当前位置:文档之家› 磁性材料基础知识

磁性材料基础知识

磁性材料基础知识
磁性材料基础知识

磁性材料基础知识(入门)

磁性材料:

概述:磁性是物质的基本属性之一。磁性现象是与各种形式的电荷运动相关联的,由于物质

内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。一切物质都具有磁性。自然界的

按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物

质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。

1.磁性材料的分类,性能特点和用途:

铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物。他们大多具有亚铁磁性。特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。饱和磁化强度低,不适合高磁密度场合使用。居里温度比较低。

2 铁磁性材料:

指具有铁磁性的材料。例如铁镍钴及其合金,某些稀土元素的合金。在居里温度以下,加外磁时材料具有较大的磁化强度。

3 亚铁磁性材料:

指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。

4 永磁材料:

磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。可分为三类,金

属永磁,例,铝镍钴,稀土钴,铷铁硼等。

铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。

5软磁材料:

容易磁化和退磁的材料。锰锌铁氧体软磁材料,其工作频率在1K-10M之间。镍锌铁氧体软磁材料,工作频率一般在1-300MHZ

6.金属软磁材料:

同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。

术语:

1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。

2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。

3 磁通密度矫顽力,他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度,使磁感应强度B减小到0时的磁感应强度。

4 内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度。

5 磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积。

6 起始磁导率:磁性体在磁中性状态下磁导率的极限值。

7 损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交

变磁场的每周期中,损耗能量与储存能量的2派之比。

8 比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。

9 温度系数:在两个给定温度之间,被测的变化量除以温度变化量。

10 磁导率的比温度系数:磁导率的温度系数与磁导率的比值。

11 居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态

(或亚铁磁状态)转变为顺磁状态的临界温度。

磁性材料的命名方法:

由4部分组成:

1 材料类别:以汉语拼音的第一个字母表示:

R—软磁,Y—永磁,X ---旋磁,J---矩磁,A---压磁。

2 材料的性能,用数字表示。

3 材料的特征以汉语拼音表示。

4 序号。

第三部分的特征代号:(仅限于软磁材料)

Q—高Q B—高BS U—宽温度范围X—小温度系数 H—低磁滞损耗

F—高使用频率D—高密度T—高居里温度 Z—正小温度系数

铁氧体零件的命名方法:

1 零件的用途和形状,以拼音或英文表示。

2 区别第一部分相同而形状不同的零件,以汉语拼音字母表示。

3 零件的规格,以零件的特征尺寸或序号表示。

4 材料牌号,零件的等级或使用范围。

常用磁环的实测数据:

在以下测试中,均以401ALCR测试仪SER/1KHZ档常温测试,以0.1*15芯30cm导线平绕3圈测得值。各取样本10个取平均值,可供参考。

30*18*12磁环:

电感量平均值为:99.5mh 最大正误差:+25% 最大负误差:-36.5% Q平均值为:19.8 最大正误差:+22%最大负误差:-27.5%

48*28*12铁环:

电感量平均值为:584uh 最大正误差:+10% 最大负误差:-17% Q平均值为:0.633 最大正误差:+10%最大负误差:-10.4%

58*38*12铁环:

电感量平均值为:381uh 最大正误差:+11% 最大负误差:-14.7% Q平均值为:0.714 最大正误差:+11%最大负误差:-8.8%

磁环工艺特性试验:(1999年12月5日)

在本例试验中采用58*38*12铁环10 个批量跟踪试验的方法,求出磁环在浸漆,高温,等情况下对性能的影响。(0.15*15 3扎,ser/1khz )

1 浸漆前:时间:10:00 电感平均值:381.23uh Q平均值:0.7142

2浸漆后:时间:14:00电感平均值:391.99uh Q平均值:0.7071

3 高温65度:时间:15:30电感平均值:393.21uh Q平均值:0.7024

4 复测:时间:16:40电感平均值:392.64uh Q平均值:0.7067

Mn-Zn铁氧体的温度稳定性

高精尖特别是高靠的工程技术要求有高的温度稳定性。

1:要获得有温度稳定性的软磁材料,通常采用过铁的配方,当Fe2O3的含量控制在53.2mol%时,可以获得很好的温度稳定性;且通过适当的控制Fe2+和Co2+的比例,可以获得到多个K1补偿点,在较宽温度范围内得到平坦的μ~T的曲线。另外,在一定的温度范围内,因Ti4+的进入及梯度分布将使各区域的μ~T的曲线的两个极大值位置在晶体内部各处不同,叠加起来就导致了μ~T曲线平坦。但是若晶粒尺寸增大,将使Ti4+梯度不明显,晶界也相对变薄,降低了这种

不均匀的分布。就会增强μ~T的曲线两峰值的尖锐度,从而材料的温度特性变坏。

2:烧结温度和氛围是影响铁氧体性能的一个关键环节,严格控制烧结温度和氛围,使Fe2+保持在一定的范围,也是降低温度系数的方法之一。另外,铁氧体的微观结构与材料稳定性冶游

