当前位置:文档之家› 立交桥桥梁匝道弯桥设计浅析

立交桥桥梁匝道弯桥设计浅析

立交桥桥梁匝道弯桥设计浅析
立交桥桥梁匝道弯桥设计浅析

立交桥桥梁匝道弯桥设计浅析

[摘要]:4城市化的建设已经成为一座城市发展的主题,伴随着城市建设给城市道路交通及运输业带来的快速发展,城市立交、高架的道路运输系统进入了发展的巅峰时期。立交桥的匝道是道路网络系统实现交通转换的重要组成部分,本文探讨了匝道及其影响区的交通特征,为匝道定位设计提供科学的依据。

[关键词]:城市立交桥匝道弯桥设计特点浅析

现在大城市中的交通呈现出拥挤、堵塞、乘车难、行车难等问题,随着我国的经济与社会的飞速发展,再加上城市化进程的加快,城市交通的需求量也在迅速的增长,交通需求结构也在发展着变化,然而交通的供给确出现了严重的滞后性。产生交通供给滞后的原因很多,但是最重要原因之一还是交通需求增长所产生的土地的需求和土地的有限性之间存在着难以调和的矛盾,各大城市为了解决这一矛盾,都在修筑高架路、立交桥,但是随着交桥的修建又带来了一个新的问题,就是立交桥的匝道的进出口经常出现拥堵的现象,本文通过一些实践的证明,提出了一些改善立交桥的匝道交通拥堵的措施。

一、匝道的构成以及特点

(一)、匝道的构成

匝道主要由三个部分构成:桥梁的匝道与桥梁主线的连接处;桥梁匝道的车行道;桥梁的匝道与桥梁相交的道路相连接处。

(二)、匝道的特点

立交桥设计

城市道路立交桥设计 摘要: 从预测交通量分析出发,结合互通式立交功能、构造物等建设条件,对互通式立交型式进行方案综合比选,从而推荐出功能完善、与结构造物衔接良好、造价较低的互通方案。 关键词: 互通式立交方案选型设计预测交通量 0引言 随着道路建设的发展和交通的需要,城市人口的急剧增加使车辆日益增多,平面交叉的道口造成车辆堵塞和拥挤,许多大中城市的交通要道和高速公路上兴建了一大批立交桥,用空间分隔的方法消除道路平面交叉车流的冲突,使两条交叉道路的直行车辆畅通无阻城市环线和高速公路网的联结也必须通过大型互通式立交进行分流和引导,保证交通的畅通城市立交桥已成为现代化城市的重要标志为保证交通互不干扰,而在道路铁路交叉处建造的桥梁广泛应用于高速公路和城市道路中的交通繁忙地段从此,城市交通开始从平地走向立体。 1 概述 科学大道-西三环互通式立交工程位于郑州市西三环、北三环及西三环延长线与科学大道的交叉 处。现状为三路平面交叉见下图。北三环、西三环及西三环延长线规划为城市快速路,科学大道规划为城市交通性主干道。 该立交作为郑州市快速路网与地方城市道路衔接转换的重要节点立交,同时也是城市快速路与城市主干路相交的重要节点立交。该立交的建设不仅为沟通高新西区与环城快速路提供了最便捷的通道,同时可以贯彻落实郑州中心城区快速路系统总体规划思路。

立交桥待建地图 航拍立交桥待建路段远照

航拍立交桥待建路段近照 2 地形地物地貌图 该互通立交工程场地地貌单元为黄河冲积平原,场地地形整体平坦,地面高程为98m 107m左右。本立交桥址勘探期间,在场地内及其附近未发现对工程有影响的不良地质作用,如塌陷、采空区、地面沉降、地裂等;也不存在影响地基稳定性的不良地

互通匝道桥现浇箱梁贝雷支架计算书 (1)

互通匝道桥现浇箱梁贝雷支架计算书 本计算书以O匝道桥第6联第一跨为例进行编制,其余跨径小于30m的孔跨类型的支架和模板施工参照该跨径的方案,其余桥宽可参照该跨进行相应调整。 匝道桥第6联第一跨上部构造为单箱单室结构预应力砼连续现浇箱梁体系。跨径为30m,箱梁高1.80m,等宽段箱梁顶宽10.5m,底板宽3.5m,顶板厚25cm,底板厚25cm,跨中截面腹板厚度50cm,中横梁两侧各2.5m范围内腹板加厚至70cm,端横梁附近2.5m范围内腹板加厚至70cm,其中中横梁厚1.0m,端横梁厚2.0m,横梁处横桥向支座中心距2.0m。桥面横坡为单向坡%。 一、计算依据 ㈠、《路桥施工计算手册》; ㈡、厦漳高速公路A3合同段两阶段施工图设计文件、技术交底、设计变更、补充、修改图纸及文件资料; ㈢、《装配式公路钢桥多用途使用手册》; ㈣、《公路桥涵施工技术规范》; ㈤、《公路桥涵设计规范》; ㈥、《贝雷梁使用手册》; ㈦、《建筑结构荷载规范》。 二、支架设计要点 ㈠、钢管桩基础

