当前位置:文档之家› Arcgis操作 第九章 水文分析

Arcgis操作 第九章 水文分析

Arcgis操作 第九章 水文分析
Arcgis操作 第九章 水文分析

第九章 水文分析

水文分析是DEM 数据应用的一个重要方面。利用DEM 生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 基于DEM 地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和分析,可再现水

流的流动过程,最终完成水文分析过程。

本章主要介绍ArcGIS 水文分析模块的应用。ArcGIS 提供

的水文分析模块主要用来建立地表水的运动模型,辅助分析地

表水流从哪里产生以及要流向何处,再现水流的流动过程。同

时,通过水文分析工具的应用,有助于了解排水系统和地表水

流过程的一些基本概念和关键过程。

ArcGIS 将水文分析中的地表水流过程集合到ArcToolbox

里,如图11.1所示。主要包括水流的地表模拟过程中的水流

方向确定、洼地填平、水流累计矩阵的生成、沟谷网络的生成

以及流域的分割等。

本章1至5节主要是依据水文分析中的水文因子的提取过

程对ArcGIS 中的水文分析工具逐一介绍。文中所用的DEM

数据在光盘中chp11文件夹下的tutor 文件夹里面,每个计算

过程以及每一节所产生的数据存放在tutor 文件夹的result 文件

夹里面,文件名与书中所命名相同,读者可以利用该数据进行

参照练习。本章最后一节还提供了三个水文分析应用的实例。

9.1 无洼地DEM 生成

DEM 一般被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM 表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,使得在进行水流流向计算时在该区域得到不合理的或错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM 。

洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,然后计算出这些的洼地区域的洼地深度,最后以这些洼地深度为参考而设定填充阈值进行洼地填充。

9.1.1 水流方向提取

水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS 中通过

将中心栅格的8个邻域栅格编码,水流方向便可由其中的某一值来确定,

图11.2 水流流向编码

图11.1 ArcToolBox 中的 水文分析模块

栅格方向编码如图11.2所示。

例如:如果中心栅格的水流流向左边,则其水流方向被赋值为16。输出的方向值以2的幂值指定是因为存在栅格水流方向不能确定的情况,此时需将数个方向值相加,这样在后续处理中从相加结果便可以确定相加时中心栅格的邻域栅格状况。

水流的流向是通过计算中心栅格与邻域栅格的最大距离权落差来确定。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2、8、32、128,则栅格间的距离为2倍的栅格大小,否则距离为1。

ArcGIS中的水流方向是利用D8算法(最大距离权落差)来计算水流方向的。具体计算步骤如下:

1.在ArcMap中单击ArcToolbox图标,启动ArcToolbox;

2.展开Spatial Analysis Tools工具箱,打开Hydrology工具集;

3.双击Flow Direction工具,弹出(如图

11.3所示)水流方向(Flow Direction)

计算对话框;

(1)I nput surface data文本框中选择输入的

DEM数据:dem。

(2)在Output flow direction raster文本框中

命名计算出来的水流方向文件名为

flowdir,并选择保存路径;

(3)若选中Force all edge cells to flow

outward(Optional)前的复选框,指所有

图11.3 水流方向Flow Direction计算对话框在DEM数据边缘的栅格的水流方向全

部是流出DEM数据区域。默认为不选择。这一步为可选步骤;

(4)输出drop raster。drop raster是该栅格在其水流方向上与其临近的栅格之间的高程差与距离的比值,以百分比的形式记录,它反映了在整个区域中最大坡降的分布情况。这一步为可选步骤;

(5)单击OK按钮,完成操作。按钮,完成操作。计算出的水流方向数据结果如图11.4所示。

图11.4 利用Flow Direction工具计算出来的水流方向图

9.1.2 洼地计算

洼地区域是水流方向不合理的地方,可以通过水流方向来判断哪些地方是洼地,然后对洼地填充。但是,并不是所有的洼地区域都是由于数据的误差造成的,有很多洼地是地表形态的真实反映。因此,在进行洼地填充之前,必须计算洼地深度,判断哪些地区是由于数据误差造成的洼地而哪些地区又是真实的地表形态,然后在洼地填充的过程中,设置合理的填充阈值。

1.洼地提取

(1)双击Hydrology工具集中的Sink工具,

弹出洼地计算对话框,如图11.5所示;

(2)在Input flow direction raster文本框中,

选择水流方向数据flowdir;

(3)在Output raster文本框中,选择存放的

路径以及重新命名输出文件为sink;

图11.5 洼地计算对话框

(4) 单击OK 按钮,完成操作。计算结果如图11.6所示,深色的区域是洼地。 2. 洼地深度计算

(1

) 双击Hydrology 工具集中的Watershed 工具,弹出流域计算对话框,如图11.7所示,

它用来计算洼地的贡献区域;

(2) 在Input flow direction raster 文本框中

选择水流方向数据flowdir ,在Input

raster or feature pour point 文本框中选

择洼地数据sink ,在pour point field

文本框中选择value ;

(3) 在Output raster 文本框中设置输出数

据的名称为watershsink ;

(4) 单击OK 按钮,完成操作。计算出的

洼地贡献区域如图11.8所示;

图11.7 洼地贡献区域计算对话窗口(watershed )

图11.6 计算出来的洼地区域

(5) 计算每个洼地所形成的贡献区域的最低高程;

1) 打开Spatial Analysis Tools 工具箱中Zonal 工具集,双击Zonal Statistic 工具,弹出

如图11.9所示的分区统计对话框;

2) 在Input raster or feature zonal data

文本框中,选择洼地贡献区域数据

watershsink ;

3) 在Input value raster 文本框中选择

dem 作为value raster ;

4) 在Output raster 文本框中将输出数

据文件命名为zonalmin ,存放路径

保持不变;

5) 在统计类型选择的下拉菜单中选

择最小值(MINIMUM )作为统计

类型;

6) 单击OK 按钮,完成操作。

(6) 计算每个洼地贡献区域出口的最低高程即洼地出水口高程;

