当前位置:文档之家› 多元函数微分法及其应用四

多元函数微分法及其应用四

多元函数微分法及其应用四
多元函数微分法及其应用四

第八章 多元函数微分法及其应用

Chapter8 Differentiation of Functions of Several Variables and Its Application

8.1多元函数的基本概念(The Basic Concepts of Functions of Several Variables ) 定义1 设D 是2R 的一个非空子集,称映射:f D R →为定义在D 上的二元函数,通常记为()(),,,z f x y x y D =∈或(),z f P P D =∈。其中点集D 称为该函数的定义域,x 、y 称为自变量,z 称为因变量。

Definition 1 Let D be a nonempty subset of 2R ,we call the mapping :f D R → the function of two variables defined on ,usually denoted by ()(),,,z f x y x y D =∈,or (),z f P P D =∈.The set D is called the domain of the function .We call x and y the independent variables and z the dependent variable.

定义2 设二元函数()(),f P f x y =的定义域为D ,()000,P x y 是D 的聚点。如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点()()0

0,,P x y D U P δ∈?,都有 ()(),f P A f x y A ε-=-<成立,那么就称常数A 为函数(),f x y 当()()00,,x y x y →时的极限,记作

()()

()00,,lim ,x y x y f x y A →=或()()()()00,,,f x y A x y x y →→, 也记作()0lim P P f P A →=或()()0f P A P P →→。

Definition 2 Let D be the domain of the function ()(),f P f x y = of two variables, ()000,P x y be a point of accumulation of D.If there exists a constant A, such that, for each 0ε> there is a corresponding 0δ> such that ()(),f P A f x y A ε-=-<,provided that ()()0

0,,P x y D U P δ∈?, then we call the constant A the limit of (),f x y as ()()00,,x y x y →. 定义3 设二元函数()(),f P f x y =的定义域为D ,()000,P x y 是D 的聚点,且0P D ∈。如果()()()()0000,,lim ,,x y x y f x y f x y →=,则称函数(),f x y 在点()000,P x y 连续。 Definition 3 Let D be the domain of the function ()(),f P f x y =of two variables, ()000,P x y be a point of accumulation of D and 0P D ∈. If

()()()()0000,,lim ,,x y x y f x y f x y →=,

then we say that (),f x y is continuous at the point ()000,P x y .

定义4 设二元函数()(),f P f x y =的定义域为D ,()000,P x y 是D 的聚点。如果函数(),f x y 在点()000,P x y 不连续,则称()000,P x y 为函数(),f x y 的间断点。

Definition 4 Let D be the domain of the function ()(),f P f x y =of two variables , ()000,P x y be a point of accumulation of D. If (),f x y is not continuous at ()000,P x y , then we say that ()000,P x y is a discontinuity point of (),f x y .

性质1(有界性与最大值最小值定理)在有界闭区域D 上的多元留恋许函数f ,必定在D 上有界且一定能取得它的最大值和最小值。

Property 1 (Boundedness and max-min theorem) Let f be a continuous function of several variables on a closed region D, then f has an absolute maximum and an absolute minimum on the region. In particular, f must be bounded on the region.

性质2 (介值定理)在有界闭区域D 上的多元连续函数f ,必定在D 上取得界于最大值M 与最小值m 之间的任何值。

Property 2 (Intermediate Value Theorem) Let f be a continuous function of several variables on a closed region D, then f can obtain any number between its absolute maximum M and its absolute minimum m.

8.2偏导数(Partial Derivative )

定义 设函数(),f x y 是关于,x y 的二元函数,如果y 固定为常数0y y =,则()0,f x y 是关于x 的一元函数。它在0x x =的导数叫做(),f x y 在关于x 的偏导数,记作()00,x f x y 。即

()()()

0000000,,,lim x x f x x y f x y f x y x ?→+?-=?

类似地,(),f x y 在()00,x y 关于y 的偏导数,记作()00,y f x y ,由

()()()

0000000,,,lim y x f x y y f x y f x y y ?→+?-=?所给出。

Definition Suppose that (),f x y is a function of two variables x and y . If y is held constant , say 0y y =, then ()0,f x y is a function of the single variable x .Its derivative at 0x x =is called the partial derivative of (),f x y with respect to x at 0x x =and is denoted by ()00,x f x y . Thus

()()()

0000000,,,lim x x f x x y f x y f x y x ?→+?-=?.