支架基础采用钢管桩做为基础。现浇箱梁支架基础平面布置图和现浇箱梁贝雷支架横断面图如上。 O匝道桥第30联第一跨径L=30m桥宽m等截面标准现浇箱梁。跨中设两个中支墩,中支墩钢桩中心距中心的距离按2.0m设置。边支墩距两边桥墩边缘1.75m各设置一排钢管桩做为边支墩。边支墩和各中支墩之间的钢桩中心距中心的距离为12.25m。每个中支墩:钢管桩φ*0.6cm、7根,钢管桩间距按1.29m布置。钢管桩上布置2I36b、L>1150cm工字钢作横梁,横梁上布置支架贝雷片纵梁,支架高度8.38m。 ㈡、支架纵梁 用国产贝雷片支架拼装成支架纵梁,两排一组。支架结构均采用简支布置。 23#墩~24#墩:跨中设两个中支墩。23#墩~第一个中支墩、第二个中支墩~24#墩贝雷纵梁计算跨度均为12.25m由11排单层贝雷纵梁组成;贝雷纵梁组与组间距为2m,每组排距除第5、6、7片为0.45m外,其余均按0.9m等间距布置。 ㈢、模板及支撑 现浇箱梁支架拟采用梁柱式支架。 箱梁模板采用厚度为1.2cm 的竹胶合板;竹胶合板下顺桥向放置10cmx10cm方木,间距由计算推算;10x10cm的方木设[18槽钢做分配梁,间距为100cm;[18槽钢下方安放贝雷片,贝雷片一个断面设计11片,间距如附图所示;贝雷片下方设计2I36工字钢和钢管桩。其中翼板下支撑采用木模和钢托架,钢托架采用[8槽钢加工,以榀为单位,顺桥向0.8m 设计一榀。 三、受力分析

匝道桥设计原则

公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、 4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制 设计原则 中国中铁二院工程集团有限公司 交通设计研究院 二OO八年

公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、 4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制 设计原则 设计负责人: 室(所)技术负责人: 处总工程师: 院总工程师: 中国中铁二院工程集团有限公司 交通设计研究院 二OO八年

一、设计依据 1、根据领导对“匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n ×30m(n=3、4、5)预应力钢筋混凝土连续箱梁通用图立项申请” 的批复意见,开展公路桥梁通用图设计,编制本设计原则。 2、有关规范: 交通部部颁标准《公路工程技术标准》JTG B01-2003 交通部部颁标准《公路桥涵设计通用规范》JTG D60-2004 交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 3、充分收集交通院及其他设计单位设计图作为本次通用图编制参考。 二、设计内容 匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、4、5)预应力钢筋混凝土连续箱梁上部结构通用图。 三.主要技术标准及参数 (一).技术标准 1.荷载等级:公路—I级,城—A级 2.公路等级:高速公路、一级公路、城市快速路 (二).主要参数: 1)混凝土 预应力钢筋混凝土连续箱梁梁体采用C50混凝土。 2) 钢材 (1)钢绞线: φS=15.2mm;A=140.0mm2;公称质量=1.101kg/m,符合GB/T

预应力混凝土曲线箱梁设计论文

预应力混凝土曲线箱梁设计 摘要:简述预应力砼弯箱梁的受力特点与计算方法,并以厦安高速厦门互通a匝道桥第三联r=110m 、跨径(35+42+35)m的预应力砼箱梁设计为例,探讨了小半径大跨度预应力箱梁设计的计算与构造措施。 关键词:预应力砼弯梁,小半径大跨度,桥梁设计 中图分类号:tu528.571文献标识码:a 文章编号: abstract: briefly prestressed concrete curved box the mechanical characteristics, and the calculation method, and with a high share of tall ann xiamen ramp bridges part 3 r = 110 m, span length (35 + 42 + 35) m prestressed concrete box girder of design as an example, this paper discusses the small radius of the design of large span prestressed concrete box girder calculation and structural measures. keywords: prestressed concrete beam bending, small radius big span, bridge design 1引言 随着高速公路与城市快速路的兴建以及城市建设的进一步发展,社会对交通设施的要求越来越高,互通式立体交叉日益增多。互通式立体交叉中的匝道很多是单车道或双车道的小半径弯桥,常用半径为50~150m,常用桥梁上部结构形式为钢筋混凝土或预应力

盘扣式现浇箱梁模板支架计算书(匝道桥)

盘扣式现浇箱梁支架模板计算书计算依据: 1、《建筑施工承插型盘扣式钢管支架安全技术规程》JGJ231-2010 2、《混凝土结构设计规范》GB 50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计标准》GB 50017-2017 一、工程属性

JGJ231-2010 梁底支撑主梁左侧悬挑长度a1(mm) 0 梁底支撑主梁右侧悬挑长度a2(mm) 0 平面图

立面图 四、面板验算 面板类型覆面木胶合板面板厚度t(mm) 15 面板抗弯强度设计值[f](N/mm2) 15 面板抗剪强度设计值[τ](N/mm2) 1.4 面板弹性模量E(N/mm2) 10000 W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4 q1=[1.2(G1k+(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.1+(13+1.5)×1.8)+1.4×3]×1= 35.64kN/m q1静=1.2×[G1k+(G2k+G3k)×h]×b=1.2×[0.1+(13+1.5)×1.8]×1=31.44kN/m q1活=1.4×Q1k×b=1.4×3×1=4.2kN/m q2=[1×(G1k+(G2k+G3k)×h)+1×Q1k]×b=[1×(0.1+(13+1.5)×1.8)+1×3]×1= 29.2kN/m

计算简图如下: 1、强度验算 M max=0.107q1静L2+0.121q1活L2=0.107×31.44×0.1862+0.121×4.2×0.1862= 0.134kN·m σ=M max/W=0.134×106/37500=3.561N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 νmax=0.632q2L4/(100EI)=0.632×29.2×185.7144/(100×10000×281250)= 0.078mm≤[ν]=min[L/150,10]=min[185.714/150,10]=1.238mm 满足要求! 3、支座反力计算 设计值(承载能力极限状态) R1=R5=0.393q1静L+0.446q1活L=0.393×31.44×0.186+0.446×4.2×0.186=2.643kN R2=R4=1.143q1静L+1.223q1活L=1.143×31.44×0.186+1.223×4.2×0.186=7.628kN R3=0.928q1静L+1.142q1活L=0.928×31.44×0.186+1.142×4.2×0.186=6.309kN 标准值(正常使用极限状态) R1'=R5'=0.393q2L=0.393×29.2×0.186=2.131kN R2'=R4'=1.143q2L=1.143×29.2×0.186=6.198kN R3'=0.928q2L=0.928×29.2×0.186=5.032kN

