间的相互作用力是“弹力”。 ⒊ “连接体运动”问题是否只限于两个物体的连接? 不是。可以是三个或更多物体的连接。在生活中我所见的一个火车牵引着十几节车厢就是实际的例子。但是在中学物理解题中,我们比较常见的例题、习题和试题大多是两个物体构成的连接体。只要学会解答两个物体构成的连接体运动问题,那么解答多个物体的连接体运动问题也不会感到困难,只不过列出的联立方程多一些,解题的过程麻烦一些。 例题1: 如图1-18所示:在光滑的水平桌面上放一物体A ,在A 上再放一物体B ,物体A 和B 间 有摩擦。施加一水平力F 于物体B ,使它相对于桌 面向右运动。这时物体A 相对于桌面 A. 向左运 B. 向右运 C. 不动 D. 运动,但运动方向不能判断。

主题三抛体运动和圆周运动

主题三 抛体运动与圆周运动 (第1课时 运动的合成与分解) Ⅰ.考点解读 [考纲要求] 1.认识认识曲线运动的性质和物体做曲线运动的条件。 2.理解和掌握运动的合成和分解的规律和方法。 [要点精析] 一、曲线运动 1.物体做曲线运动的条件: ⑴物体具有初速度; ⑵一定受到合外力的作用; ⑶合外力的方向必需与速度的方向不在同一直线上. 2.曲线运动的速度方向: ⑴在某时刻(或某位置)的速度方向沿着运动轨迹的切线方向; ⑵曲线运动的速度方向时刻改变. 3.曲线运动的运动性质: ⑴曲线运动所受合力不为零,故曲线运动是 变速 运动; ⑵曲线运动物体受的合力(或加速度)的方向总是指向运动轨迹曲线的内侧.当合力与速 度方向夹角小于900时,速度增加;当合力与速度方向夹角大于900时,物体运动的速度减小。 二、运动的合成与分解 1.合运动与分运动:在物理学上,如果一个物体实际发生的运动产生的效果跟另外两个运动共同产生的效果相同,我们就把这一物体实际发生的运动叫做这两个运动的合运动;这两个运动叫做这一实际运动的分运动. 2.合运动与分运动的特性: ⑴分运动具有独立性:一个物体同时参与几个分运动.任一个分运动的存在,对其它分运动的规律没有干扰和影响; ⑵分运动与合运动具有等时性:合运动与分运动是在同一时间内进行的,即经历时间相等; ⑶分运动与合运动具有等效性:合运动跟几个分运动共同叠加的效果相同。 3.运动的合成与分解: ⑴求几个已知分运动的合运动的过程叫运动的合成 ;已知合运动求分运动的过程叫运动的分解; ⑵运动的合成与分解包括位移、速度、加速度的合成与分解; ⑶位移、速度、加速度的合成与分解,都遵循平行四边形定则. 三、方法与思路 1.结合曲线运动的条件正确理解力和运动的关系: ⑴若0=合F (即0=a ),则物体静止或做匀速直线运动; ⑵若0≠合F (即0≠a ),且与0v 同一直线,则物体做变速直线运动:

高三物理 抛体运动和圆周运动二轮专题复习:1.运动的合成与分解Word版含解析

1.运动的合成与分解 一、基础知识 1.物体做曲线运动的条件:F合与v不共线. 2.研究曲线运动的方法:运动的合成与分解. 3.运动的合成与分解的运算法则:平行四边形定则或三角形定则. 4.合运动与分运动的三个特性:等时性、独立性、等效性. 5.特别注意:合运动就是物体的实际运动. 二、解决运动的合成与分解的一般思路 1.明确合运动或分运动的运动性质. 2.确定合运动是在哪两个方向上的合成或分解. 3.找出各个方向上已知的物理量(速度、位移、加速度等). 4.运用力与速度的关系或矢量的运算法则进行分析求解. 三、典型例题 考点1 运动的合成与分解的理解 [例1] 如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成θ角的斜面向右上以速度v匀速运动,运动中始终保持悬线竖直,橡皮的速度方向与水平方向的夹角为α,则( ) A.若θ=0,则α随钉尖的速度v的增大而增大 B.若θ=0,则α随钉尖的速度v的增大而减小 C.若θ=45°,钉尖的速度为v,则橡皮速度为22v D.若θ=45°,钉尖的速度为v,则橡皮速度为2+2v 解析若θ=0,则橡皮的运动可视为水平方向随钉尖一起匀速,竖直方向细线的缩短长度等于水平方向细线增加的长度,即竖直方向也做与钉尖运动速率相同的匀速运动,所以橡皮的速度方向与水平方向的夹角α=45°,与钉尖的速度v无关,选项A、B错;若θ=45°, 钉尖的速度为v,则橡皮在水平方向的分速度为 2 2 v,而在t时间内沿竖直方向向上运动的距 离为y=vt+ 2 2 vt,即竖直方向的分速度为 ? ? ? ? ? 1+ 2 2 v,所以橡皮速度为2+2v,C错、D