1) 打开Spatial Analysis Tools 工具箱中Zonal 工具集,双击Zonal Fill 工具,弹出如图

11.10所示的Zone Fill 对话框;

2) 在Input zone raster 文本框中选择watershsink ,在Input weight raster 文本框中选择

dem ,在Output raster 文本框中将输出数据命名改为zonalmax ;

3) 单击OK 按钮,完成操作。

(7) 计算洼地深度。

图11.8 计算出来的洼地贡献区域

图11.9 分区统计对话框

1) 在ArcMap 中加载Spatial Analyst 模块,单击Spatial Analyst 模块的下拉箭头,单击

Raster Calculator 命令,弹出Raster Calculator 对话框,如图11.11所示;

2) 在文本框里面输入sinkdep = ( [zonalmax] - [zonalmin]),然后单击evaluate 按钮进行

计算。

对于以上(5)、(6)步的计算,可以利用Spatial Analysis Tools 工具箱中的Map Algebra 工具集的Multi Map Output 工具。如图11.12所示。

对于第(5)步,在文本框中输入:E:\chp11\tutor\result\zonalmin = zonalmin

(E:\chp11\tutor\result\watershsink, E:\chp11\tutor \dem);

对于第(6)步,在文本框中输入:E:\chp11\tutor\result\zonalmax = zonalfill

(E:\chp11\tutor\result \watershsink, E:\chp11\tutor \dem);

经过以上七步的运算,就可到所有洼地贡献区域的洼地深度,如图11.13所示。通过对研究区地形的分析,可以确定出哪些洼地区域是由数据误差而产生,哪些洼地区域又是真实的反映地表形态,从而根据洼地深度来设置合理的填充阈值。

图11.11 洼地深度计算对话框

图11.10 洼地贡献区域边缘最低高程计算对话框

图11.12 map algebra 计算对话框

9.1.3 洼地填充

洼地填充是无洼地DEM生成的最后一个步骤。通过洼地提取之后,可以了解原始的DEM上是否存在着洼地,如果没有存在洼地,原始DEM数据就可以直接用来进行河网生成、流域分割等。而洼地深度的计算又为在填充洼地时设置填充阈值提供了很好的参考。

1.双击Hydrology工具集中的Fill工具,弹出如图11.14所示的洼地填充对话框;

2.在Input surface raster文本框中,选择

需要进行洼地填充的原始DEM数据;

3.在Output surface raster文本框中设置

输出文件名为filldem;

4.在Z limit文本框中输入阈值,在洼地

填充过程中,那些洼地深度大于阈值

的地方将作为真实地形保留,不予填

充;系统默认情况是不设阈值,即所

有的洼地区域都将被填平。

5.单击OK按钮,完成操作。计算后的

无洼地DEM如图11.15所示。图11.14 洼地填充对话框

图11.13 计算出的洼地深度图

当一个洼地区域被填平之后,这个区域与附近区域再进行洼地计算,可能还会形成新的洼地。因此,洼地填充是一个不断反复的过程,直到所有的洼地都被填平,新的洼地不再产生为止。

9.2 汇流累积量

在地表径流模拟过程中,汇流累积量是基于水流方向数据计算得到的。汇流累积量的基本思想是认为以规则格网表示的数字地面高程模型每点处有一个单位的水量,按照自然水流

从高处流往低处的自然规律,根据区域地形的水流方向数据计算每点处所流过的水量数值,便得到了该区域的汇流累积量。由水流方向数据到汇流累积量计算的过程如图11.16所示。

1.基于无洼地DEM的水流方向的计算。计算过程同上一节水流方向的计算一样,使用的

DEM数据是无洼地DEM。将生成的水流方向文件命名为fdirfill;

2.在得到水流方向之后,可以利用水流方

向数据计算汇流累积量。双击

Hydrology工具集中的Fill Accumulation

工具,打开汇流累积量计算对话框。如

图11.17所示;

(1)在Input flow direction raster文本框中,

图11.15 经过洼地填充生成的无洼地DEM

图11.17 汇流累积量计算对话框

图11.16 汇流累积量的计算

水流方向数据汇流累积数据

选择由无洼地DEM 生成的水流方向栅格数据fdirfill ;

(2) 在Output accumulation raster 文本框中输出数据命名为flowacc ;

(3) 在Input weight raster 文本框中输入权重数据,权重数据一般是考虑到降水、土壤以及

植被等对径流影响的因素分布不平衡而得到的,对每一个栅格赋权重能更详细模拟该区域的地表特征。如果无权重数据,系统默认所有的栅格的权重为1;

(4) 单

击OK 按钮,完成操作。结果如图11.18所示。

9.3水流长度

水流长度通常是指在地面上一点沿水流方向到其流向起点(或终点)间的最大地面距离在水平面上的投影长度。水流长度直接影响地面径流的速度,从而影响对地面土壤的侵蚀力。因此,水流长度的提取和分析在水土保持工作中有很重要的意义。目前,在ArcGIS 中水流长度的提取方式主要有两种:顺流计算和溯流计算。顺流计算是计算地面上每一点沿水流方向到该点所在流域出水口的最大地面距离的水平投影;溯流计算是计算地面上每一点沿水流方向到其流向起点的最大地面距离的水平投影。

ArcGIS 中水流长度的提取操作如下:

1. 双击Hydrology 工具集中的Flow

Length 工具,弹出计算水流长度的对话

框,如图11.19所示;

2. 在Input flow direction raster 文本框中

选择基于无洼地DEM 提取出的水流方

向数据fdirfill ;

3. 在Output raster 文本框中命名输出的水

流长度栅格数据文件名称。分别进行顺

流计算和溯流计算,输出的数据文件分

别命名为Flowlendown 和Flowlenup ; 4. 计算方向可以选择Downstream (顺流

计算)或Upstream (朔流计算);

图11.18 通过计算生成的汇流累积量数据

图11.19 flow length 的计算窗口

5. 输入权重数据。顺流计算时,结果表示沿着水流方向到下游流域出水口中最长距离所流

经的栅格数;溯流计算时,结果表示沿着水流方向到上游栅格的最长的距离的栅格数;