最新匝道桥设计原则

匝道桥设计原则

公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m (n=3、4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制 设计原则 中国中铁二院工程集团有限公司 交通设计研究院 二OO八年

公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m (n=3、4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制设计原则 设计负责人: 室(所)技术负责人: 处总工程师: 院总工程师: 中国中铁二院工程集团有限公司 交通设计研究院 二OO八年

一、设计依据 1、根据领导对“匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n× 30m(n=3、4、5)预应力钢筋混凝土连续箱梁通用图立项申请”的 批复意见,开展公路桥梁通用图设计,编制本设计原则。 2、有关规范: 交通部部颁标准《公路工程技术标准》JTG B01-2003 交通部部颁标准《公路桥涵设计通用规范》JTG D60-2004 交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004 3、充分收集交通院及其他设计单位设计图作为本次通用图编制参 考。 二、设计内容 匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、4、5)预应力钢筋混凝土连续箱梁上部结构通用图。 三.主要技术标准及参数 (一).技术标准 1.荷载等级:公路—I级,城—A级 2.公路等级:高速公路、一级公路、城市快速路 (二).主要参数: 1)混凝土 预应力钢筋混凝土连续箱梁梁体采用C50混凝土。 2) 钢材

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: 主要荷载工况: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

2)组合内力计算 3)结构验算取用内力 根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

匝道桥计算方法和设计要点

匝道桥计算方法和设计要点 【摘要】近年来在高等级公路互通立交桥中的匝道桥都不约而同的出现了许多问题,尤其是由于线形及纵坡限制出现的斜,弯,坡,异性等现象。相对于直梁桥的弯剪作用而言,匝道桥的设计更加注重对弯剪扭的复合承载能力。在实际的计算和设计过程应该结合匝道桥所受的承载能力的特点,本文结合个人多年实际工作经验,就匝道桥计算方法和设计要点展开探讨,希望能够起到抛砖引玉的作用。 【关键词】匝道桥;计算方法;设计要点 随着社会主义经济体制的不断完善,各行各业都不断进行改革和自我完善,从而提高在市场中的竞争力。伴随着我国高等级公路建设的快速发展,匝道桥在互通立交中的应用越来越谱表,通常情况下这些桥梁桥面的宽度都有严格的限制,一半在8~16m左右,弯道半径约为60~250m左右,且大多数情况下都位于缓和的曲线上,跨进位30m左右的比较多,这种结构设计应该采用弯桥梁,并且注意其所能承受的弯扭耦合作用,如果仅仅由于设计与施工的不恰当就会引起桥内测出现支座脱落,梁体向外侧移动的现象,甚至还会固结墩身开裂。本文结合匝道桥的特点,针对其计算方法和设计要点展开探讨,希望能够为今后的施工建设带来一些思考。 1.匝道桥设计要点 1.1超高的设置 根据多年实际工作经验发现,许多匝道桥都采用了小半径的曲线桥梁结构,对于平曲线设计而言,还对其半径作出了限制,通常情况下约为60m,与此同时还对超高值作出了限制。通常情况下超高值的设置主要有以下几种情况。第一通过桥梁调整。第二如果出现超高桥梁相同的情况,可以采用墩高或者是垫块的方式进行调整。第三利用铺装层进行调整,还可以综合运用铺装层和墩帽的形式。 1.2支座的设置 通常情况下匝道桥由于自重的作用都会产生扭矩,因此在设计的时候出了要考虑桥梁本身所能承受的最大抗扭刚度,抗扭矩外,还应该考虑匝道桥结构的稳定性,比如说要综合考虑支承所能承受的最大自重以及活载偏载所产生的扭矩。因此在设计支座的时候要遵循以下原则。第一,梁端支座在布置时应该在综合考虑其承载力的机场上,进一步考虑横向支座的承载力,通常情况下支座的数目应该控制在两个以下以免出现支座脱空的现象。第二,对于墩高较大的独柱式中敦的支点设置而言,应该采用墩梁的固结构造,这样的结构设计可以充分利用桥墩的柔性特点来满足所需的变形要求,更重要的是它可以解决费用,最大的发挥经济效益。第三两个支座之间的间距应该尽可能的做大,根据多年实践工作经验发现支撑方式的不同对曲线桥梁的上下部受力情况存在着很大影响,因此在进行桥

预应力混凝土现浇箱梁设计体会

目录 1总体设计 (2) 1.1施工方法的选择 (2) 1.2桥跨布置 (2) 1.3混凝土材料 (2) 1.4结构体系 (2) 2结构构造及尺寸 (3) 2.1梁高 (3) 2.2横截面形式 (3) 2.3细部尺寸 (3) 2.4其它 (5) 3结构计算一般规定 (5) 3.1计算项目 (5) 3.2纵向计算 (5) 3.3桥面板横向分析模型 (6) 3.4横隔梁计算模型 (6) 3.5其它 (6) 4预应力体系设计注意事项 (9) 4.1一般原则 (9) 4.2支架现浇 (9) 4.3悬浇 (9) 5普通钢筋构造细节设计 (10) 6设计说明 (10) 7主要参考文献: (11)