密切的关系。一般情况下,晶粒均匀一致,气孔少而分布散的材料,温度特性较好,而晶粒大小

不均、有双重结构、巨晶内部有气孔的材料,由于畴壁的阻力较大,在μ~T曲线上出现相当大的凹谷,温度稳定性较差。

除了Fe2+、Co2+、Ti4+能改善μ~T特性外。还可以用掺入AL2O3和Cr2O3的方法来降低温度系数。

另外,大家都知道,铁氧体由金属氧化物通过一定的配比组成,所以,一价和二价的金属氧

化物杂质加到基本物料中将引起Fe2+含量的减少;而三价和四价氧化物的加入,将使Fe2+增加。因此,要获得低的温度系数材料,从配方上考虑应该采用过铁配方。

~~~~各种电感特性~~~~

1:工字型电感;

2:色环电感;

3:空芯电感:

4:环形线圈电感;

5:贴片叠层高频电感;

6:磁棒电感;

7:SMD贴片功率电感;

8:穿心磁珠

9:贴片磁珠;

10:贴片高频变压器,插件高频变压器;

所列出來的電感,各式各樣, 我不知道有沒有人這樣想過,甚或自己嘗試解答過. 為什麼有各式各樣的電感? 歸納整理,我認為是應用,物理,技術,材料,製程,成本,…等等妥協後的產物. 現時出現在市面上的產品,是綜合以上妥協後,一時一地的最佳化產品.

請留意我說”一時一地”這四個字,這意味著現時的產品,全都不是極致的產品! 這代表我們發展的空間是無限寬廣的, 只要我們肯用心瞭解,用心去研究,更佳化的產品將陸續出現,

我舉一例子,客戶希望最有效利用空間,他們最喜歡方形形狀的產品. 而電感的中軸,我們最方便,最有效的製程形狀是圓形. 如何將圓形的東西放在方形的空間,發揮最大的效果,這就是妥協!

1:工字型電感;

它的前身是撓線式貼片電感,工字型電感是它們的改良, 擋板有效加強儲能能力,改變EMI方向和大小,亦可降低RDC. 它亦可說是訊號通訊電感跟POWER電感的一種妥協.

⑴. 貼片式的工字型電感主要用於幾百kHz至一兩MHz的較小型電源切換, 如數位相機的LED升壓,ADSL…等等的較低頻部份的訊號處理或POWER用途. 它的Q值有20,30,做為訊號處理頗為適合.

⑵. RDC比撓線式貼片電感低,作為POWER也是十分好用. 當然,很大顆的工字型電感,那肯定是POWER用途了. 工字型電感最大的缺點,仍是開磁路,有EMI的問題, 另外,噪音的問題比撓線式貼片電感大. 我個人認為,工字型電感肯定不是最佳化的結構, 改良空間仍是十分大,歡迎有興趣的朋友一起研討!

2:色環電感;

色環電感是最簡單的棒形電感的加工,主要是用作訊號處理. 本身跟棒形電感的特性沒有很大的差別,只是多了一些固的物,和加上一些顏色方便分辨感值, 因單價算是十分便宜,現時比較不注重體積,以及仍可用插件的電子產品,使用色環電感仍多. 因為是插件式,而且太傳統了,被時代淘汰是時間的早晚.

3:空芯電感:

空心電感主要是訊號處理用途,用作共振,接收,發射….等等. 空氣可應用在甚高頻的產品,故此很多變異要求不太高的產品仍在使用. 因為空氣不是固定線圈的最佳材料,故此,在要求越來越嚴格的產品趨勢上,發展有限!

4:環形線圈電感;

環形線圈電感,是電感理論中很理想的形狀, 閉磁路,很少EMI的問題,充分利用磁路,容易計算, 幾乎理論上的好處,全歸環形線圈電感, 可是,有一個最大的缺點,就是不好撓線,製程多用人工處理. 現在中國人多,女孩子眼明手細,不過,誰願意讓年青活潑的女孩子浪費青春! 早晚請不到人!

但用機器的話,環形撓線的競爭力,仍有待做機械和電子控制的工程師來提升. 環形線圈電感雖然是電感中很理想的形狀,但因為主要是人工撓線, 作為訊號處理,因為要求較高,所以比較少用. 但很小很小的環形線圈電感,卻仍是用量十分大. 主要是用在高頻,高感的通訊產品上.

環形線圈電感最大量的,是用鐵粉芯作材料,跟樹脂等混在一起. 使得Air gap均勻分佈在鐵粉芯內部, 做電感的,有一定的敏感度,當我們看到Air gap二字,就知道是用在power上. 故此,鐵粉芯環形線圈電感,是power電感最常用的一種. IDC可以達到20多安培.

我覺得,環形線圈電感的改良空間是十分大的,不妨往這方向研發和思考.鐵粉芯環形線圈電感的優點是環形,但缺點亦是環形. 我前便曾說,使用者最喜歡的形狀是方形,故此,在妥協下,環形線圈電感並不是最具優勢.

5:貼片疊層高頻電感;

貼片疊層高頻電感,其實就是空心電感.特性完全相同,不過因為容易固定,可以小型化.

貼片疊層高頻電感跟空心電感比較, 因為空氣不是好的固定物,但空氣的相對導磁率是一,在高頻很好用, 故此,找一些相對導磁率是一,又是很好的固定物,那不是很好. 事實,世間絕大部份的物質,對導磁率都是一, 最便宜的就是石頭. 貼片疊層高頻電感的材質就是石頭. 石頭就是矽啦! 三氧化二鋁等等的材質,也是一樣的用意啦.

總之,貼片疊層高頻電感材質的目的,是可以做成積層貼片,方便印刷線路. 我們不單不希望貼片疊層高頻電感的材質有特性,我們希望它完全沒有特性更佳. 使得貼片疊層高頻電感特性完全

像空心線圈,而且因為能固定,所以變異很小很小, 在製程上,因為疊層製程,更可以儘量小型化.

Z=2*圓週率*頻率*電感值2和圓週率是常數,不管它們. 相同的阻抗,頻率越高,代表電感

值可以越小, 現時通訊產品的頻率就是越來越高, 這代表,感值需求越來越小. 感值越小,代表我們可以做得更小顆,更不用高導磁率的磁性材料,用空氣,用石頭就可以了.

所以,貼片疊層高頻電感的使用量一定會越來越多,這是人類發展的必然趨勢. 貼片疊層高頻電感跟貼片撓線式高頻電感的比較, 貼片疊層高頻電感的Q值不夠高,是最大的缺點, 但我可以確定,現在市面上的貼片疊層高頻電感Q值,肯定不是這產品的極限, 故此,改善的空間仍是十分寬廣.

另外,因為高頻產品的變異要求十分嚴格, 所以,材質對溫度的變化,也是台灣和中國貼片疊層高頻電感,尚無法跟日系強烈對抗的重要原因! 唉! 那些大老闆真不知是吃甚麼長大的,怎麼說他們才會聽! 老是想著殺價! 殺價只是競爭手段之一,為什麼不想想看從技術去提升競爭力呢! 台灣和中國都養了一些非專業的飯桶,更慘的是,他們都是當權者! 我們電感技術怎會進步啊! 我喜歡女孩子嬌嫩潤滑的雙手,我不忍心女孩子都是六指琴魔啊! 最後,因為感值會越來越小,精準度要求越來越高, 貼片疊層高頻電感會取代貼片撓線式高頻電感, 南海十一郎預測, 5年到10年後,貼片薄膜高頻電感,也會取代貼片疊層高頻電感. 研究和市場方向,要抓對啊!

6:磁棒電感;

磁棒電感是空心電感的加強. 電感值跟導磁率成正比, 塞磁性材料進空心線圈,電感值,Q 值…等等都會大為增加. 好處,就自己想像了. 如果想不通,或者不想思考,要早點改行喔!

磁棒電感是最簡單,最基本的電感, 30年到100年前,電感有什麼應用,它就有什麼應用. 特性亦是如是.

7:SMD貼片功率電感;

SMD貼片功率電感最主要是強調儲能能力,以及LOSS要少. 這一部份,我會在以後的講古佬講電感的POWER電感部份,應該會有詳細說明,請期待.

8:穿心磁珠

穿心磁珠,就是阻抗器啦, 電感是低通元件,可讓低頻通過,阻擋高頻, 詳細原理,請參考小弟所作的講古佬講電感前幾章,以及最重要的講古佬講電感—阻抗器.

9:貼片磁珠;

貼片磁珠就是穿心磁珠的下一代啦. 同樣,請參考講古佬講電感的阻抗器篇啦!

10:貼片高頻變壓器,插件高頻變壓器;

电感分类说明

电感元件的分类概述:凡是能产生电感作用的原件统称为电感原件,常用的电感元件有固

定电感器,阻流圈,电视机永行线性线圈,行,帧振荡线圈,偏转线圈,录音机上的磁头,延

迟线等。

1 固定电感器:

一般采用带引线的软磁工字磁芯,电感可做在10-22000uh之间,Q值控制在40左右。

2 阻流圈:

他是具有一定电感得线圈,其用途是为了防止某些频率的高频电流通过,如整流电路的滤波

阻流圈,电视上的行阻流圈等。

3 行线性线圈:

用于和偏转线圈串联,调节行线性。由工字磁芯线圈和恒磁块组成,一般彩电用直流电流 1.5A 电感116-194uh频率:2.52MHZ

4 行振荡线圈:

由骨架,线圈,调节杆,螺纹磁芯组成。一般电感为5mh调节量大于+-10mh.电感线圈的品质因数和固有电容

(1). 电感量及精度: 线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。电感