高中物理专题牛顿运动定律的应用(连接体)

牛顿运动定律的应用(连接体问题1) 目标:1、受力分析; 2、对象选择; 3、牛顿运动定律的综合应用; 例1. 如图所示,光滑的水平桌面上有一物体A ,通过绳子与物体B 相连,假设绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长。如果A B m m 3 ,则物体A 的加速度大小等于( ) A .g 3 B .g C . g 43 D .2 g 变式1、有一均匀的细软链放在光滑水平桌面上,当它的一端稍露出桌面边缘垂下时(如图所示),整个链的运动是( ) A. 保持静止 B. 匀速下降 C. 匀加速下降 D.变加速下降 加速度如何变化? 例2.质量分别为M 和m 的两物体靠在一起放在光滑水平面上.用水平推力F 向右推M ,两物体向右加速运动时,M 、m 间的作用力为N 1;用水平力F 向左推m ,使M 、m 一起加速向左运动时,M 、m 间的作用力为N 2,如图甲、乙所示,则 ( ) A .N 1︰N 2=1︰1 B .N l ︰N 2=m ︰M C .N 1︰N 2=M ︰m D .无法比较N 1、N 2的大小 甲 乙

变式2、如图所示,质量为2m 的物体A ,质量为m 的物体B 放在水平地面上,A 、B 与地面间的动摩擦因数为μ,在已知水平推力F 的作用下,A 、B 做匀加速直线运动,则A 对B 的作用力多大? 变式3.质量分别为m 和2m 的物块A 、B 用轻弹簧相连,设两物块与接触面间的动摩擦因数都相同.当用水平力F 作用于B 上且两物块在粗糙的水平面上共同向右加速运动时,弹簧的伸长量为x 1,如图4甲所示;当用同样大小的力F 竖直共同加速提升两物块时,弹簧的伸长量为x 2,如图乙所示;当用同样大小的力F 沿固定斜面向上拉两物块使之共同加速运动时,弹簧的伸长量为x 3,如图3-1-14丙所示,则x 1∶x 2∶x 3等于 ( ) A .1∶1∶1 B .1∶2∶3 C .1∶2∶1 D .无法确定 例3.如图所示,底座A 上装有长0.5m 的直立杆,总质量为0.2kg ,杆上套有质量为0.05kg 的小环B ,它与杆之间有摩擦。若环从底座上以4m/s 的速度飞起,则刚好能到达杆顶。求小环在升起和下落的过程中,底座对水平面的压力和所需要的时间。(g 取2 /10s m ) 方法总结:

第三章 《抛体运动》全章测试题

第三章 《抛体运动》全章测试题 一、选择题:(共10小题,每小题4分,共40分) 1.一质点在某段时间内做曲线运动,则在这段时间内 ( ) A .速度一定在不断地改变,加速度也一定在不断地改变 B .速度一定在不断地改变,加速度可以不变 C .速度可以不变,加速度一定在不断改变 D .速度和加速度都可以不变 2.如图3-3所示,质点通过位置P 时的速度、加速度及P 附近的一段轨迹都在图上标出,其中可能正确的是 ( ) A .①② B .③④ C .①③ D .②④ 3.下列说法中错误的是 ( ) A .两个分运动是直线运动,则它们的合运动也一定是直线运动 B .两个分运动是匀速直线运动,则它们的合运动也一定是匀速直线运动 C .两个分运动是初速度为零的匀加速直线运动,则它们的合运动也一定是初速度为零的 匀加速直线运动 D .两个分运动是初速度不为零的匀加速直线运动,则它们的合运动可能是匀加速曲线运 动 4.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去的速度为v 1,摩托艇在静水中的速度为v 2,如图3-4所示.战士救人地点A 离岸边最近处的距离为d .如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 ( ) 图3-3 ③ ④ ① ② A O 图3-4