Similarly, the partial derivative of (),f x y with respect to y at ()00,x y ,and is denoted by

()00,y f x y and is given by

()()()

0000000,,,lim y x f x y y f x y f x y y ?→+?-=?.

定理 若xy f 和yx f 在开集S 连续,则对于S 的每一点有xy yx f f =。

Theorem If xy f and yx f are continuous on an open set S, then xy yx f f =at each point of S.

8.3全微分(Total Differential )

定义 如果函数(),z f x y =在点(),x y 的全增量

()(),,z f x x y y f x y ?=+?+?-

可表示为()()(),,z A x y x B x y y o ρ?=?+?+,其中ρ=则称函数(),z f x y =在点(),x y 可微分,而()(),,A x y x B x y y ?+?称为函数(),z f x y =在点(),x y 的全微分,记作dz ,即

()(),,dz A x y x B x y y =?+?。

Definition If the total increment of the function (),z f x y =at (),x y can be expressed as

()()(),,z A x y x B x y y o ρ?=?+?+,where ρ=, then (),f x y is said to be differentiable at (),x y . ()(),,A x y x B x y y ?+? is called the total differential of (),z f x y = at (),x y , denoted by dz , i.e. ()(),,dz A x y x B x y y =?+?.

定理1(必要条件)如果函数(),z f x y =在点(),x y 可微分,则该函数在点(),x y 的偏导数/,/z x z y ????必定存在,且函数(),z f x y =在点(),x y 的全微分为z z dz x y x y ??=?+???。 Theorem 1 (Necessary Condition) Suppose the function (),z f x y = is differentiable at (),x y ,then its partial derivative /,/z x z y ????at (),x y exist, and the total differential of (),z f x y =at (),x y is given by z z dz x y x y

??=?+???. 定理2 (充分条件)如果函数(),z f x y =在点(),x y 的偏导数/,/z x z y ????连续,则函数在该点可微分。

Theorem 2 (Sufficient Condition) If (),z f x y =has continuous partial derivatives

/,/z x z y ????at (),x y , then (),f x y is differentiable at (),x y .

8.4链式法则(The Chain Rule )

定理1 设函数()x x t =和()y y t =在点t 可微,(),z f x y =在点()()(),x t y t 可微。则 ()()(),z f x t y t =在点t 可微且dz z dx z dy dt x dt y dt

??=+??。 Theorem 1 Let ()x x t =and ()y y t =be differentiable at t, and let (),z f x y = be differentiable at ()()(),x t y t . Then ()()(),z f x t y t =is differentiable at t and dz z dx z dy dt x dt y dt

??=+??. 定理2 设()(),,,x x s t y y s t ==在点(),s t 具有一阶偏导数,且(),z f x y =在点 ()()(),,,x x s t y y s t ==可微,则复合函数()()(),,,z f x s t y s t =在点(),s t 的一阶偏导数存在,且有

,z z x z y z z x z y s x s y s t x t y t

??????????=+=+??????????。 Theorem 2 Let (),x x s t = and (),y y s t =have first partial derivatives at (),s t ,and let (),z f x y =be differentiable at ()()(),,,x x s t y y s t ==. Then ()()(),,,z f x s t y s t =has first partial derivatives at (),s t , and

,z z x z y z z x z y s x s y s t x t y t

??????????=+=+??????????. 8.5隐函数的求导公式( Derivative Formula for Implicit Function ) 假设方程(),0F x y =确定了y 为x 的隐函数,比如()y g x =但是()g x 的显式表达式很难或者不可能求出来。我们依然可以求出/dy dx 。应用链式法则,方程(),0F x y =两边对x 求导。我们得到0F dx F dy x dx y dx ??+=??,解得//dy F x dx F y

??=-??。 Suppose that (),0F x y = defines y implicitly as a function of x, for example, ()y g x =but that the function ()g x is difficult or impossible to determine. We can still find /dy dx . Let ’s differerntiate both sides of (),0F x y =with respect to x using the Chain Rule. We obtain 0F dx F dy x dx y dx ??+=??. Solving for //dy F x dx F y