线圈的用途不同,所需的电感量也不同。例如,在高频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。对振荡线圈要求

较高,为o.2-o.5%。对耦合线圈和高频扼流圈要求较低,允许10—15%。对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的

磁芯位置来实现o

(2). 线圈的品质因数: 品质因数Q用来表示线圈损耗的大小,高频线圈通常为50—300。对调谐回路线圈的Q值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用

低Q值线圈与电容组成的谐振电路,其谐振特性不明显。对耦合线圈,要求可低一些,对高频扼

流圈和低频扼流圈,则无要求。

Q值的大小,影响回路的选择性、效率、滤波特性以及频率的稳定性。一般均希望Q值大,但提高线圈的Q值并不是一件容易的事,因此应根据实际使用场合、对线圈Q值提出适当的要求。

线圈的品质因数为:Q=ωL/R 式中:ω——工作角频;L——线圈的电感量;R——线圈的总损耗电阻线圈的总损耗电阻,它是由直流电阻、高频电阻(由集肤效应和邻近效应引起)介质损耗等所组成。" 为了提高线圈的品质因数Q,可以采用镀银铜线,以减小高频电阻;用多股

的绝缘线代替具有同样总裁面的单股线,以减少集肤效应;采用介质损耗小的高频瓷为骨架,以

减小介质损耗。采用磁芯虽增加了磁芯损耗,但可以大大减小线圈匝数,从而减小导线直流电阻,对提高线圈Q值有利。

(3). 固有电容: 线圈绕组的匝与匝之间存在着分布电容,多层绕组层与层之间,也都存在着分布电容。这些分布电容可以等效成一个与线圈并联的电容Co,如图示。此主题相关图片如下:这个电容的存在,使线圈的工作频率受到限制,Q值也下降。图示的等效电路,实际为一由L、R、和Co组成的并联谐振电路,其谐振频率称为线圈的固有频率。为了保证线圈有效电感量的

稳定,使用电感线圈时,都使其工作频率远低于线圈的固有频率。为了减小线圈的固有电容,可

以减少线圈骨架的直径,用细导线绕制线圈,或采用间绕法、蜂房式绕法。此主题相关图片如下:

(4). 线圈的稳定性: 电感量相对于温度的稳定性,用电感的温度系数αL表示此主题相关图片如下:式中:L2和L1分别是温度为t2和t1时的电感量。对于经过温度循环变化后,电感量不再能恢复到原来值的这种不可逆变化,用电感的不稳定系数表示此主题相关图片如下:式中:L和L1,分别为原来和温度循环变化后的电感量。

温度对电感量的影响,主要是因为导线受热膨胀,使线圈产生几何变形而引起的。减小这

一影响的方法.可采用热法(绕制时将导线加热,冷却后导线收缩,以保证导线紧紧贴合在骨架

上)温度增大时,线圈的固有电容和漏电损耗增加,也会降低线圈的稳定性。改进的方法是,将

线圈用防潮物质浸渍或用环氧树脂密封,浸渍后由于浸渍材料的介电常数比空气大,其线匝间的

分布电容增大。同时,还引入介质损耗,影响Q值。

(5). 额定电流: 主要是对高频扼流团和大功率的谐振线圈电感器、变压器检测方法与经验

1、色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:A、被

测色码电感器电阻值为零,其内部有短路性故障。B、被测色码电感器直流电阻值的大小与绕

制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电

感器是正常的。

2、中周变压器的检测A、将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。B、检测绝缘性能将万用表置于R×10k 挡,做如下几种状态测试:

(1). 初级绕组与次级绕组之间的电阻值;

(2). 初级绕组与外壳之间的电阻值;

(3). 次级绕组与外壳之间的电阻值。上述测试结果分出现三种情况:

①. 阻值为无穷大:正常;

②. 阻值为零:有短路性故障;

③. 阻值小于无穷大,但大于零:有漏电性故障。

3、电源变压器的检测:

A、通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝

缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

B、绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、

静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说

明变压器绝缘性能不良。

C、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说

明此绕组有断路性故障。

D、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且

初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。

E、空载电流的检测。

(a)、直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大

于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。

(b)、间接测量法。在变压器的初级绕组中串联一个的电阻,次级仍全部空载。把

万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。

F、空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕

组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,%,带中心抽头的两组对称绕组的电压差应≤±2

%。

低压绕组≤±5

G、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升

还可提高。

H、检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将

两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的同名端

必须正确连接,不能搞错。否则,变压器不能正常工作。

I、电源变压器短路性故障的综合检测判别。电源变压器发生短路性故障后的主要症状是发

热严重和次级绕组输出电压失常。通常,线圈内部匝间短路点越多,短路电流就越大,而变压器

发热就越严重。

检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。存在短路故障的变压器,其空载电流值将远大于满载电流的10%。当短路严重时,变压器

在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。此时不用测量空载电

流便可断定变压器有短路点存在。

大功率片状绕线型电感大功率片状绕线型电感器主要用于DC/DC变换器中,用作储能元件或大电流LC滤波元件(降低噪声电压输出)。它以方形或圆形工字型铁氧体为骨架,采用不同直

径的漆包线绕制而成,如图所示:老式DC/DC变换器的工作频率仅几十kHz(如30—50kHz),如今新型DC/DC变换器的频率高于200kHz,老式低频电感不适用了。

在铁氧体底部沉积导电材料,经烧结后形成焊接的电极。此主题相关图片如下:大功率片状

绕线型电感器型号不统一,尺寸也不相同,这里仅介绍一种圆形工字形铁氧体骨架构成的电感器,

其尺寸、电感量范围及直流电阻范围如表所示:由表可以看出,同一尺寸的骨架可以采用不向直

径漆包线来绕制、绕的匝数不同,故其电感量及直流电阻值是一个范围电阻越小,线径越大尺寸

也越大,这是个矛盾。此主题相关图片如下:标准的大功率电感量基数为 1 2.2 3.3 4.7 5.6 6.8 8.2。常用的电感量范围为1——330uH。有时需要在试验中调整电感量,以获得最佳数值。