6. 当设置完成后,单击OK 按钮,完成操作。

两种方向计算出的结果如图11.20和图11.21所示。

9.4河网的提取

基于DEM

的水文分析,其中一个内容就是要得到地表的水流网络。目前常用的河网提取方法是地表径流漫流模型:首先在无洼地DEM 上利用最大坡降法得到每一个栅格的水流方向;然后利用水流方向栅格数据计算出每一个栅格在水流方向上累积的栅格数,即汇流累积量。假设每一个栅格携带一份水流,那么栅格的汇流累积量就代表着该栅格的水流量。基于上述思想,当汇流量达到一定值的时候,就会产生地表水流,所有汇流量大于临界值的栅格就是潜在的水流路径,由这些水流路径构成的网络,就是河网。

9.4.1 河网的生成

1. 河网的生成是基于汇流累积量数据的,其计算步骤见11.2节,这里用11.2节计算的汇

流累计栅格数据flowacc 作为基础数据;

2. 设定阈值。不同级别的沟谷对应不同的阈值,不同研究区域相同级别的沟谷对应的阈值

也是不同的。所以,在设定阈值时,应通过不断的实验和利用现有地形图等其它资料辅助检验的方法来确定合适的阈值;

3. 栅格河网的形成。利用Map Algebra 工具集中的Multi Map Output 工具中的Con 命令或

者Setnull 命令进行有条件的查询可得到栅格河网。其思想是利用所设定的阈值对整个区域分析并生成一个新的栅格图层,其中汇流量大于设定阈值的栅格的属性值设定为1,而小于或等于设定阈值的栅格的属

性值设定为无数据。栅格河网的生成也

可以利用ArcMap 中的Spatial Analysis

分析模块下的Raster Calculator 计算。

将计算出来的栅格河网命名为

streamnet ;

4. 栅格河网矢量化。在Hydrology 工具集

中双击Stream to Feature 工具,如图

图11.20 顺流方向上的水流长度 图11.21逆流方向上的水流长度

图11.22 栅格河网转换成矢量河网对话框

11.22所示;在Input stream raster 文本框中,选择streamnet ;在Input flow direction raster 文本框中,输入由无洼地计算出来的水流方向数据fdirfill ;在Output polyline features 文本框中将输出的数据命名为streamfea 。生成的矢量数据如图11.23所示。

9.4.2 Stream Link 的生成

Stream link 记录河网中一些节点之间的连接

信息,主要记录河网的结构信息。如图11.24

所示,Stream link 的每条弧段连接着两个作为出水点或

汇合点的结点,或者连接着作为出水点的结点和

河网起始点。

因此通过提取Stream link 可以得到每一个河

网弧段的起始点和终止点。同样,也可以得到该

汇水区域的出水点。这些出水点对于水量、水土流失等研究具有重要意义。出水口点的确定,为进一步的流域分割做好了准备。操作如下:

1. 在ArcMap 里加载水流方向数据fdirfill 和栅格河网数据streamnet ;

2. 双击Hydrology 工具集中的Stream Link 工具,弹出如图11.25所示的stream link 计算的

对话框。在Input stream raster 文本框中选择streamnet ,在Input flow direction raster 文本框中选择fdirfill 。在Output raster 文本框中将输出数据命名为StreamLink 。

图11.24 Stream link 示意图 弧段

结点 图11.23 栅格河网转换成的矢量河网框

3.单击OK按钮,完成操作。

Stream link的生成将栅格河网分成不包含汇合点的栅格河网片段,并对片断进行记录,其属性表中除了记录该片段的ID号之外,还记录着每个片段所包含的栅格个数。如图11.26所示。

9.4.3 河网分级的生成

河网分级是对一个线性的河流网络以数字标识的形式划分级别。在地貌学中,对河流的分级是根据河流的流量、形态等因素进行。不同级别的河网所代表的汇流累积量不同,级别越高,汇流累积量越大,一般是主流,而那些级别较低的河网则是支流。这对于研究水流的运动、汇流模式,及水土保持等具有重要的意义。

在ArcGIS的水文分析中,提供两种常用的河网分级方法:Strahler分级和Shreve分级。如图11.27所示,Strahler分级是将所有河网弧段中没有支流河网弧段分为第1级,两个1级河网弧段汇流成的河网弧段为第2级,如此下去分别为第3级,第4级,……,一直到河网出水口。在这种分级中,当且仅当同级别的两条河网弧段汇流成一条河网弧段时,该弧段级别才会增加,对于那些低级弧段汇入高级弧段的情况,高级弧段的级别不会改变;Shreve 分级的第1级河网的定义与Strahler分级是相同的,所不同的是以后的分级,两条1级河网

弧段汇流而成的河网弧段为2级河网弧段,那么对于以后更高级别的河网弧段,其级别的定义是由其汇入河网弧段的级别之和,如图所示,当一条3级河网弧段和一条4级河网弧段汇流而成的新的河网弧段的级别为7,这种河网分级到最后出水口的位置时,其河网的级别数刚好是该河网中所有的1级河网弧段的个数。

在ArcGIS中对河网分级的步骤如下:

图11.26 StreamLink的属性框图11.25 StreamLink计算对话框

图11.27 Strahler分级和Shreve分级示意图

Strahler分级

1 1

1 1

1

1

1

2

2

2

2

2

3

Shreve分级

1 1

1 1

1

1

1

2

3

2

7

4

3

1. 在ArcMap 里加载水流方向数据fdirfill 和栅格河网数据streamnet ;

2. 双击Hydrology 工具集中的Stream Order 工具,弹出Stream Order 对话框。在Input stream

raster 文本框中选择streamnet ,在Input flow direction raster 文本框中选择fdirfill 。分别用Strahler 分级和Shreve 分级对河网进行分级,将输出数据分别命名为Streamostr 和Streamoshr ;