A . 21 22 2v v dv B .0 C .21/v dv D .12/v dv 5.一个小孩在蹦床上做游戏,他从高处落到蹦床上后,又被弹起到原高度.小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图3-5所示.图中oa 和cd 段为直线.则根据此图象可知,小孩和蹦床相接触的时间为( ) A .t 2~t 4 B .t 1~t 4 C .t 1~t 5 D .t 2~t 5 6.从距地面高为h 处水平抛出质量为M 的小球,小球落地点与抛出点的水平距离刚好等于h .不计空气阻力,抛出小球的速度大小为( ) A .2/gh B .gh C .gh 2 D .gh 3 7.甲、乙两球在同一时刻从同一高度,甲球水平抛出,乙球自由下落.则下列说法中正确的是( ) A .甲球先落到地面 B .落到地面时两球的速率一样大 C .落到地面时两球的速度方向相同 D .两球的加速度相同,且同时落到地面上 8.在距水平地面不同高度以相同的水平初速度分别抛出甲、乙两物体,若两物体由抛出点到落地点的水平距离之比为1:3,则甲、乙两物体抛出点到地面的高度之比为( ) A .1:1 B .2:1 C .3:1 D .4:1 9.消防队员手持水枪灭火,水枪跟水平面有一仰角.关于水枪射出水流的射高和射程下列说法中正确的是( ) A .初速度大小相同时,仰角越大,射程也越大 图3-5

圆周运动中的临界问题

第 1 页 图 4 圆周运动中的临界问题 1、在竖直平面内作圆周运动的临界问题 ⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情 况 ① 临界条件:绳子或轨道对小球没有力的作用 v 临界= Rg ② 能过最高点的条件:v ≥ Rg ,当 v > Rg 时,绳对球产生拉力,轨道对球产 生压力。 ③ 不能过最高点的条件:v Rg ,N 为拉力,有 N >0,N 随 v 的增大而增大 例 1 (99 年高考题)如图 4 所示,细杆的一端与一小球相连,可绕过 O 的水平轴自 由转动。现给小球一初速度,使它做圆周运动。图中 a 、b 分别表示小球轨道的最低点和 最高点,则杆对球作用力可能是 ( ) A 、a 处为拉力,b 处为拉力 B 、a 处为拉力,b 处为推力 C 、a 处为推力,b 处为拉力 D 、a 处为推力,b 处为推力 图 1 图 2 图 3 b a

例 2 长度为L =0.5m 的轻质细杆OA,A 端有一质量为m= 3.0kg 的小球,如图 5 所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s, g 取10m /s2,则此时细杆OA 受到() A、6.0N 的拉力 B、6.0N 的压力 C、24N 的拉力 D、24N 的压力 例3 长L=0.5m,质量可以忽略的的杆,其下端固定于O 点,上端 图5 连接着一个质量m=2kg 的小球A,A 绕O 点做圆周运动(同图5), 在 A 通过最高点,试讨论在下列两种情况下杆的受力: ①当 A 的速率v1=1m/s 时 ②当 A 的速率v2=4m/s 时 2、在水平面内作圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力 存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。 例 4 如图 6 所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30 °与45 °,问球的角速度在 什么范围内,两绳始终张紧,当角速度为 3 rad/s 时,上、下两绳拉力分 别为多大? 图6