作为大功率片状电感器还有下列两个主要参数:最大电流及工作频率。

电感线圈的使用:

(1). 磁场辐射的影响电感线圈装在线路板上有立式与卧式两种方式,要注意其磁场的辐射对

邻近器件工作的影响。如卧式电感器的引线是从两端引出,装在线路板上多是横卧着,它的线圈

都绕在棒形的磁芯上,它工作时,磁力线在周围散发,见图(a)。不仅有效导磁系数低,而且其磁

场辐射会影响邻近部件的工作,特别在高频工作时影响更大。所图(b)示。此主题相关图片如下:

电感线圈的磁场辐射立式电感器无此缺点,其线圈都绕在“工”形或“王”形磁芯上,甚至绕在很薄

的“工”形的磁芯上,工作时磁力线很少散发.有效导磁系数较高,磁场辐射小,对邻近部件影响

小。同时占空系数小,分布电容也小。如图(b)

(2). 工作频率与磁芯材料的关系由于电感器的基体是铁氧体磁芯,其工作频率自然要受磁芯

材料工作频率的限制,必须慎重选择。

有关术语及定义:

1.初始磁导率μi

初始磁导率是磁性材料的磁导率(B/H)在磁化曲线事始端的极限值,

-7H/m) H为磁场强度(A/m) B磁即μi=1/μ0lim:H→0 B/H式中为μ0真空磁导率(4π×10^

通密度(T)

2.有效磁导率μe:

在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。μe=L/μ0N2*Le/Ae 式中L为装有磁芯的线圈的电感量(H) N为线圈匝数Le为有效磁路长度(m) Ae为有效截面积(m^2)

3.饱和磁通密度Bs(T):

磁化到饱和状态的磁通密度。见图1。

4.剩余磁通密度Br(T):

从饱和状态去除磁场后,剩余的磁通密度。见图1。

5.矫顽力He(A/m):

从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强称

为矫顽力。见图1。

6.损耗因素tanδ:

r式中tanδh为根据因数是磁滞损耗、涡流损耗和剩余损耗三者之和tanδ=tanδh+tanδe+tanδ

磁滞损耗因数tanδe为涡流损耗因数tanδr为剩余损耗因数

7.相对损耗因数tanδ/u:

相对损耗因数是损耗因数与磁导率之比:tanδ/ui(适用于材料)tanδ/ue(适用于磁路中含有气隙的磁芯)

8.品质因数Q:

品质因数为损耗因数的倒数:Q=1/tanδ

9.温度因数αu(1/K):

温度系数为温度在T1和T2范围内变化时,每变化1K相应的磁导率的相对变化量:

αu=U2-U1/U1*1/T2-T1(T2>T1)式中U1为温度为T1时的磁导率U2为温度为T2时的磁导率

10.相对温度系数αur(1/K):

温度系数和磁导率之比,即αur=U2-U1/(U2)^2*1/T2-T1(T2>T1)

11.居里温度Tc(℃):

在该温度下材料由铁磁性(或亚铁磁性)转变顺磁性。见图2。

12.减落因数DF:

在恒温下,完全退磁的磁芯的磁导率随时间的衰减变化,即

DF=U1-U2/logT2-T1*1/(U1)^2(T2>T1)式中U1为退磁后T1分钟的磁导率 U2为退磁后T2分钟的磁导率

13.电阻率ρ(Ω/m):

具有单位截面积和单位长度的磁性材料的电阻。

14.密度d(kg/m3):

单位体积材料的重量,即d=W/V式中W为磁芯的重量(kg)V为磁芯的体积(m3)

15.功率损耗Pc(KW/m3、W/KG):

磁芯在高磁场密度下的单位体积损耗或单位重量损耗。该磁通密度可表示为Bm=E/4.44fNAe 式中E为施加在线圈上的电压有效值(V)Bm为磁通密度的峰值(T)f为频率(Hz)N为线圈匝数Ae为有效截面积(m2)目前。功率损耗的常用测量方法包括乘积电压表法和波形记忆法。

16.电感因数AL(nH/N2):

电感因数定义为具有一定形状和尺寸的磁芯上每一匝线圈产生的电感量,即AL=L/N^2式中L为装有磁芯的线圈的电感量(H) N为线圈匝数。

??? Q:一个绕组的电感器,问题请教: :

一个绕组的电感器, 通常来说是没有相位要求的, 即不用分开始线尾和结束线尾.?

A: 一個繞組的電感無相位,但是要看一個繞組是多少圏。一個繞組的電感器實際上是一個

RLC電路,電阻與電感串聯,電容並聯於每一圏之中。也就是說我們常用的電感器實際上不是一個理想電感,要知道電容是有容抗的,電感是有感抗的,容抗與感抗是有相位的一個為-90度,一個為+90度。

DR CORE中柱粗細與耐電流的關系

做過電感器行業的同仁都知道:

1. 相同的材質及繞線圈數,中柱越粗電感越低,但耐電流效果是越好,反之會越差。

2. 還有DR core在與磁套組裝時,相同的材質及繞線圈數,兩者之間的氣隙越大耐電流越好,電感越低,反之亦然。

电感线圈(http:https://www.doczj.com/doc/848388446.html,)

电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利(mH)、微亨利(uH),1H=10^3mH=10^6uH。

一、电感的分类

1. 按电感形式分类:固定电感、可变电感。

2. 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

3. 按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

4. 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。

二、电感线圈的主要特性参数

1、电感量L:

电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。

2、感抗XL:

电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL

3、品质因素Q:

品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。

4、分布电容:

线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的

存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。

三、常用线圈

1、单层线圈:

单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线

圈。

2、蜂房式线圈:

如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布

电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小

3、铁氧体磁芯和铁粉芯线圈:

线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。

4、铜芯线圈:

铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比

较方便、耐用。

5、色码电感器:

色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。

6、阻流圈(扼流圈):

限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。

7、偏转线圈:

偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。

漆包线脱漆新方法

1、本品为白色粉未或片状固体,专用于耐温级别130、155、180(H)、200(H+)、220(C)的铝、铜漆包线脱漆.本品类别属于漆包线脱漆剂类别. 产品已通过SGS机构检测认证.符合ROHS环保限量要求

2、速度快,只需5-45秒,一次脱净,漆皮不粘附.与众不同之处在于:铜线铝线都能脱得十分光亮,不易氧化,便于焊锡。

3、HTTP:https://www.doczj.com/doc/848388446.html,0769-******** 邦特化工(东莞)有限公司

电感线圈的绕线方向