??=-??. 假设z 是由方程(),,0F x y z =所确定的x 和y 的隐函数,两边关于x 求偏导数,保持y 不

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

高等数学习题详解第7章多元函数微分学(精品文档)

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1235y x z + +=-。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

多元函数微分学总结

`第八章 多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理 解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必 要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1. 二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈o I 时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这一点 致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时, ()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

§8.5复合函数微分法

§8.5多元复合函数微分法 复习:一元复合函数的求导法则 设)]([x f y ?=是由)(u f y =和)(x u ?=复合而成,则)()(x u f dx du du dy dx dy ?'?'=?=。 8.5.1全导数 定理1 若函数)(x u ?=及)(x v ψ=都在点x 可导,函数)v ,u (f z =在对应点)v ,u ( 处可微,则复合函数)](),([x x f z ψ?=在点x 可导,且 x d v d v z x d u d u z dx z d ? ??+???=(全导数公式)。 ① 证明:给x 以增量x ?,则u 、v 得相应的增量u ?、v ?, 从而)v ,u (f z =有全增量) ,() ,(v u f v v u u f z -?+?+=?, ∵)v ,u (f z =在)v ,u (处可微, ∴)(ρ+???+???= ?o v v z u u z z ,其中22)()(v u ?+?=ρ。 ∵)(x u ?=、)(x v ψ=都在点x 可导, ∴)(x u ?=、)(x v ψ=都在点x 必连续, 即当0→?x 时,0→?u ,0→?v ,从而0lim 0 =ρ→?x 。 ∵ x o x v v z x u u z x z ?ρ+????+????=??)(, 而x o o x x ?ρ?ρρ=ρρ→?→?)(lim )(lim 00])()([lim )(lim 220 0x v x u o x x ??+??±?ρρ=→?→? 0])()([022=+±?=dx dv dx du , ∴ x o x v v z x u u z x z x x x x ?ρ+????+????=??→?→?→?→?) (lim )(lim )(lim lim 0000, 即 x d v d v z x d u d u z dx z d ? ??+???=。

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学复习题及答案

多元函数微分学复习题及 答案 Last revision on 21 December 2020

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????11000,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = ,2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

多元函数微分法及其应用

第九章多元函数微分法及其应用 一、基本要求及重点、难点 1. 基本要求 (1)理解二元函数的概念,了解多元函数的概念。 (2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。 (3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件 和充分条件。 (4)了解方向导数与梯度的概念及其计算方法。 (5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。 (6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。 (7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。 (8)理解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉 格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。 2. 重点及难点 (1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。 (2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。。 二、内容概述 多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。 1.多元函数的极限和连续 (1)基本概念 1)点集和区域。 2)多元函数的定义、定义域。 3)二元函数的极限、连续。 (2)基本定理 1)多元初等函数在其定义域内是连续的。 2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值 M和最小值m之间的任何值。 2.多元函数微分法 (1)基本概念

偏导数、全微分、高阶偏导数的定义。 (2) 计算方法 1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数 x x x z =??,就是一元函数 ),(0y x f z = 在0x x =处的导数;对y 的偏导数 x x x z =??(同理)。 2) `全微分:),(y x f z =的全微分dy y z dx x z dz ??+??= 3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同 条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。 A. 设),(v u f z =,)(),(t v t u ψ?==,则全导数dt dv v z dt du u z dt dz ??+ ??=。 B. 设),(v u f z =,),(),,(y x v y x u ψ?== 则: x v v z x u u z x z ????+ ????=??,y v v z y u u z y z ????+????=??。 4) 隐函数求导法则: A. 设函数)(x f y =由隐函数0),(=y x F 确定,则 y x F F dx dy -=。 B. 设函数),(y x f z =由隐函数0),,(=z y x F 确定,则 z x F F dx dz -=,z y F F dy dz - =。 C. 设函数)(),(x g z x f y ==由隐函数方程组?? ?==0 ),,(0 ),,(z y x G z y x F 确定,从 ???? ?='+'+='+'+0)()(0 )()(x g G x f G G x g F x f F F z y x z y x ,求出导数)(),(x g x f ''。 (3) 多元函数连续、可导、可微的关系 (4) 基本定理

相关主题
文本预览
相关文档 最新文档