3. 单击OK 按钮,完成操作。计算出的两种河网分级分别结果如图11.28和图11.29所示。

对于stream link 和stream order 计算出的栅格数据同样可以利用Hydrology 工具集中的stream to feature 工具将其转化成矢量数据便于进一步的研究和分析。

9.5流域的分割

流域(watershed

)又称集水区域,是指流经其中的水流和其它物质从一个公共的出水口排出从而形成的一个集中的排水区域,如图11.30所示。也可以用流域盆地(basin )、集水盆地(catchment )或水流区域(contributing area )等来描述流域。Watershed 数据显示了区域内每个流域汇水面积的大小。汇水面积是指从某个出水口(或点)流出的河流的总面积。出水口(或点)即流域内水流的出口,是整个流域的最低处。流域间的分界线即为分水岭。分水线包围的区域称为一条河流或水系的流域,流域分水线所包围的区域面积就是流域面积。

图11.28 河网的Strahler 分级结果 图11.29 河网的Shreve 分级结果

9.5.1 流域盆地的确定

流域盆地是由分水岭分割而成的汇水区域,是通过对水流方向数据的分析确定出所有相互连接并处于同一流域盆地的栅格。首先要确定分析窗口边缘的出水口的位置,所有的流域盆地的出水口均处于分析窗口的边缘。流域盆地集水区的确定是找出所有流入出水口的上游栅格的位置。

在ArcGIS 中,流域盆地的计算的操作如下:

1. 双击Hydrology 工具集中的Basin 工具,打开流域盆地计算的对话框。如图11.31所示。

2. 输入水流方向数据fdirfill ,设置输出数

据文件名为basin 。

3. 单击OK 按钮,完成操作。

在ArcMap 中加载上一节计算出的矢量

河网数据在以及刚得到的basin 数据,如图

11.32所示。所有流域盆地的出口都在研究区

域的边界上,利用流域盆地分析,可将感兴趣的流域划分出来。

图11.30 集水区域

集水区域边界

分水岭

水流网络

集水区域出口

子集水区域

图11.31 流域盆地计算的对话框

图11.32 计算出的流域盆地(线状图形为矢量河网数据)

9.5.2 汇水区出水口的确定

在水文分析中,通常需要基于更小的流域单元进行分析,这样就需要进行流域的分割。流域的分割首先要确定小级别流域的出水口的位置,可以通过Spatial Analysis Tools工具箱下的Hydrology工具集中的Snap Pour Point的工具来寻找。它的思想是利用一个记录着潜在但并不准确的小级别流域的出水口的位置的数据层,在该点位置上在以指定距离在汇流累积量的数据层上搜索那些具有较高汇流累积量栅格点的位置,这些搜索到的栅格点就是小级别的流域的出水点。也可以利用已有的出水点的矢量数据。

如果没有出水点的栅格或矢量数据,可以用已生成的stream link数据作为汇水区的出水口数据。因为stream link数据中隐含着河网中每一条河网弧段的联结信息,包括弧段的起点和终点等,而弧段的终点可以看作是该汇水区域的出水口所在位置。

9.5.3 集水流域的生成

对于一个小集水流域的生成,思想如下:先确定出水点,即该集水区的最低点,然后结合水流方向数据,分析搜索出该出水点上游所有流过该出水口的栅格,直到搜索到流域的边界,即分水岭的位置。

1.首先在ArcMap中打开水流方向数据fdirfill和流域出口点数据streamlink;

2.双击Hydrology工具集中的Watershed工具,打开集水区域(贡献区域)计算的对话框。

分别在水流方向数据和出水口数据的文本框中选择fdirfill和streamlink数据,设置输出数据文件名为watershed。

3. 单击OK 按钮,完成操作。结果如图11.33所示,为了更好的表现流域的分割效果,在

此窗口中还加载了流域盆地和矢量河网的数据。可以看出:通过streamlink 作为流域的出水口数据所得到的集水区域是每一条河网弧段的集水区域,也就是要研究的最小沟谷的集水区域。

9.6实例与练习

9.6.1利用水文分析方法提取山脊、山谷线

1. 背景:作为地形特征线的山脊线、山谷线对地形、地貌具有一定的控制作用。它们与山

顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。同时由于山脊线具有分水性,山谷线具有合水性特征使得它们在工程应用方面具有特殊的意义。因此在数字地形分析中,山脊线和山谷线的提取和分析是具有很大应用价值的。

2. 目的:了解基于DEM 的水文分析方法提取出山脊线和山谷线的原理;掌握水流方向、

汇流累积量的提取原理及方法;能够利用水文分析的方法与其它空间分析方法相结合以解决实际应用问题。

3. 要求:

(1) 利用水文分析思想和工具提取研究区域的山脊线;

(2) 利用水文分析思想和工具提取研究区域的山谷线。

4. 数据:一幅25m 分辨率的黄土地貌DEM 数据,区域面积大约有140 km 2。数据存放于

随书光盘…/ChP11/Ex1目录中。

5. 算法思想:

山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,可以利用水文分

析的方法进行提取。

对于山脊线而言,由于它同时也是分水线,而分水线的性质即为水流的起源点。所

以,通过地表径流模拟计算之后,

这些栅格的水流方向都应该只具有流出方向而不存在图11.33 集水区域的计算结果

流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,即山脊线;对于山谷线而言,可以利用反地形的特点,即利用一个较大的数值减去原始的DEM数据,得到与原始地形完全相反的地形数据,使得原始的DEM中的山脊变成反地形的山谷,而原始DEM中的山谷在反地形中就变成了山脊,再利用山脊线的提取方法就可以实现山谷线的提取。但是这种方法会出现提取出的山脊和山谷位置有些偏差,可以利用正、负地形来加以纠正。

基于DEM利用水文分析的方法提取山脊线和山谷的技术流程如图11.34所示。

图11.34 山脊线和山谷线的提取流程图

6.操作步骤

(1)正负地形的提取

1)启动ArcToolbox,展开Analysis Tools工具箱,打开Hydrology工具集。在ArcMap 中加载研究区域的原始DEM数据,如图11.35所示;