电感线圈的绕线方向在产品测量时影响不是很大。但注意产品是要安装在具体电路中的,尤

其是在直流电路中,线圈的绕线方向不同,电流流过时产生的电场(磁场)方向也不同。电感线

圈产生的电磁场方向和周围器件及连接导线中流过电流所产生的电磁场互相交联,所产生的作用效果也不会相同;在电感线圈发挥其作用(比如滤波)时可能不影响整个电路性能,也有可能会

产生附加的不良效应,使电路的性能变差(如滤波能力降低,或反而增加干扰)。

我们就发生过由于没有注意到直流电源滤波电感(EI型-CHOKE 汽车音响用电源滤波电感器)的特点,为使工艺简单,安全增强,外观改善而改变绕线方向后,整机电路抑制干扰能力变

差的严重事故(卖车时,打开音响,发现噪音较大);结果客户全部退货(几十万只),并且装机的产品招回重新换回原工艺产品(有的已在国外),小小的一个滤波器,简单的一个绕线方向改

变,结果造成了非常非常巨大的损失。

电感器件,虽然是一个铁心或磁心上绕几圈线的简单电感器件,尽管绕线方法和绕线方向对

器件本身的特性影响不大,但对电路的影响却要认真对待,绝对马虎不得。

只有一个绕组的话,大部分情况下对特性是没什么影响的,但是线性电感(linearity choke)除外。

DR型或环型的CORE,绕线方向对电感特性没影响。

简单说就是在传统的DR电感上加了一个永磁体(就是磁铁了),以达到在所设定的电流强度及方向时补偿或消减电感量的作用的一种电感。呵呵!这句话有点绕。

因为电感绕线方向决定了磁力线的方向,而永磁体是有N/S极的分别的,所以,区分此类产品的正、负极就变得很重要了。Of course,不过因为磁铁离线圈的远近决定了磁场的大小,所以

实际的制程中装磁铁时是边调试边装的,一旦调试好就立即点胶固定的。并且,为了便于客户准

确无误的安装,此电感外面一般还加一个套管,且套管上是有标示正、负极性的。绕反了,磁铁

就反着装,套管当然也得反着标才是。

阻抗: 英文名称:impedance

在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体

对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很

小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。

还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是

在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称

之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈

小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有

向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是

不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电

阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这

和串联电路相反。

在音响器材中,扩音机与喇叭的阻抗多设计为8欧姆,因为在这个阻抗值下,机器有最佳的

工作状态。其实喇叭的阻抗是随着频率高低的不同而变动的,喇叭规格中所标示的通常是一个大

略的平均值,现在市面上的产品大都是四欧姆、六欧姆或八欧姆。

具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。如果三者是串联的,又知道交流电的频

率f、电阻R、电感L和电容C,那么串联电路的阻抗。阻抗的单位是欧。

对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联

电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,

谐振的时候阻抗增加到最大值,这和串联电路相反。

阻抗匹配

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所

有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

Mn-Zn铁氧体的温度稳定性

高精尖特别是高靠的工程技术要求有高的温度稳定性。

1:要获得有温度稳定性的软磁材料,通常采用过铁的配方,当Fe2O3的含量控制在53.2mol%时,可以获得很好的温度稳定性;且通过适当的控制Fe2+和Co2+的比例,可以获得到多个K1补偿点,在较宽温度范围内得到平坦的μ~T的曲线。另外,在一定的温度范围内,因Ti4+的进入及梯度分布将使各区域的μ~T的曲线的两个极大值位置在晶体内部各处不同,叠加起来就导致了μ~T曲线平坦。但是若晶粒尺寸增大,将使Ti4+梯度不明显,晶界也相对变薄,降低了这种

不均匀的分布。就会增强μ~T的曲线两峰值的尖锐度,从而材料的温度特性变坏。

2:烧结温度和氛围是影响铁氧体性能的一个关键环节,严格控制烧结温度和氛围,使Fe2+保持在一定的范围,也是降低温度系数的方法之一。另外,铁氧体的微观结构与材料稳定性冶游

密切的关系。一般情况下,晶粒均匀一致,气孔少而分布散的材料,温度特性较好,而晶粒大小

不均、有双重结构、巨晶内部有气孔的材料,由于畴壁的阻力较大,在μ~T曲线上出现相当大的凹谷,温度稳定性较差。

磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类

第一章磁学基础知识 答案: 1、磁矩 2、磁化强度

3、磁场强度H 4、磁感应强度 B 磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。其定义公式为 5、磁化曲线 6、磁滞回线 () (6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。) 7、磁化率

磁化率,表征磁介质属性的物理量。常用符号x表示,等于磁化强度M与磁场 强度H之比。对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是 一个二阶张量。 8、磁导率 磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的 一个物理量,可通过测取同一点的B、H值确定。 二 矫顽力----内禀矫顽力和磁感矫顽力的区别与联系 矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 (2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正? 产生: 能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁学现象与物质的磁性

磁学现象与物质的磁性 人们很早就发现磁性材料具有特殊的功能特性。公元前3世纪,《吕氏春秋·精通篇》中就出现“石,铁之母也。以有磁石,故能引其子;石之不慈者,亦不能引也”的记载,叙述了磁性材料可以吸引特定的物质,如铁等。在战国末期韩非所著的《有度篇》中已出现“故先王以立司南以端前夕”的记载;而在东汉王充的《论衡·是应篇》中出现了“司南之勺,投之于地,其柢指南”的记载,叙述了磁性材料具有南北极,可以指示南北方向的特性。北宋沈括所著的《梦溪笔谈》中已有制作指南针的详尽描述,明朝《萍洲可谈》中出现船舶在苏门答腊海中航行时应用指南针的详细记载,叙述了磁性材料的应用。在欧洲,人们在小亚细亚的Magnesia 地区发现了磁铁矿,因而人们把磁石叫做Magnet 。 人们虽然很早就发现了磁性的存在,但对磁性现象本质的认识却经历了相当长的时间。1820年,奥斯特发现了电流的磁效应,1831年法拉第发现了电磁感应定律以及楞次发现的楞次定律,人们才逐渐揭开了磁性的奥秘。随着原子结构的被揭露,尤其是量子力学的成就,人们对目前磁性的物理本质才有了一个大体满意的解释。 一、磁及磁现象的根源是电荷的运动 1.1 一些基本的磁现象 当电流通过一条导线,生成一个方向由右手定则指示的磁场。如果大拇指指示正向电流I 的方向,四指就指示磁场B 的方向。 如果一条载流的长导线被卷成圆筒形,环绕圆筒线圈可观察到一个磁场;磁场的形状具有环环相叠的圆柱对称性,它的方向由右手定则规定。此时,四指指示电流方向,拇指给出线圈内部的磁场方向。外部的磁场具有圆环对称性。而地球磁场源自地球熔融铁核的流动。这种流动才使图中罗盘针的黑端指示出地理北极的方向。 假定一根棒状磁体按图1-3从一个线圈内部向外移开,在线圈绕组的两端可检测到一个电压脉冲。电压源自线圈内磁力线的变化。感生电压遵从Lenz 定律—如果线圈内的磁力线发生变化,由此在线圈内感生的电压是这样的.由它产生的电流决定的磁场与初始的变化方向相反。图1-3标出了电压,由它的电流生成的磁场由线圈指向外(其方向同棒状磁体运动产生的变化相反)。电压的方向也由右手定则规定。磁力线的变化感生电压,决定了发电机和变压器的运转,以及抗磁性的材料行为。图1-1一条载流导线的磁场 图1-2圆筒线圈的磁场