预应力混凝土箱梁设计体会 1总体设计 1.1施工方法的选择 桥梁设计与施工方法相互制约,设计时需要结合建设条件、工期、造价等因素,选择合适的施工方法。常用的施工方法有支架整体现浇、简支-连续施工、支架逐孔现浇、悬臂施工、转体施工、顶推施工等。 1.2桥跨布置 桥梁孔跨布置受地形、桥下通车、通航等因素制约。在条件允许的情况下,力求受力合理、施工方便、孔跨配置协调一致。 一般情况下,等高度中小跨径连续梁可采用相同跨径;中大跨径的变高度连续梁各中跨宜采用相同跨径(或渐变),边跨跨径宜为中跨跨径的0.55~0.6倍(悬臂施工,边跨跨径一般取1/2L+5~15m);对墩梁固结的箱梁,应合理选择边中跨比例,以减小墩身弯矩。 大跨径在设计中考虑设置一定的凸形竖曲线,如果路线纵断面设置困难,也可考虑在不影响两端接线线形的前提下设置局部竖曲线,这对于降低桥梁标高控制的难度,保证桥梁建成后的外观线形均有较大的意义。建议桥面铺装以厚度控制为原则,桥面线条圆顺即可。 1.3混凝土材料 混凝土强度等级一般采用C50。设计困难的,可采用C55。 1.4结构体系 1、结构体系 (1)大跨径结构根据桥墩高度、联长等因素,经计算确定是否采用连续梁还是连续刚构,原则上尽量采用刚构体系。 (2)对于桥墩较矮、联长较大、墩高相差较大的,可采用连续梁体系或连续——刚构体系。 (3)对于匝道桥,为增大刚度、减小扭矩,有条件时尽可能采用双支座形式或墩梁固结。 2、支座布置 (1)通常连续梁一联仅设置一个纵向固定支承,但若该处桥墩不能独立承受纵向水平力时,可考虑设置多个纵向固定支承。 (2)横向每个墩台位均需设置一个横向固定支座。 (3)在每个墩位处,一般布置两个支座;当采用独柱墩时,可只布置一个支座;当桥宽较大时,可布置两个以上支座。 (4)支座横桥向布置位置对横梁受力状况有较大影响;支座横向布置时,还应考虑支

匝道现浇箱梁计算书分解

汕湛高速揭博项目T11标项目部 质量/环境/职业健康安全管理体系作业文件 文件名称:九和互通D匝道桥现浇箱梁支架计算书 文件编号:SLQL-QEO-C-SZ- 版号:A/0 ________________ 受控状态: __________________ 复核人:________________ 审核人:________________ 批准人:________________ 生效日期:______________

编制人: ____________________

九和互通D匝道现浇箱梁支架计算书 一、箱梁概况及支架设计概况 1、箱梁概况 端头断面图 则I 国I 标准断面图 图箱梁横断设计概况图 2、支架设计概况 1)满堂式碗口支架 满堂式碗扣式支架适用于第一联的N0.1~3孔,和第四联的NO.10孔现浇箱。采 用规格为? 48*3.5mm标准杆件进行搭设。支架间距设置为: ①沿横桥向箱梁腹板范围内立杆按间距0.6m布置,底板范围内立杆间距按0.9m布置,翼板下立杆间距按0.9m+1.2m设置;

②沿纵桥向立杆间距除中横隔板位置均按0.9m 布置,中横隔板下两排按纵距60cm 布置; ③横杆步距按1.2m 设置。采用落地满堂碗口支架的立杆下部设置螺旋调整底座,底座与地基间摆放一层起分布荷载作用的垫木,垫木厚5cm,按横桥向放置;采用混合支架的立杆直接置于22b#工字钢上。 支架顶部设螺旋调整顶托,顶托上按顺桥向设置纵梁,纵梁采用10#槽钢,连接处设在顶托上,“[”向放置,重叠长度》20cm。纵梁上均布10cm*10cm方木,间距30cm。 2)钢管碗扣式混合支架 钢管支墩采用?630mm钢管,壁厚为6mm,高度为9.0m,顶部焊接10mm厚钢板,钢板尺寸为80cm*80cm,并用1cm厚的三角钢板进行加固。两端排设置三根钢管及其钢管桩基础跨径为4.0m+4.0m布置,中间排采用6根钢管柱和基础,跨径为2.2mn+3.6m+2.2m布局,钢管支墩与基础之间通过钢板焊接连接,焊接时必须保证支墩的垂直度。横向钢管两侧之间采用[10 "x" 字连接,以保证整体的稳定性,具体见附图图号SZJB-11-D7。。 钢管支墩顶部横桥向设双拼125工字钢作为主承重梁,长度980cm,纵向采用单层双排贝雷梁直接架立在工字钢上,定位后贝雷梁两侧设置钢板挡块进行限位固定。贝雷架上部顺桥向按间距90cm或60cm放置I22b工字钢作为次承重梁,长度600cm。。(详见施工图) 二、支架计算内容 1、在上构施工荷载工况作用下,施工支架的内力和应力情况; 2、在上构施工荷载工况作用下,支架地基验算;底模主横梁的挠度和应力情况; 3、在上构施工荷载工况作用下,底模体系(包括主横梁、主纵梁、面板)挠度和应力情况; 三、支架计算 1. 受力验算原则:该桥现浇箱梁梁高均为1.5m,为保证支架设计的总体安全,并根据支架高 度不同设计两种不同类型支架,验算必须清晰,本次支架验算按以下原则进行: 1)现浇箱梁施工时,箱梁梁端伸缩缝处90%以上荷载由盖梁墩柱承担,横隔梁 位于墩顶处时,90%以上荷载由墩柱直接受力,故此两处受力在验算时不再考虑。 2)第二、三联每跨跨中均设置了横隔梁,受力验算时选择以下断面进行: ①第一种:跨径线0.6m ,为标准断面,下为碗扣式支架; ②第二种:跨径线0.6或1.0m,为标准断面,下为钢管墩+贝雷梁+碗扣式组合支架。 2. 第一种支架受力验算 1)荷载计算

弯桥研究现状综述

弯桥研究现状综述

目录 1.1弯桥概述 (1) 1.2研究现状 (2) 参考文献 (7)