2)加载Spatial Analyst模块,单击Spatial Analyst模块的下拉箭头,单击Neighborhood Statistics菜单工具,利用邻域分析的方法以11×11的窗口计算平均值。计算结果

命名为meandem;

3)单击Spatial Analyst中的Raster Calculator菜单工具,对原始DEM数据与邻域分析之后的数据meandem做减法运算,并将运算结果重分为两级,分级界线为0,则

大于0的区域在原始DEM上就是正地形区域,小于0的区域在原始DEM上就是

负地形区域。

4) 对上一步得到的二值化数据进行两次重分类,一次将正地形区域属性值赋值为1,

负地形区域属性赋值为0,命名为zhengdixing ;另一次将正地形区域属性值赋值为0,负地形区域属性赋值为1,命名为fudixing 。结果分别如图11.36、图11.37所示。

(2) 山脊线的提取

1) 在ArcMap 中加载研究区域的原始DEM 数据,如图11.35所示;

2) 洼地填充:双击Hydrology 工具集中的Fill 工具,进行原始DEM 的洼地点填充。

在Input surface raster 文本框中选择原始DEM 数据dem ,将输出数据命名为filldem ,因为选择的是将所有洼地全部填充,所以Z limit 为默认值;

3) 基于无洼地的水流方向的计算:双击Hydrology 工具集中的Flow Direction 工具,

在Input surface raster 文本框中选择填充过的无洼地DEM 数据filldem ,将输出的水流方向数据命名为flowdirfill ;

4) 汇流累积量的计算:双击Hydrology 工具集中的Flow Accumulation 工具。选择

flowdirfill 作为输入的水流方向数据;输出数据命名为flowacc1;

5) 汇流累积量为零值的提取:加载Spatial Analyst 模块,单击Spatial Analyst 模块的

下拉箭头,单击Raster Calculator 菜单,打开栅格计算对话框,在文本框中填写汇流累积量为零值的提取公式:facc0 = (flowacc = 0),然后单击evaluate 进行计算;

6) 在ArcMap 中打开facc0,会发现有很多的地方并不是山脊线,因此需对此数据做

如下处理:利用邻域分析的方法,对facc0进行3×3邻域分析,求均值,使数据变得光滑,处理后的数据命名为neiborfacc0;

7) 单击Spatial Analyst 模块中的Surfer Analyst 中的Countline 和Hillshade 菜单命令,

分别生成原始DEM 的等值线图ctour 和晕渲图hillshade 。

8) 在neiborfacc0数据上单击右键,单击Properties 命令,进行重新分级,将数据分为

两级,这时需要不断调整分级临界点,并以等值线图和晕渲图作为辅助判断。属性值越接近于1的栅格越有可能是山脊线的位置,最终确定的分界阈值为0.5541;

9) 将进行过二值化的neiborfacc0进行重分类为reneibor ,将属性值接近1的那一类的

属性值赋值为1,其余的赋值为0。

图11.37负地形区域(图中深色区域)

图11.36正地形区域(图中深色区域)

图11.35 研究区域的DEM 数据

10)利用Spatial Analyst菜单下的Raster Calculator将重分类过后的neiborfacc0数据与正地形数据zhengdixing相乘,就消除了那些存在于负地形区域中的错误的山脊线。

然后将计算结果进行重分类,所有属性不为1的栅格属性值赋为NO DATA。就得

到了山脊线,如图11.38所示。

图11.38 计算出的研究区域的山脊线

(图中深色区域为山脊线,背景为该区域的晕渲图)

(3)山谷线的提取

1)在ArcMap中加载原始DEM数据,如图11.35所示;

2)加载Spatial Analyst模块,单击Spatial Analyst模块的下拉箭头,单击Raster Calculator菜单工具,打开栅格计算对话框;在文本框中填写反地形的计算公式:

fandem =Abs (dem-2000),单击evaluate按钮进行计算。得到与原始DEM地形完全

相反的反地形数据,如图11.39所示。反地形计算完毕之后,山谷线的提取就和山

脊线的提取步骤一样的,直到最终利用重分类的方法将重新分级的邻域分析后的结

果二值化为止。这里不需要对反地形DEM进行洼地填充。计算过程中的数据名称

分别为:水流方向数据为flowdirfan,汇流累积数据为flowacc2,零值汇流累积量

提取数据为flowacc0fan,对flowacc0fan进行3×3邻域分析求均值后的结果数据

为nbfacc0fan,并将其分级改为两级,分级阈值为0.65677。

(完整word版)Arcgis操作第九章水文分析

第九章 水文分析 水文分析是DEM 数据应用的一个重要方面。利用DEM 生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 基于DEM 地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和分析,可再现水 流的流动过程,最终完成水文分析过程。 本章主要介绍ArcGIS 水文分析模块的应用。ArcGIS 提供 的水文分析模块主要用来建立地表水的运动模型,辅助分析地 表水流从哪里产生以及要流向何处,再现水流的流动过程。同 时,通过水文分析工具的应用,有助于了解排水系统和地表水 流过程的一些基本概念和关键过程。 ArcGIS 将水文分析中的地表水流过程集合到ArcToolbox 里,如图11.1所示。主要包括水流的地表模拟过程中的水流 方向确定、洼地填平、水流累计矩阵的生成、沟谷网络的生成 以及流域的分割等。 本章1至5节主要是依据水文分析中的水文因子的提取过 程对ArcGIS 中的水文分析工具逐一介绍。文中所用的DEM 数据在光盘中chp11文件夹下的tutor 文件夹里面,每个计算 过程以及每一节所产生的数据存放在tutor 文件夹的result 文件 夹里面,文件名与书中所命名相同,读者可以利用该数据进行 参照练习。本章最后一节还提供了三个水文分析应用的实例。 9.1 无洼地DEM 生成 DEM 一般被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM 表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,使得在进行水流流向计算时在该区域得到不合理的或错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM 。 洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,然后计算出这些的洼地区域的洼地深度,最后以这些洼地深度为参考而设定填充阈值进行洼地填充。 9.1.1 水流方向提取 水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS 中通过 将中心栅格的8个邻域栅格编码,水流方向便可由其中的某一值来确定, 图11.2 水流流向编码 图11.1 ArcToolBox 中的 水文分析模块