永磁材料基本知识

永磁材料基本知识 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI 单位制中,μ0=4π×10-7 H/m (亨/米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J 之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制)(1-1) B=H+4πM (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。 由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。 5、什么叫剩磁(Jr,Br),为什么在永磁材料的退磁曲线上任意测量点的磁极化强度J值和磁感应强度B值必然小于剩磁Jr和Br值? 永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J 和内部磁感应强度B并不会因外磁场H的消失而消失,而会保持一定大小的值,该值即称为该材

磁学与磁性材料导论

3.15 磁学基础 C.A.Ross, 材料科学与工程学系, 麻省理工学院 参考数据: Jiles ,磁学与磁性材料导论 磁性数值与单位 H=磁场强度,A/m – 表示能量梯度或偶极的力矩 B=磁通量密度,T 或 Wb/m 2 – 每单位面积通过的磁力线数 M=磁化强度, A/m – 磁矩,材料对场的反应 磁场强度由电流产生: 电流 i 在半径r 产生切线场 H = i/2 πr 或由磁性材料而来。 B = μo H μo = 4π*10-7 Henry/m 在自由空间中磁通量密度由磁场强度决定 B = μo (H + M) 但在材料中 或 B = μo μr H μr =相对磁导率 或 M = H(μr - 1) 或 M = χH χ = (μr - 1) =磁化率 磁化强度与磁通量密度表示材料对于磁场场度H 的反应。磁通量密度的场线是连续的。 注,相同的表示式以cgs 单位表示: B (Oersted) = H (Gauss) + 4πM (emu/cc) 在此 1 Oe = (1000/4π) A/m = 79.6 A/m 1 G = 10-4 T 1 emu/cc = 1 kA/m 不同种类的材料 反磁:原子没有净磁矩,但磁场会产生与外加场相反的小磁矩,磁化率为负的(μr <1)。

顺磁:原子有净磁矩但自旋方向是任意排列。外加磁场会使其有弱的排列方向,因此小的磁化率随温度的倒数而变(μ r >1)。 铁磁有自发的磁化强度,及大的磁导率,其与样品的经历有关,具有非线性的磁滞现象。 磁性行为的源由 电荷的移动使得电子的角动量产生磁化。 磁化由1)电子自旋,2)电子轨道运动而来。 成对电子的贡献会互相抵销,所以强磁效应发生在材料具有未成对的电子。 一个电子具有1 μ B (波耳磁子) = 9.27*10 -24 Am 2 的动量 Stern-Gerlach与Zeeman的实验指出了原子有磁化的量子现象。 我们预期在过渡金属(未填满3d轨域)及稀土元素(未填满4f轨域)有大的磁性现象,因为它们有大的净自旋。 例如:Fe 3+ 有 3d 5 :预期每个原子有5μ B (忽略轨道的贡献) Fe 有 3d 8 :预期每个原子有2μ B 铁磁物质之邻近原子因为交换耦合,会有自旋的自发排序。假若自旋有一角度θ,交换能= A (1 – cosθ) 在此A式交换常数,如对铁而言是1.4*10-20 J 负A表示反向平行排列:材料是反铁磁性或陶铁磁性。 在居礼温度之上,自旋是随机排列,所以kT ~ A(对铁而言是770°C) 排列整齐的自旋形成扇区,每个扇区通常都指向不同的方向,就样品而言平均起来就没有净磁矩。但是,扇区可由相对较小的磁场磁化而排列在同一方向(注:此时磁壁就不存在了),以产生较大的净磁矩,所以其磁导率非常高。M-H曲线的形状是迟滞的,重要的磁滞回线参数包含: 曲线内的面积(外加磁场作一个循环的能量消耗) 饱和磁化(在大磁场中的磁化) 残磁(磁场为零时仍存在磁化强度) 顽磁(要将磁化强度去除所需的磁场强度) 异向性与扇区

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

(完整版)初三磁学课件汇总

亲爱的同学,太阳每天都是新的,你是否每天 都在努力。 磁学 一、磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。 2.磁体:具有磁性的物质叫做磁体。 分类:软磁体:软铁人造磁体:条形磁体、蹄型磁体、小磁体、环形磁体 硬磁体(永磁体):钢天然磁体 3.磁极:磁体上磁性最强的部分(任一个磁体都有两个磁极且是不可分割的) (1)两个磁极:南极(S)指南的磁极叫南极,北极(N)指北的磁极叫北极。 (2)磁极间的相互作用规律:同名磁极互相排斥,异名磁极互相吸引。 4.磁化 (1)概念:使原来没有磁性的物体获得磁性的过程。 (2)方法:用一个磁体在磁性物体上沿同一方向摩擦,就可使这个物体变成磁体。 5.应用:记忆材料:磁盘、硬盘、磁带、银行卡等 发电机(电动机):磁悬浮列车、磁化水机、冰箱门磁性封条等 二、磁场 1.磁场 (1)概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。 (2)基本性质:磁场对放入磁场中的磁体产生磁力的作用。 (3)磁场的方向: 规定——在磁场中的任意一点,小磁针静止时,N即所指的方向就是那点的磁场方向。 注意——在磁场中的任意一个位置的磁场方向只有一个。 2.磁感线 (1)概念:为了形象地描述磁场,在物理学中,用一些有方向的曲线把磁场的分布情况描述下来,这些曲线就是磁感线。 (2)方向:为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。 (3)特点:①磁体外部的磁感线从N极出发回到S极。(北出南入) ②磁感线是有方向的,磁感线上任何一点的切线方向与该点的磁场方向一致。 ③磁感线的分布疏密可以反映磁场磁性的强弱,越密越强,反之越弱。 ④磁感线是空间立体分布,是一些闭合曲线,在空间不能断裂,任意两条磁感线不能相交。 (4)画法: 3.地磁场 (1)概念:地球周围存在着磁场叫做地磁场。 (2)磁场的N极在地理的南极附近,磁场的S极在地理的北极附近。 (3)应用:鸽子、绿海龟(利用的磁场导航) (4)磁偏角:首先由我国宋代的沈括发现的。 三、电生磁 1.电流的磁效应 (1)1820年,丹麦的科学家奥斯特第一个发现电与磁之间的联系。 (2)由甲、乙可知:通电导体周围存在磁场。 (3)由甲、丙可知:通电导体的磁场方向跟电流方向有关。 2.通电螺线管 (1)磁场跟条形的磁场是相似的。 (2)通电螺线管的磁极方向跟电流方向有关。

钕铁硼基本知识

磁材基本知识讲座

主要内容: 第一章磁物理基础 第二章磁性材料的发展概况 第三章钕铁硼的主要特点及应用第四章钕铁硼的主要成份组成第五章钕铁硼生产工艺及设备第六章性能参数测量原理及设备第七章机械加工工艺及设备 第八章表面处理工艺及设备 第九章充磁包装