弯桥研究现状综述 1.1弯桥概述 弯桥通常指桥面中心线在平面上为曲线的桥梁。在各类桥梁结构中,平面弯桥是特殊的一类,无论梁桥、拱桥、斜拉桥还是悬索桥,都有弯桥的工程实例。在各类弯桥结构中,以梁式弯桥最多,斜拉桥次之,拱桥和悬索桥较少。梁式弯桥多的原因是大多数弯桥跨径都在100m以下,这种跨径采用梁式结构无论设计、施工还是经济性都具有优势。超过100m跨径的弯桥,斜拉桥则加入竞争。拱式弯桥多见于低等级路线上的小桥或涵洞,以石桥为主。悬索桥则特殊少见。 图1-1 北京四元桥图1-2 杭州上石立交桥 弯桥,目前大致可分为五种情况:①以直代曲弯桥;②现浇结构弯桥; ③高墩弯桥;④砟道小半径弯桥;⑤钢混结构弯桥。 弯桥的出现大致归为两个原因:①跨越地形地物的需要。山区道路的展线一般要顺应地形,因此路线设计以曲线为主,尤其是高等级公路对线型要求较高,不可避免地要出现大量弯桥斜桥。②线路设计的需要。在高速公路或城市立交的出口或转向,会将常出现弯桥或砟道弯桥。弯桥的出现时桥梁设计发展的必然结果,它一方面给桥梁设计增加了难度,另一方面也使桥梁与自然更为融合,增加了视觉美感。弯桥的发展某种意义上体现了一个国家经济及交通的发展。在国外交通发达的国家中,不仅城市出

现多层次立交枢纽,而且在高速公路、快速干道上,多层次立交桥比比皆是。目前国内交通基础建设也是如此,不仅公路上采用弯桥,铁路上同样采用弯桥。与直桥相比,弯桥的建设并不经济,且在施工工艺方面还有其特殊要求。但就整条线路而言,采用弯桥使线形美观流畅,行车舒适,避免了桥和线路成直角接线,减少了车辆急拐弯造成的行车事故,这种社会效益是不可估量的。 1.2研究现状 据资料显示,最初的曲线梁桥是德国1914年建成的一座铁路钢桁架桥。上世纪70年代以来,曲线梁桥随着钢筋混凝土、预应力混凝土结构的广泛应用在国外城市立交及公路桥梁建设得以大量修建,其中最具代表性的如1972年建造的加拿大西尔维尓路桥、1974年建成的瑞士Cailon桥、法国于1976年完成的Let Naweiliai桥、1982年建成的加拿大弓河桥、美国于1983年建成的北卡罗莱纳州莱茵海湾高架桥等。另外1987年竣工的日本Aomori Bridge为三跨预应力混凝土连续箱梁桥,全桥长496m,其最小半径仅有40m。20世纪90年代后西方发达国家应用的曲线梁桥材料主要以钢板、钢箱梁和钢-混凝土组合梁为主。随着曲线梁桥的大量修建,应运而生发展的施工方法也多种多样,如现浇、悬臂施工、顶推等方法在曲线桥的设计和施工中均得到了较多应用并日趋成熟,表1-1为部分国外已建成的曲线梁桥。 对于曲线梁桥的研究以及应用方面我国起步都晚于国外,因此与国外比存在不小差距。国际上曲线梁桥在70年代得到大发展,而国内是在80年代以后才慢慢赶超;特别是在1979年美国著名的汉斯教授第一次被邀请来到国内介绍了弯梁桥的设计理论后,我国对弯桥的研究及应用才有了迅猛的发展,在之后的公路和城市工程建设中,曲线梁桥开始得以大量修建,而这其中又尤以城市立交发展最快,特别是北京、天津、广州、深圳等一线大城市的立交、高架工程及高速公路工程中,修建了诸多具有代表性的曲线梁桥,使得我国的曲线梁桥的理论研究和工程实践中取得了丰硕的成果。如北京市四元桥、东便门立交桥、天津市蝶形立交桥等。90年代以后,由于对曲线桥理论研究的日趋深入,从而设计和施工水平得到进一步的提高,更是修建了大量的曲线梁桥。

RC弯桥截面设计

IIl结构分析和试验研究 翼板剪滞系数及有效宽度的比较表、\比较内容 均值应力最大剪滞有效分布总翼板宽有效宽度 (h伊a)系数宽度(nun)度(mm)比 方法类型、\ 上翼板一1.75106∞20400O93变分法 下翼板5.34l091378150092 上翼板一1681203209400080有限元法 下翼板50010814l0150094 上翼板一l75I133333400083试验值 下翼板534l03l加l150093从翼板的最大剪滞系数及有效分布宽度值来看,三者的剪滞系数值比较接近,其中空间有限元法值既精确,又偏于保守,可据此方法来计算翼板在不同情况的有效分布宽度,同时由试验实测结果也说明所建立的箱梁空间计算模型是可行的。 四、结束语 室内模型试验表明简支波形钢腹板组合箱梁在竖向荷载作用下,其上、下翼板均出现了典型的正剪力滞效应,即波形钢腹板与翼板交界处的混凝土翼板纵向正应力大于其他位置的正斑力。上翼板剪滞效应稍大于下翼板,但两者剪力滞系数比较接近。空间有限元分析既可由模型试验结果得到验证,同时又可依据所建立的有限元模型对模型试验梁作更大范围即更多项目的研究。 参考文献 l罗旗帜,俞建立.钢筋混凝土连续箱粱桥翼板横向裂缝问题.桥梁建设,1997(1):4l~44 2蔡千典,冉一元,波形钢腹板预应力结合箱粱结构特点的探讨,桥梁建设。1994.1 3方诗圣,胡成,吴文清.微混凝土模型材料基本性能试验研究.合肥工业大学学报,1999,22(5):76一锣一 4项贻强.箱型梁桥翼板的有效宽度及对规范的建议.中国公路学会桥梁工程学会1989年学术会议论文集。1989.10 RC弯桥截面设计的计算模型分析 张敬珍陈偕民徐岳 (长安大学公路学院) 摘要:随着立交桥数量的不断增多,弯桥也开始被广泛使用。但精确的设计理论还有待进一步完善和深入研究。弯桥的受力较直桥复杂得多,截面设计相应难度大,而弯桥的截面设