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。 2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义! 6.计算流水累积量 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流量],按下图所示指定各参数: 1.7 确定后执行完成得到流水累积量栅格[flowacc_flow1] 如图: 7.提取河流网络 首先,提取河流网络栅格。 在上一步的基础上进行,打开【Arctoolbox】,运行工具[Spatial Anal yst 工具]——>[地图代数]——>[栅格计算器],在[地图代数表达式]中输入公式:Con(Flow Accumulation1>800,1),(这里的Flow Accumulat ion1要以上一步得到的文件名为准,注意是Con,不是con,大写第一个字母,不然出错)如图: [输出栅格]指定为:StreamNet保存路径和文件名任意)

ARCGIS水文分析

ARCGIS水文分析 水文分析是DEM数据应用的一个币要方式。利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的卞要输入数据。表ICI水文分析模型应用十研究与地表水流有关的各种自然现象如洪水水位及泛滥情况,或者一划定受污染源影响的地区,以及预测当某一地区的地貌改变时一对整个地区将造成的影响等,应用在城市和区域规划、农业及森林、交通道路等许多领域,对地球表ICI形状的理解也具有}一分要的b,义。这些领域需要知道水流怎样流经某一地区,以及这个地区地貌的改变会以什么样的方式影响水流的流动。 基十DEM的地表水文分析的卞要内容是利用水文分析土具提取地表水流径流模型的水流方向、汇流祟积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基木水文因子的提取和基木水文分析,可以在DEM表ICI之 上再现水流的流动过程,最终完成水文分析过程。 主要介绍ArcGIS水文分析模块的应用。ArcGIS提供的水文分析模块卞要用来建立地表水的运动模型,辅助分析地表水流从哪里产生以及要流向何处,再现水流的流动过程。同时,通过水文分析土具的应用,也可以有助了解排水系统和地表水流过程的一些基木的概念和关键的过程,以及怎样通过ArcGIS水文分析土具从DEM数据上获取更多的水文信息。 ArcGIS9将水文分析中的地表水流过程集合到ArcToolbox里,卞要包括水流的地表模拟过程中的水流方向确定、汁地填平、水流祟不}一矩阵的生成、沟谷网络 的生成以及流域的分割等。 1.无洼地DEM生成

DEM被认为是比较光滑的地形表n的模拟,但是由十内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM表ICI存在着一些}u}陷的区域。那么这些区域在进行地表水流模拟时一,由十低高程栅格的存在,从而使得在进行水流流向不}一算时一在该区域的得到不合理的或错误的水流方向,因此,在进行水流方向的不}一算之前,应该首先对原始DEM数据进行汁地填充,得到无洼地的DEMO 水流方向是指水流离开何一个栅格单儿时一的指向。在ArcGIS个邻域栅格编码,水流方向便可以其中的某一值来确定,栅格方向编码例如:如果中心栅格的水流流向I,边,则其水流方向被赋中通过将中心栅格的8值为160输出的方向值以2的幂值指定是因为存在栅格水流 方向不能确定的情况,此时一须将数个方向值相加,这样在后续处理中从相加结果便可以确定相加时一中心栅格的邻域栅格状己。 1.2水流流向编码 水流的流向是通过不}一算中心栅格与邻域栅格的最大距离权落差来确定。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2, 8, 32, 128,则栅格间的距离为2的开平方根,否则距离为1。 1.1.2洼地计算 注地区域是水流方向不合理的地方,可以通过水流方向来判断那些地方是注地,然后再对注地进行填充。有一点必须清楚的是,并不是所有的注地区域都是由十数 据的误差造成的,有很多洼地区域也是地表形态的真实反映,因此,在进行洼地填充之前,必须计算 注地深度,判断哪些地区是由十数据误差造成的注地而哪些地区又是真实的地表形态,然后在进行注地填充的过程中,设置合理的

ArcGIS之水文分析

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。

2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义!

如何使用ArcGIS进行水文分析(完整版)

如何使用ArcGIS 进行水文分析 对于做水利的朋友来说有时候需要进行水文的分析,今天给大家分享一下如何通过ArcGIS 进行水文分析,材料可以通过水经注万能地图下载器进行下载。工具/ 原料 水经注万能地图下载器ArcGIS 方法/ 步骤 1. 打开水经注万能地图下载器,框选上需要进行水文分析的地方并下载(图1) 图1 2.下载完成后会自动导出成tif 格式的高程DEM数据,将其加载到ArcGIS 内(图2)。【说明】:此处下载生成的tif 格式的图片即为大家常说的DEM数据,直接加载到ArcGIS 内即可使用。

图2 3. 点击“自定义”→“扩展模块”(图3),在弹出的对话框中将“空间分析” Spatial Analyst )工具勾选上(图4)。 图3

图4 4. 在ArcToolbox 中点击“ Spatial Analyst 工具”→“水文分析”→“填洼” (图5),在弹出的“填洼”对话框中按图 6 进行设置。其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。【特别说明】:为了保证最终分析成功,在最终的结果之前,所有输出的数据都默认保存名称和路径,这就需要我们记清楚哪个名称是对应的哪个成果,后面会有用。

图5 图6 5. 填洼完成后得到名称为 “ Fill_tif3 的填洼成 果, 在ArcToolbox 工具中点击Spatial Analyst 工具”→“水文分析”→“流向”图7 ),在弹出的“流 向” 对话框中进行如图8 所示的设置,将上一步得到 的 Fill_tif3 ”填洼数据作为