《牛顿运动定律》专题二:连接体问题

科目:物理 课堂教学导学案课题:专题:连接体问题 高一年级主备人: 时间: 2020年12月29日任课教师 【学习目标】: 1.知道连结体问题。 2.理解整体法和隔离法在动力学中的应用。 3. 初步掌握连结体问题的求解思路和解题方法。 【学习重点】:连结体问题。 【学习难点】:连结体问题的解题思路。 【主要内容】: 在研究力和运动的关系时,经常会涉及到相互联系的物体之间的相互作用,这类问题称为“连结体问题”。连结体一般是指由两个或两个以上有一定联系的物 体构成的系统。 一、连接体的链接类型 ①用绳连接类 ②直接接触类 ③靠摩擦接触类 二、处理方法:整体法和隔离法 1、整体法:当系统中各物体的加速度相同时,我们把整个系统内的所有物体看成一个整体, 这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可由牛顿第二定律列方程求出整体的加速度,这种处理问题的思维方法叫做整体法。 注意:此方法一般适用于系统中各部分物体的加速度大小、方向相同的情况 2、隔离法:求系统内物体间相互作用的内力时,常把某个物体从系统中“隔离”出来,作为一个单独的研究对象进行受力分析,依据牛顿第二定律列方程,这种处理连接体问题

的思维方法叫隔离法 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同的情况均适用。 3、整体法和隔离法的选择 求各部分的加速度相同的连接体的加速度或合外力时,优先考虑整体法;如果还要求各部分间的作用力,则用隔离法,要求哪个面上的作用力,就从哪个作用面将物体进行隔离;如果连接体中各部分加速度不同,一般都是选用隔离法。 4、处理连接体问题,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力 三、关于连接体的两类问题 1、连接体中各物体均处于平衡状态 (例: 连接体匀速运动) 2 、各物体具有相同的加速度或相同大小的加速度 (例: 一起向右加速运动 ) (例:A.B 的一起以相同大小的加速度运动) 四、典例分析 例1. 连接体中各物体均处于平衡状态 例2、已知作用于A 的向右的推力大小为F=10N ,地面光滑。 A 、B 的质量各为1kg 、2kg 求(1)A 、B 之间的弹力多大? (2)若A 、B 与地之间的动摩擦因数为μ=0.2,则A 、B 之间弹力多大? 【拓展思考】:如F=10N 从右向左推B. 结果又会怎样?请计算说明 【例3】如图,A 与B ,B 与地面的动摩擦因数都是μ,物体A 和B 相对静止,在拉力F 作用向右做匀加速运动,A 、B 的质量相等,都是m ,求物体A 受到的摩擦力。 A B H F A B F A B

连接体问题专题详细讲解

连接体问题一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。 针对训练 1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。 (1)斜面光滑; (2)斜面粗糙。 〖解析〗解决这个问题的最好方法是假设法。即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力。若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。 〖答案〗 (1)斜面光滑杆既不受拉力,也不受压力 (2)斜面粗糙μA>μB杆不受拉力,受压力 斜面粗糙μA<μB杆受拉力,不受压力 类型二、“假设法”分析物体受力 【例题2】在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化?(提示:令T不为零,用整体法和隔离法分析)()

专题3:牛顿运动定律与连接体资料

牛顿运动定律与连接体 【知识回顾】 1、整体法与隔离法的应用条件: 2、三角形法的应用技巧: 3、正交分解法: 【课程教学】 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和内力 1.如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而 系统内各物体间的相互作用力为内力。 2.应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些 内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法 连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法 如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 四、简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。

3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。 【典例分析】 类型一、“整体法”与“隔离法” 例1.如图所示,A、B两个滑块用短细线(长度可以忽略)相连放在斜面上,从静止开始共同下滑,经过0.5s,细线自行断掉,求再经过1s,两个滑块之间的距离。已知:滑块A的质量为3kg,与斜面间的动摩擦因数是0.25;滑块B的质量为2kg,与斜面间的动摩擦因数是0.75;sin37°=0.6,cos37°=0.8。斜面倾角θ=37°,斜面足够长,计算过程中取g=10m/s2。 〖解析〗设A、B的质量分别为m1、m2,与斜面间动摩擦因数分别为μ1、μ2。细线未断之前,以A、B整体为研究对象,设其加速度为a,根据牛顿第二定律有 (m1+m2)g sinθ-μ1m1g cosθ-μ2m2g cosθ=(m1+m2)a,a=g sinθ- 1122 12 ()cos m m g m m μμθ + +=2.4m/s2。 经0.5 s细线自行断掉时的速度为v=at1=1.2m/s。细线断掉后,以A为研究对象,设其加 速度为a1,根据牛顿第二定律有:a1= 111 1 sin cos m g m g m θμθ - =g(sinθ-μ1cosθ)=4m/s2。 滑块A在t2=1 s时间内的位移为x1=vt2+ 2 12 2 a t , 又以B为研究对象,通过计算有m2g sinθ=μ2m2g cosθ,则a2=0,即B做匀速运动,它在 t2=1 s时间内的位移为x2=vt2,则两滑块之间的距离为Δx=x1-x2=vt2+ 2 12 2 a t -vt2= 2 12 2 a t =2m 练习1、如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。