MIDAS弯桥 计算书

3.1打板坡枢纽互通式立交B匝道桥 本桥平面位于圆曲线(起始桩号:BK0+225.186,终止桩号:BK0+455.45,半径:710m,右偏)、缓和曲线(起始桩号:BK0+455.45,终止桩号:BK0+535.451,参数A:238.328,右偏)、缓和曲线(起始桩号:BK0+535.451,终止桩号:BK0+615.451,参数A:116.619,左偏)和圆曲线(起始桩号:BK0+615.451,终止桩号:BK0+791.296,半径:170m,左偏)上,纵断面位于R=3000m的竖曲线上;墩台径向布置。 全桥共6联:前三联采用先简支后连续T梁,后三联采用现浇箱梁(5-21.753+ (22+36+22)+5-20;下部结构采用柱式墩,墩台采用桩基础。22号桥台及14、17号桥墩采用GJZ250x350x54型四氟滑板式橡胶)支座;10、11、20、21号桥墩采用GYZ800x125型板式橡胶支座;12、13号桥墩采用固接;15、16、18、19号桥墩采用固接;其余桥墩采用GYZ600x110型板式橡胶支座. B匝道桥桥型布置图 1. 第四联计算 本联计算的设计规范及标准、计算参数及荷载取值等参见第一章。 本联计算采用空间梁单元模型,12#(26.6m)、13#(32.2m)桥墩采用墩梁固结,桥台及交接墩采用四氟滑板支座,桥墩位置采用圆板支座。 全桥分为150单元,其中上部结构共计92个单元,下部结构58个单元。其中边界条件按支座设计情况模拟,本联施工方式为分段成桥,施工阶段步骤如下:施工阶段1 :第一施工阶段,持续时间30天; 施工阶段2 :第二施工阶段,持续时间30天; 施工阶段3 :养护60天,持续时间60天; 施工阶段4 :铺装及栏杆,持续时间60天;

箱梁匝道桥设计技术规定

天津市工程建设标准DB DBxx-xxx-2009 天津市市政公路 箱梁匝道桥设计技术规定 2009-8-xx发布2009-10-xx试行 天津市城乡建设和交通委员会

前言 随着我市社会经济的快速发展,港口城市的功能作用越发明显,交通运输量不断加大,载重车辆日益增多,针对目前我市交通状况,为进一步加强箱梁匝道桥结构安全、提高桥梁的使用寿命,结合我市软土地基的实际情况由天津市建交委组织天津市市政设计研究院等单位编制了《天津市市政公路箱梁匝道桥设计技术规定》(以下简称“技术规定”)。 本“技术规定”在编写过程中,遵照有关国家现行强制性标准、规范、行业规范等,并在广泛征求意见的基础上编制完成。 本“技术规定”主要内容有:总则、结构计算、总体布置要求、构造要求等内容。 本“技术规定”由天津市城乡建设和交通委员会负责管理,由天津市市政设计研究院负责具体技术内容的解释,请各单位在执行过程中,结合工程实际认真总结经验,如有修改和补充之处,请将意见反馈至天津市市政工程设计研究院(地址:天津市和平区营口道239号,邮编:300051)。 主编单位:天津市市政工程设计研究院 参编单位:天津城建设计院有限公司 主要起草人:曹景、刘旭锴、韩振勇、张振学

目录 1 总则----------------------------------------------------------------------------------------------------3 2 结构计算------------------------------------------------------------------------------------------------4 3 总体布置------------------------------------------------------------------------------------------------7 4 构造要求------------------------------------------------------------------------------------------------9 附件《天津市市政公路箱梁匝道桥设计技术规定》条文说明-------------------------------11

匝道桥施工方案.doc

匝道桥施工组织设计 第一章编制说明 1.1 编制依据 1.1.1 《鹤岗至大连高速公路通化至新开岭(吉辽界)段设计图》1.1.2 我单位进一步现场踏勘所掌握的情况和资料; 1.1.3 招标文件规定的适用于本工程的各种施工规范和技术措施;1.1.4 我单位现有的施工技术、管理水平和机械设备配备能力及从事道路桥梁工程建设的经验。 1.1.5 施工组织总设计的有关规定和要求。 1.2 编制原则 1.2.1 在充分理解招标文件的基础上,采用先进、合理、经济、可行的施工方案。 1.2.2 在施工组织中体现环保意识,保护环境,并有较周密的环保措施。 1.2.3 施工工艺与施工规范、设计要求及招标文件要求相符,并力求达到完善。 1.2.4 施工任务划分合理,施工进度安排符合实际情况。 1.2.5 采用先进、配套的施工设备和技术,确保工程质量和工期。 1.2.6 针对本工程的地质情况和气候特征,有目的地优选施工方案。第二章工程慨况 2.1 工程慨述