第一章磁物理基础 1 物质的磁现象 磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator 物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。然而,磁性作为一门科学却到19世纪前半期才开始发展。 1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕; 1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。 1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。 2 磁性的起源 物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

永磁材料基本知识

永磁材料基本知识 2006 年08 月26 日星期六08:56 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫 顽力的温度系数(Br 0 , jHc 0 )、回复导磁率(卩rec.)、退磁曲线方形度(Hk/jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820 年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2 n米远处的磁场强度为1A/m(安/米,国际单 位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导 线0.2厘米远处磁场强度为1Oe (奥斯特),10e=1/(4 n x 103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T (特斯拉,在CGS单位制中,J的单 位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/卩0,卩0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M其SI单位为 A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=卩0 M在CGS单位制中,卩0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,卩0=4 n X 10-7H/m (亨/ 米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H 时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场--- 关于退磁场的概念,见9 Q),介质内部的磁场强度并不 等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现岀来 的,为与H区别,称之为介质的磁感应强度,记为B: B=^ 0 H+J (SI 单位制)(1-1 ) B=H+4t M (CGS单位制)

磁学名词解释及各种磁性材料讲结

关于钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs)1T=100Gs 剩磁将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。 磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m)1A/m=79.6Oe 磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是100Oe以上。 内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m) 使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 磁能积((BH)max )单位为兆高·奥(MGOe)或焦/米3(J/m3) 退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。 各向同性磁体: 任何方向磁性能都相同的磁体。各向同性磁体可以任意方向多极充磁。 粘结钕铁硼是各向同性磁体。 各向异性磁体:

不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。 烧结钕铁硼永磁体是各向异性磁体。烧结钕铁硼只能平面轴向多极充磁,粘结钕铁硼可以任意方向多极充磁。 在回转体物体中存在两种方向;轴向和径向。轴向移动就是沿着回转体长度方向的运动(轴向位移、轴向串动)。径向位移是指物体向半径方向的位移。 取向方向: 各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作"取向轴","易磁化轴"。·磁滞回线: 铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,退磁曲线(即B-H曲线): 磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。也即我们所说的B-H的曲线。如图所示: ·退磁曲线的膝点: 磁体退磁曲线上发生突变、明显发生弯曲的点。室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。 负载线: 连接工作点和退磁曲线坐标原点的一条直线(见上图)。·磁化强度: 指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。 磁感应强度: 磁感应强度B的定义是:

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

钕铁硼磁材知识

钕铁硼磁材知识

————————————————————————————————作者:————————————————————————————————日期:

钕铁硼磁材知识内容: 第一章磁物理基础 第二章磁性材料的发展概况 第三章钕铁硼的主要特点及应用 第四章钕铁硼的主要成份组成 第五章钕铁硼生产工艺及设备 第六章性能参数测量原理及设备 第七章机械加工工艺及设备 第八章表面处理工艺及设备 第九章充磁包装

第一章磁物理基础 1 物质的磁现象 磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator 物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。然而,磁性作为一门科学却到19世纪前半期才开始发展。 1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕; 1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。 1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。 2 磁性的起源 物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的发生,电子轨道和电子自旋产生的总磁矩称为原子磁矩。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数 https://www.doczj.com/doc/848388446.html,/来源:日期:2006年04月25日 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类

电磁学基础知识