ArcGIS空间分析报告——找出某药材地生长区域

课程:ArcGIS空间分析 实验目的:利用GIS空间分析方法,结合等高线及温度和降水数据,在充分分析某药材的生长习性的情况下,找到其生长区域,从而能够更好的保护该药材的生长环境。 数据来源:本实验所采用的数据均来自ArcGIS地理信息系统空间分析实习教程,数据有:山区等高线数据contour.shp 和山区观测点采集的年平均温度和年总降水数据climate.txt. 实验要求:根据所给条件,确定某区域适合种植这种药材的范围,求出适合种植的面积。 (1)这种药材一般生长在沟谷两侧较近的区域(不超过 500m) (2)这种药材喜阳 (3)生长气候环境为年平均温度10度-12度 (4)年总降水量为550-680mm 实验流程:利用该山区等高线数据生成DEM,基于DEM进行水文分析,提取沟谷网络;基于DEM提取坡向数据,重分类划分阴阳坡。 利用观测点采集的年平均温度和年总降水数据分别进行表面内插,生成年平均温度栅格数据和年总降水栅格数据。提取年平均温度10度-12度的区域和年总降水为

550mm-680mm的区域。 综合叠加分析满足上述4个条件的区域,得到适合该药材生长的区域,并制作专题图,计算该适合区域的面积。实验步骤: 1.利用等高线,构建DEM。首先打开ArcMap,加载等高线数据,在ArcToolbox中,选择【3D Analyst】|【Tin 管理】|【创建Tin】工具,打开工具对话框,生成tin。空间参考依然导入contour相同的坐标系统。 2.将Tin转换成格网DEM,以便于进行表面分析和与其他数据的叠加分析。选择【3D Analyst工具】|【转换】|【由Tin转出】|【Tin转栅格】工具,打开工具对话框。

ArcGIS水文分析

实验四、水文分析-DEM应用 专业年级:地信071姓名:王媛媛学号:06407024 一、实验目的与要求 1.实验目的 水文分析:根据DEM提取河流网络,进行河网分级,计算流水累积量、流向、水流长度、根据指定的流域面积大小自动划分流域。 通过本实验应达到以下目的: 1理解基于DEM数据进行水文分析的基本原理。 ②掌握利用ArcGIS提供的水文分析工具进行水文分析的基本方法和步骤。 2.实验要求 ①了解水文分析工具 2DEM的预处理:填洼与削峰 3流向分析 4计算流水累积量 5计算水流长度(流程) 6提取河流网络 7流域分析 二、实验原理 水文分析基本步骤

①无洼地的DEM DEM被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如采石场或喀斯特地貌)的存在,使得DEM表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,从而使得在进行水流流向计算时得到不合理的或错误的水流方向,因此,在进行水流方向的计算之前,应该首先对原始DEM数据进行洼地填充,得到无洼地的DEM。 ②关键步骤:流向分析―――流向分析原理 水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS中通过将中心栅格的8个邻域栅格编码(D8算法),来确定水流方向。 方向约定如左图:共有八个方向,分别是2的n次方。 水流的流向是通过计算中心栅格与邻域栅格的最大距离权落差来确定的。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2、8、32、128,则栅格间的距离为SQRT(2)≈1.414,否则距离为1。如果高程差为正值,则为流出;负值则为流入。 ③汇流累积量 在地表径流模拟过程中,汇流累积量是基于水流方向数据计算而来的。对每一个栅格来说,其汇流累积量的大小代表着其上游有多少个栅格的水流方向最终汇流经过该栅格,汇流累积的数值越大,该区域越易形成地表径流。图有些地方的计算不是太理解 ④水流长度(流程) 水流长度通常是指在地面上一点沿水流方向到其流向起点(终点)间的最大地面距离在水平面上的投影长度。目前水流长度的提取方式主要有两种,一种是顺流计算(Downstream),一种是朔流计算(Upstream)。顺流计算是计算地面上每一点沿水流方向到该点所在流域出水口最大地面距离的水平投影;朔流计算者是计算地面上每一点沿水流方向到其流向起点间的最大地面距离的水平

ARCgiss水文提取2

利用ArcGIS水文分析工具提取河网的操作 DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个不步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox- >Spatial Analysis Tools->Hydrology->Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DEM采用第一步的Fill1_exam1 3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。 4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。 6.矢量河网处理 由于Stream to Feature工具.将所有栅格象素均转为矢量线段。所以要进行处理,方法是利用属性查询的方法把所有GRID_CODE为1的全部选择出来。导出就得到了由dem所生成的河网矢量。 7.处理结果 最后,得到的河网如下图所示。但是由于是栅格转换而来。生成的河网并不是连续的矢量。可以根据需要做简单的处理。

基于ArcGIS的水文分析原理

1基本原理 DEM是数字高程模型的英文简称(Digital Elevation Mode),是流域地形、地物识别的重要原始资料。自20世纪60年代以来,在利用数字高程模型DEM提取流域水文特征,模拟地表水文过程方面,国内外都开展了大量的研究。 1.1基于DEM进行流域分析的原理 从DEM提取流域特征,一个良好的流域结构模式是确定算法的前提和关键。1967年ShreveL¨描述的流域结构模式一直被后来的水文学者所引用.并设计了一些成熟的算法。 Shreve使用一个具有一个根的树状图来描述流域结构(如图1所示)。在这个结构中,主要包括两个部分,一部分是结点集,一部分是界线集。沟谷结合点和沟谷源点共同组成一个沟谷结点集。所有的沟谷段组成沟谷段集,形成一个沟谷网络;所有的分水线段组成分水线段集,形成一个分水线网络;沟谷段集和分水线段集共同组成界线集。 图1 流域结构模式图 (a) (b) (c) (f) (d) (e) (g) (h) 沟谷网络中的每一段沟谷都有一个汇流区域,这些区域由流域分水线集来控制。外部沟谷段有一个外部汇流区.而内部沟谷段有两个内部汇水区,分布在内部沟谷段的两侧。整个流域被分割成一个个子流域.每个子流域好象是树状图上的一片“叶子”。 Shreve的树状图流域结构模型是简单明确的.虽然沟谷网络的结点模型和线模型与在栅格DEM中用于表示沟谷结点和沟谷线的栅格点和栅格链之间存在着拓扑不一致性。但它给出了沟谷网络、分水线网络和子汇流区的定义,明确表达了它们之间的相关关系,成为设计流域特征提取技术的基础。