赤柏互通CK0+961匝道桥,横跨一条现状公路(鹤大公路),设计为3跨20m+25m+20m,全长65m,桥宽8.0m,下部基础设计为钻孔灌注桩,1、2号墩柱设计为桩、柱,0、3号桥台设计为桩、承台、盖梁、肋板式桥台,上部结构设计为后张法预应力现浇箱梁,高度为1.4米,桥面宽度为8.0米。箱梁采用支架整体现浇施工。 赤柏互通CK0+961匝道桥,平面线形在圆曲线上,曲线半径R=550米,曲线左偏,纵向坡度0.891% 。 箱梁采用C50现浇混凝土,预应力钢绞线采用φS15.20钢绞线束,钢绞线应符合GB/T5224-2003的规定,公称面积140mm2,标准强度 f pk=1860MPa,弹性模量E p= 1.95×105MPa,锚具采用OVM或同类型的定型锚具,预应力孔道均采用塑料波纹管成孔,技术条件应符合JT/T529-2004的要求。 钢板除特殊说明外,均采用低合金高强度结构钢Q345E,技术条件应符合《低合金高强度结构钢》(GB/T-1591)规定的要求。 2.2 设计标准 2.2.1 设计计算行车速度:30~80公里/小时 2.2.2 菏载等级:公路—Ⅰ级 2.2.3 桥面总宽及组成: 0.5米(护栏)+7.0米(行车道)+0.5米(护栏) 2.2.4 地震烈度:小于Ⅵ度,地震动峰值加速度<0.05g 2.3 地质及水文条件 桥址区位于一条现状公路上并横跨该公路,与一条现状公路衔接。地形

弯桥直做折做弯做

弯桥直做、折做、弯做 弯桥直做:腹板是直线的,曲线线型又悬臂宽度调整。如1楼所说,大半径曲线梁一般可采用这种形式。 弯桥折做:腹板在中横隔梁位置有明显折角。曲线线性又腹板折角和悬臂宽度共同调整。弯桥弯做:腹板线性与曲线线性相同。悬臂等宽。小半径曲线梁的时候常用。 我只在预制T梁、预制工字梁的时候采用这种弯桥折做的形势。因为在预制的时候不可能把梁肋做成曲线吧,只能依靠悬臂来调整。而且,在预制T梁和工字梁的梁段连续处做成折的横梁还是比较好实现的。所以我一般只在这两种型式的梁的时候才会采用弯桥折做。至于弯折角度的问题我觉得主要还是看曲线半径,曲线T梁一般都有最小半径要求。 弯桥直做------桥梁所处平曲线半径较大,可以不考虑曲线影响,即可按直线桥做, 弯桥折做------桥梁所处平曲线半径较小,必须考虑曲线影响,即桥梁每跨按直线做,每跨的梁与梁之间有夹角。 使用直线来近似拟合曲线。 弯桥弯做------桥梁所处平曲线半径较小,采用现浇梁(桥梁也是弯曲的型式)处理桥梁的方式。 平行布置:全桥的所有墩台方向均一致,一般是取全桥中心处桩号的切线为基准,将此切线向右转动一个角度得到墩台轴线防线,这个角度也成为右角。此时同跨的所有梁板长度一致。而各个墩台的右角均不一致(当桥梁在曲线上时) 径向布置,每一处墩台的轴线都和本桩号的切线成固定角度,(这个角度一般为90度,

但把范围放大,把意义引申,只要角度一致也可以) 如果曲线半径大,采用径向布置,此时内外侧梁板长度差很小。 如果曲线半径小,用平行布置,这样梁板长度差异小,如果用径向布置,除非是施工工艺采用现浇。 如果桥梁跨越道路,采用平行布置,这样桥下空间和道路平行。 如果桥梁跨越河流,一般跨河处较为空旷,线型标准高,半径大,所以采用径向布置,墩台和 河流稍有不平行无伤大雅。 以上几种考虑有时候要结合在一起,再决定是平行布置还是径向布置。 受到标准、地形、地质等诸多因素的限制,使得高速公路上一些简支梁桥因受路线平面线型控制而成了曲线桥。高速公路路幅宽,平曲线内外侧孤长差值大,位于平曲线上的简支梁桥,由于上、下行桥独立设置,所以在曲线上同一桥孔内、外侧的长度差是很明显的。在设计中为了设计和施工简便,一般根据桥梁各自的具体情况(包括所在的平曲线半径、孔数、跨径等),分别按弯桥直作和弯桥折作对桥梁墩台进行布设,简化为直线桥。 合理 假定 (1)、位于平曲线 上的简支梁桥,在平面上按折线进行布设。即以路线全幅中心线上各墩台中心的连线作为桥跨轴线,将曲线桥转化为折线桥(如图1中A、B、C为各墩中心); (2)、相邻两桥墩(台)中心的曲线长度与其弦长之差忽略不计。即图1中AB和BC的曲线长分别等于AB和BC弦长; (3)、位于平曲线上桥梁的交角α为沿路线前进方向,曲线在各墩台中心处的切线与各墩台横桥向墩轴线的夹角。 1 弯桥直作 当平曲线半径较大,并且全桥范围内外孤长差值不大,中失≤20cm,可采用弯桥直作,他可分为两种方法:一种是经线法,当中失≤10cm,可以路线全幅中心线上两桥台中心的连线作为桥跨轴线,将曲线桥转化为直线桥;另一种是平分中失法,当中失>10cm,可以路线全幅中心线上两桥台中心的连线偏移1/2中失作为桥跨轴线,将曲线桥转化为直线桥。曲线线形由护栏调节。如果中失≤50cm,对通讯管道布设没影响,也可考虑弯