电磁学基础知识 电场 一、场强E (矢量,与q 无关) 1.定义:E = 单位:N/C 或V/m 方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E = 静电力恒量 k = Nm 2/C 2 匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则 4.电场力(与q 有关) F = 库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关) 1.定义:φA = = = 单位:V 说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关 5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能 需要解决的问题: ①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判) ③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号 2.静电平衡特点 ⑴E 内=0;⑵E 表面 ⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器 1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C = 3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU = 2.偏转:v ⊥E 时,做类平抛运动 位移:L = ; y = = = 速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线 1.器材: 2.纸顺序:从上向下

磁性材料基本知识

磁性基本现象 自发磁化: 从“磁性来源”中我们了解到,某些原子的核外电子的自旋磁矩不能抵消,从而产生剩余的磁矩。但是,如果每个原子的磁矩仍然混乱排列,那么整个物体仍不能具有磁性。只有所以原子的磁矩沿一个方向整齐地排列,就象很多小磁铁首尾相接,才能使物体对外显示磁性,成为磁性材料。这种原子磁矩的整齐排列现象,就称为自发磁化。 既然磁性材料内部存在自发磁化,那么是不是物体中所有的原子都沿一个方向排列整齐了呢?当然不是,否则,凡是钢铁等就会永远带有磁性,成为一块大磁铁,永远能够相互吸引了(实际上,两块软铁不会自己相互吸引)。事实上,磁性材料绝大多数都具有磁畴结构,使得它们没有磁化时不显示磁性。磁畴: 所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如右图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。下图为在显微镜中观察到的磁性材料中常见的磁畴形状,其中左面是软磁材料常见的条形畴,黑白部分因为不同的磁畴其磁矩方向不同而具有不同的亮度,它们的交界面就是畴壁;中间是树枝状畴和畴壁;右面是薄膜材料中可以见到的磁畴形状。实际的磁性材料中,磁畴结果五花八门,如条形畴、迷宫畴、楔形畴、环形畴、树枝状畴、泡状畴等。 既然磁畴内部的磁矩排列是整齐的,那么在磁畴壁处原子磁矩又是怎样排列的呢?在畴壁的一侧,原子磁矩指向某个方向,假设在畴壁的另一侧原子磁矩方向相反。那么,在畴壁内部,原子磁矩必须成某种形式的过渡状态。实际上,畴壁由很多层原子组成。为了实现磁矩的转向,从一侧开始,每一层原子的磁矩都相对于磁畴中的磁矩方向偏转了一个角度,并且每一层的原子磁矩偏转角度逐渐增大,

磁铁的基本常识

磁铁的基本常识 古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。经过千百年的发展,今天磁铁已成为我们生活中的强力材料。通过合成不同材料的合金可以达到与吸铁石相同的效果,而且还可以提高磁力。在18世纪就出现了人造的磁铁,但制造更强磁性材料的过程却十分缓慢,直到20世纪20年代制造出铝镍钴(Alnico)。随后,20世纪50年代制造出了铁氧体(Ferrite),70年代制造出稀土磁铁[Rare Earth magnet 包括钕铁硼(NdFeB)和钐钴(SmCo)]。至此,磁学科技得到了飞速发展,强磁材料也使得元件更加小型化。 什么是磁化(取向)方向? 大多数磁性材料可以沿同一方向充磁至饱和,这一方向叫做“磁化方向”(取向方向)。没有取向方向的磁铁(也叫做各向同性磁铁)比取向磁铁(也叫各向异性磁铁)的磁性要弱很多。 什么是标准的“南北极”工业定义? “北极”的定义是磁铁在随意旋转后它的北极指向地球的北极。同样,磁铁的南极也指向地球的南极。在没有标注的情况下如何辨别磁铁的北极? 很显然只凭眼睛是无法分辨的。可以使用指南针贴近磁铁,指向地球北极的指针会指向磁铁的南极。 如何安全的处理和存放磁铁? 要始终十分小心,因为磁铁会自己吸附到一起,可能会夹伤手指。磁铁相互吸附时也有可能会因碰撞而损坏磁铁本身(碰掉边角或撞出裂纹)。 将磁铁远离易被磁化的物品,如软盘,信用卡,电脑显示器,手表,手机,医疗器械等。 磁铁应远离心脏起搏器。 较大尺寸的磁铁,每片之间应加塑料或硬纸垫片以保证可以轻易地将磁铁分开。 磁铁应尽量存放在干燥,恒温的环境中。 如何做到隔磁? 只有能吸附到磁铁上的材料才能起到隔断磁场的作用,而且材料越厚,隔磁的效果越好。 什么是最强的磁铁? 目前最高性能的磁铁是稀土类磁铁,而在稀土磁铁中钕铁硼是最强力的磁铁。但在200摄氏度以上的环境中,钐钴是最强力的磁铁。 怎样来定义磁铁的性能? 主要有如下3个性能参数来确定磁铁的性能: 剩磁Br :永磁体经磁化至技术饱和,并去掉外磁场后,所保留的Br称为剩余磁感应强度。 矫顽力Hc:使磁化至技术饱和的永磁体的B降低到零,所需要加的反向磁场强度称为磁感矫顽力,简称为矫顽力 磁能积BH:代表了磁铁在气隙空间(磁铁两磁极空间)所建立的磁能量密度,即气隙单位体积的静磁能量。由于这项能量等于磁铁的Bm和Hm的乘积,因此称为磁能积。 磁场:对磁极产生磁作用的空间为磁场 表面磁场:永磁体表面某一指定位置的磁感应强

磁学和磁性材料的发展历程

磁学与磁性材料发展的历程 磁学与磁性材料发展的历程 公元前 5000年前人类发现天然磁石(Fe3O4) 2300年前中国人将天然磁石磨成勺型放在光滑的平面上,在地磁的作用下,勺柄指南,曰“司南”此即世界上第一个指南仪。 公元后 1000年前中国人用磁铁与铁针摩擦磁化,制成世界最早的指南针。1100年左右中国将磁铁针和方位盘联成一体,成为磁针式指南仪,用于航海。 1405-1432 郑和凭指南仪开始人类历史上航海的伟大创举。 1488-1521 哥伦布,伽马,麦哲伦凭借由中国传来的指南仪进行了闻名全球的航海发现。

十七世纪 1600 英国人威廉.吉伯发表了关于磁的专著“磁体”,重复和发展了前人有关磁的认识和实验。 十八世纪 1785 法国物理学家C.库仑用扭枰建立了描述电荷与磁极间作用力的“库仑定律”。 十九世纪 1820 丹麦物理学家H.C.奥斯特发现电流感生磁力。 1831 英国物理学家M.法拉第发现电磁感应现象。 1873 英国物理学家J.C.麦克斯韦在其专著“论电和磁”中完成了统一的电磁理论。 1898-1899 法国物理学家P.居里发现铁磁性物质在特定温度下(居里温度)变为顺磁性的现象。 二十世纪 1905 法国物理学家P.I.郎之万基于统计力学理论解释了顺磁性随温度的变化。 1907 法国物理学家P.E.外斯提出分子场理论,扩展了郎之万的理论。

1921 奥地利物理学家W.泡利提出玻尔磁子作为原子磁矩的基本单位。美国物理学家A.康普顿提出电子也具有自旋相应的磁矩。 1928 英国物理学家P.A.M.狄拉克用相对论量子力学完美地解释了电子的内禀自旋和磁矩。并与德国物理学家W.海森伯一起证明了静电起源的交换力的存在,奠定了现代磁学的基础。 1936 苏联物理学家郎道完成了巨著“理论物理学教程”,其中包含全面而精彩地论述现代电磁学和铁磁学的篇章。 1936-1948 法国物理学家L.奈耳提出反铁磁性和亚铁磁性的概念和理论,并在随后多年的研究中深化了对物质磁性的认识。 1967 旅美奥地利物理学家K.J.斯奈特在量子磁学的指导下发现了磁能积空前高的稀土磁体(SmCo5),从而揭开了永磁材料发展的新篇章。1974 第二代稀土永磁-Sm2Co17问世。 1982 第三代稀土永磁-Nd2Fe14B问世。 1990 原子间隙磁体-Sm-Fe-N问世。 1991 德国物理学家E.F.克内勒提出了双相复合磁体交换作用的理论基础,指出了纳米晶磁体的发展前景。

相关主题
文本预览
相关文档 最新文档