抛体运动 知识要点

抛体运动知识要点 一、匀变速直线运动的特征和规律: 匀变速直线运动:加速度是一个恒量、且与速度在同一直线上。 基本公式:、、 (只适用于匀变速直线运动)。 当v0=0、a=g(自由落体运动),有 v t=gt 、、、。 当V0竖直向上、a= -g(竖直上抛运动)。 注意:(1)上升过程是匀减速直线运动,下落过程是匀加速直线运动。 (2)全过程加速度大小是g,方向竖直向下,全过程是匀变速直线运动 (3)从抛出到落回抛出点的时间:t总= 2V0/g =2 t上=2 t下 (4)上升的最大高度(相对抛出点):H=v02/2g (5)*上升、下落经过同一位置时的加速度相同,而速度等值反向 (6)*上升、下落经过同一段位移的时间相等。 (7)*用全程法分析求解时:取竖直向上方向为正方向,S>0表示此时刻质 点的位置在抛出点的上方;S<0表示质点位置在抛出点的下方。v t >0表示方向向上;v t <0表示方向向下。在最高点a=-g v=0。 二、运动的合成和分解: 1.两个匀速直线运动的物体的合运动是___________________运动。一般来说,两个直线运动的合运动并不一定是____________运动,也可能是_____________运动。合运动和分运动进行的时间是__________的。 2.由于位移、速度和加速度都是______量,它们的合成和分解都按照_________法则。 三、曲线运动: 曲线运动中质点的速度沿____________方向,曲线运动中,物体的速度方向随时间而变化,所以曲线运动是一种__________运动,所受的合力一定. 必具有_________。物体做曲线运动的条件是________ ________ 。 四、平抛运动(设初速度为v0): 1.特征:初速度方向____________,加速度____________。是一种。。。2.性质和规律: 水平方向:做______________运动,v X=v0、x=v0t。 竖直方向:做______________运动,v y=gt=、y=gt2/2=。 合速度:V= ,合位移S= 。 3.平抛运动的飞行时间由决定,与无关。 五、斜抛运动(设初速度为v0,抛射角为θ):

【高考速递】突破9 牛顿运动定律的应用之用整体法、隔离法巧解连接体问题-热点专题突破(Word版含解析)

突破9 牛顿运动定律的应用之用整体法、隔离法巧解连接体问题 1.连接体的分类 根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。 (1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起; (2)弹簧连接:两个物体通过弹簧的作用连接在一起; (3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。 2.连接体的运动特点 轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。 轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。 轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。 特别提醒 (1)“轻”——质量和重力均不计。 (2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。 3.连接体问题的分析方法 (1)分析方法:整体法和隔离法。 (2)选用整体法和隔离法的策略: ①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法; ②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。 4. 整体法与隔离法的选用方法 (1)整体法的选取原则 若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。当系统内物体的加速度相同时: ;否则。 (2)隔离法的选取原则

若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解. (3)整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”. 【典例1】如图所示,两个质量分别为m1=3 kg、m2=2 kg的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。两个大小分别为F1=30 N、F2=20 N的水平拉力分别作用在m1、m2上,则() A.弹簧测力计的示数是50 N B.弹簧测力计的示数是24 N C.在突然撤去F2的瞬间,m2的加速度大小为4 m/s2 D.在突然撤去F2的瞬间,m1的加速度大小为10 m/s2 【答案】B 【典例2】(多选)如图所示,质量分别为m A、m B的A、B两物块用轻质弹簧连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉B物块,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为了减小弹簧的形变量,可行的办法是() A.减小A物块的质量 B.增大B物块的质量 C.增大倾角θ D.增大动摩擦因数μ