公路桥梁施工图设计指引

施工图设计指导原则

桥梁设计小组二OO八年十月

第一章桥涵设计 一、设计采用的主要技术指标 1、路基宽度参见“路基扩建宽度分布示意图(一)~(二)”,桥梁标准宽度主要为52m 和42m两种,同时结合相应上部结构横向布置图一起使用。 主线桥涵的汽车荷载等级:公路-I级;被交路,高速及一级公路:公路-I级,二级公路以及三、四级公路:公路-II级;四级以下:公路-II级乘以0.75系数采用。 2、地震作用:地震动峰值加速度等于0.05g,相当于基本地震烈度为VI度,特大桥及隧道等大型或重点工程按VII度设防。 二、设计深度 1、普通大桥、互通匝道桥及等级路分离式桥(线外桥)设计内容包括: (1)桥位平面图(分离式立交桥应包含被交路平纵数据及图纸) (2)全桥工程数量表 (3)桥型布置图(绘出结构分联示意图) (4)梁(或板)平面布置图(含弯斜桥的布置方法示意,直线桥梁无此图) (5)箱梁一般构造图、钢束布置图、钢筋布置图等(非预制结构绘制,预制结构统一绘制通用图) (6)桥台一般构造图及相应钢筋布置图(钢筋图包括肋板、承台、桩基或扩大基础钢筋图;台帽、座板、支座垫石、耳背墙、牛腿、挡块、U台侧墙钢筋图及U台台后排水统一绘制通用图) (7)桥墩一般构造图及钢筋布置图(一般构造图应标示出控制点标高、支座垫石位置及布置大样、地面横向地面线;钢筋图包括墩柱钢筋图、系梁钢筋图、承台钢筋图、桩基或扩大基础钢筋图;墩帽、支座垫石、挡块钢筋图统一绘制通用图)(8)桥台锥坡布置图 (9)墩台基础坐标示意图 2、特殊大桥及匝道桥,除上述图纸外,应有: (1)特殊结构相关图纸 (2)施工工序图 (3)对拆除重建桥梁要理顺新旧桥桩基础相对关系,桩基的利用原则。 3、需要拼接的桥梁,在拼接之前,原则上不能切除原桥防撞栏,除上述图纸外,

预应力混凝土弯箱梁桥设计及实验研究

预应力混凝土弯箱梁桥设计及实验研究 随着社会经济的快速发展,城市高架桥及城市全互通立交桥在各大中城市中陆续出现。由于城市中影响设计施工的因素较多,就不可避免的需要修建较半径大跨径的城市桥梁。以往遇到这样的情况,往往是尽量在被交路中心设墩减小桥梁跨径,或采用钢结构形式,总是避免较小半径预应力混凝土弯箱梁桥的设计,这样势必会造成其他方面的损失(不必要的房屋拆迁、管道迁移,工程造价的大幅增加等)。 济南市顺河高架桥北延工程全长 4.12Km,全部采用高架桥型式。路线起终点分别设北绕城互通立交和北园路互通立交,其中北园路立交为5层全定向立交,为当时山东省内规模最大、技术标准较高的城市内立交。北园路作为济南市的东西向快速干道,要求桥梁跨越该路时既要注意交通畅通,也要考虑景观因素,因此立交主线桥和匝道桥必须一孔跨越。经过预应力混凝土箱梁和钢箱梁的比选,钢箱梁因造价太高被放弃,决定采用三跨变截面预应力连续弯箱梁刚架结构。其中A匝道桥平面设计线半径仅为112.3m,跨径组合为33+50+33=116m,箱梁底缘从根部到跨中按二次抛物线变化。本桥采用两阶段支架对称施工,施工接缝设在边跨距中墩11m处,接缝处设置张拉横梁,中跨内设置三道构造横梁。中墩墩柱为250x120cm圆倒角矩形断面,墩高14m,墩梁固结。(见图一) 图一桥梁纵横向断面图(尺寸单位:cm) 本桥设计中分别采用了平面杆系(GQJS)程序、空间杆系(桥梁博士)程序和通用有

限元(ANSYS)程序对施工过程和使用状态进行了计算分析,计算结果互相吻合良好。计算采用以下工况,分别是: 1)在支架上浇注50米主跨及边跨距墩顶11m悬臂段; 2)待混凝土强度达到85%以后;张拉预应力钢束,张拉完毕后及时封锚灌浆; 3)用联接器连接预应力钢束,在支架上浇注两侧边跨的22m合拢段; 4)待混凝土强度达到85%以后;张拉预应力钢束,张拉完毕后及时封锚灌浆;然后拆除支架; 5)安装护栏,浇筑桥面铺装;全桥形成。 图二空间有限元计算模型 为了对理论分析计算进行验证,同时也为了检验桥梁的施工质量及其强度、刚度和承载力等指标是否满足设计,我们对A匝道桥进行了施工阶段的现场测试和各级试验荷载作用下的现场试验。1.在第一、二施工阶段预应力钢筋张拉前、后检测桥梁结构主要截面的应变和变形。2.在各级试验荷载作用下检测桥梁结构主要截面的应变、变形。用钢弦应变计测梁体及桥墩的应变值,沿纵向分别在墩顶、边墩、边跨跨中、中跨跨中、中跨1/4跨等控制断面布置测点。每个截面沿箱梁外表面设5~10个测点,共用68个应变计。用全站仪和高精度水准仪分别观测桥梁结构控制截面控制点的平面位移和竖向位移。采用荷载等效原则,根据三种工况用30吨重载重汽车按指定位置进行加载。其中工况一为使边跨产生最大正弯矩,工况二为使墩顶产生最大负弯矩,工况三为使主跨产生最大正弯矩。综上试验各项内容所测数据及其变化规律,实测值接近于用空间有限元分析的理论计算值,采用通用有限元程序ANSYS对本桥进行结构分析和数值计算是准确可靠的。各项试验指标均满足《桥规》和《试验方法》的要求。结构工作状态良好,处于弹性工作阶段,也满足规范对于全预应力结构正常使用极限状态的要求。 通过北园路互通立交A匝道桥的设计计算分析、试验检测,对较大跨径预应力混凝土弯桥施加预应力是充分有效和可靠的,关键是要控制好施工质量和材料质量,以往的失败工程桥例许多是在这两方面出了问题造成的,比选方案钢桥虽然具有可以预制拼装、施工

相关主题
文本预览
相关文档 最新文档