连接体运动的速度分解总结

课题:速度关联类问题求解·速 度的合成与分解 典型例题问题点 知识点:关联体 1、关联体和关联体运动的感念:关联体一般是由两个(或两个以上)的物体由轻绳或者轻杆联系在一起,或直接挤压在一起,它们的运动简称关联运动。 2、关联速度分解的步骤: ○1确定合运动的方向:物体运动的实际方向就是合运动的方向即合速度的方向。 ○2确定合运动的效果:一是沿牵引力方向的平动效果,改变速度的大小,而是垂直牵引力方向的转动效果,改变速度的方向。 ○3将合运动按转动,平动的分解,确定合速度与分速度的大小关系。 3、绳连接的物体的速度的关联问题分解时,首先要确定分解那个物体的速度(分解○ 不○ 沿○ 绳子运动的那个物体的速度)然后找准这个物体的合运动(实际运动)的方向。最后按照产生的两个实际效果的方向(沿绳子方向和垂直绳子方向)分解。 4、等量关系的建立: (1)根据沿绳(或者杆)方向的分速度的大小相等建立等量关系(2)相互接触挤压物体的速度关联问题时,根据两物体沿弹力方向的速度相等(接触点处的相对速度为零所以速度相等)建立等量关系。典例(1)只需分解一个物体的速度的绳的关联 [例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大? (2)需要分解连 个物体的绳的关 联 [例2](★★★) 如图5-1所示,A、 B两车通过细绳 跨接在定滑轮两 侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少? (3)杆的关联问题 [例3 ](★★★ ★★)如图5-9所 示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速度为a B,杆与竖直夹角为α,求此时A球速度和加速度大小 (4)相互接触挤压物体的关联问题 [例4 ](★★★★★)一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图 5-7所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,小球A的线速度v A (此时杆与水平方向夹角为θ) 完成时间完成质 量家长确认抽查反 馈 图 图

高考物理二轮复习专题抛体运动和圆周运动圆周运动问题学案

3.圆周运动问题 一、基础知识 1.解决圆周运动力学问题的关键 (1)正确进行受力分析,明确向心力的来源,确定圆心以及半径. (2)列出正确的动力学方程F =m v 2r =mr ω2 =m ωv =mr 4π2 T 2.结合v =ωr 、T =2πω=2πr v 等 基本公式进行求解. 2.抓住“两类模型”是解决问题的突破点 (1)模型1——水平面内的圆周运动,一般由牛顿运动定律列方程求解. (2)模型2——竖直面内的圆周运动(绳球模型和杆球模型),通过最高点和最低点的速度常利用动能定理(或机械能守恒)来建立联系,然后结合牛顿第二定律进行动力学分析求解. 3.竖直平面内圆周运动的两种临界问题 (1)绳球模型:小球能通过最高点的条件是v ≥gR . (2)杆球模型:小球能通过最高点的条件是v ≥0. 二、典型例题 考点1 水平面内的圆周运动问题 [例1] (多选)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上, a 与转轴OO ′的距离为l , b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重 力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .ω= kg 2l 是b 开始滑动的临界角速度 D .当ω= 2kg 3l 时,a 所受摩擦力的大小为kmg 解析 本题从向心力来源入手,分析发生相对滑动的临界条件.小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =m ω2 R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =m ω2 a l ,当f a =kmg 时,即kmg =m ω2 a l ,ωa

连接体模型

专题一 牛顿第二定律的应用——连接体模型 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体隔离出来,该物体 即为 。 二、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的 相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔 离体的 力。 三、连接体问题的分析方法 1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。运用 列方程求解。 2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此 法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方 法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 【典型例题】 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A. F m m m 211+ B.F m m m 2 12 + D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度(2)为了保持人与斜面相对静止, 木板运动的加速度是多少 【针对训练】

相关主题
文本预览
相关文档 最新文档