1.2常用算法 流向判定建立在3×3 的DEM 栅格网的基础上,其方法有单流向法和多流向法之分,但单流向法因其确定简单、应用方便而应用广泛。 1.2.1单流向法 单流向法假定一个栅格中的水流只从一个方向流出栅格,然后根据栅格高程判断水流方向。目前应用的单流向法是D8法。此外,还有Rho8 方法、DEMON 法、Lea 法和D∞法等。最常用的是D8 法:假设单个栅格中的水流只能流入与之相邻的8 个栅格中。它用最陡坡度法来确定水流的方向,即在3×3 的DEM 栅格上,计算中心栅格与各相邻栅格间的距离权落差(即栅格中心点落差除以栅格中心点之间的距离),取距离权落差最大的栅格为中心栅格的流出栅格。 所谓最陡坡度法的原理是假设地表不透水,降雨均匀.那么流域单元上的水流总是流向最低的地方“窗口滑动指以计算单元为中心,组合其相邻的若干个单元形成一个窗口”,以“窗口”为计算基本元素,推及整个DEM,求取最终结果。 目前应用最广泛的是基于流向分析和汇流分析的流域特征提取技术。Jenson and Domingue (1988)设计了应用该技术的典型算法,该算法包括3个过程:流向分析,汇流分析和流域特征提取。 1)流向分析:以数值表示每个单元的流向。数字变化范围是1~255。其中1:东;2:东南;4南;8:西南;16:西;32:西北;64:北;128:东北。除上述数值之外的其它值代表流向不确定,这是由DEM中洼地”和“平地”现象所造成的。所谓“洼地”即某个单元的高程值小于任何其所有相邻单元的高程。这种现象是由于当河谷的宽度小于单元的宽度时,由于单元的高程值是其所覆盖地区的平均高程,较低的河谷高度拉低了该单元的高程。这种现象往往出现在流域的上游。“平地指相邻的8个单元具有相同的高程,与测量精度、DEM单元尺寸或该地区地形有关。这两种现象在DEM 中相当普遍,Jenson and Domingue 在流向分析之前,将DEM进行填充;将“洼地”变成“平地”,再通过一套复杂的迭代算法确定“平地”流向。流向分析过程如图所示。

ArcGIS_9_教程_第11章_水文分析

第十一章 水文分析 水文分析是DEM 数据应用的一个重要方面。利用DEM 生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型应用于研究与地表水流有关的各种自然现象如洪水水位及泛滥情况,或者划定受污染源影响的地区,以及预测当某一地区的地貌改变时对整个地区将造成的影响等,应用在城市和区域规划、农业及森林、交通道路等许多领域,对地球表面形状的理解也具有十分重要的意义。这些领域需要知道水流怎样流经某一地区,以及这个地区地貌的改变会以什么样的方式影响水流的流动。 基于DEM 的地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和基本水文分析,可以在DEM 表面之上再现水流的流动过程,最终完成水文分析过程。 本章主要介绍ArcGIS 水文分析模块的应用。ArcGIS 提供的水文分析模块主要用来建立地表水的运动模型,辅助分析地表水流从哪里产生以及要流向何处,再现水流的流动过程。同时,通过水文分析工具的应用,也可以有助于了解排 水系统和地表水流过程的一些基本的概念和关键的过程,以 及怎样通过ArcGIS 水文分析工具从DEM 数据上获取更多的 水文信息。 图11.1 ArcToolBox 中的 水文分析模块 ArcGIS9将水文分析中的地表水流过程集合到 ArcToolbox 里,如图11.1所示。主要包括水流的地表模拟过 程中的水流方向确定、洼地填平、水流累计矩阵的生成、沟 谷网络的生成以及流域的分割等。 本章1至5节主要是依据水文分析中的水文因子的提取 过程对ArcGIS 中的水文分析工具逐一介绍。文中所用的 DEM 数据在光盘中chp11文件夹下的tutor 文件夹里面,每 个计算过程以及每一节所产生的数据存放在tutor 文件夹的 result 文件夹里面,文件名与书中所命名相同,读者可以利用 该数据进行参照联系。第6节主要是提供了三个使用水文分 析工具以及水文分析思想的实例。 11.1 无洼地DEM 生成 DEM 被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形

基于DEM的ArcGIS水文分析—河网和流域的提取

基于DEM的ArcGIS水文分析 —河网和流域的提取 一、实验背景 水文分析是DEM 数据应用的一个重要方面。而利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 二、实验目的 通过本实验,使读者理解基于DEM数据进行水文分析的基本原理,掌握利用ArcGIS 提供的水文分析工具进行水文分析的基本方法和步骤,并利用DEM数据提取出河网及流域。 三、实验数据 某地区栅格数据DEM,数据来源于随书光盘(…\Chp9\Ex2)。 四、实验要求 根据DEM利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。

五、实验流程图 六、实验内容及步骤 1.无洼地DEM生成 DEM 是比较光滑的地形表面模型,但由于DEM 误差以及一些真实地形或特殊地形的影响,使得DEM 表面存在一些凹陷的区域。 在进行水流方向计算时,由于这些区域的存在,往往得到不合理的甚至错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM。

洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,并计算洼地深度,然后,依据这些洼地深度设定填充阈值进行洼地填充。 1.1 水流方向的提取 水流的流向是通过计算中心格网与邻域格网的最大距离权落差来确定。对于每一格网的水流方向指水流离开此网格的指向。在ARCGIS 中,通过对中心栅格的1、2、4、8、16、32、64、128 等8个邻域栅格编码,中心栅格的水流方向便可有其中的某一值来确定。例如,若中心栅格的水流流向左边,则水流方向赋值16。 流向的生成是个自动的过程,可能要等一段自时间,运算的时间跟电脑性能和DEM图的精度与大小有关.。 方法是利用ArcToolbox\Spatial Analysis Tools\ Hydrology \Flow Direction,生成方向水流流向图:若从DEM中作出来的流向分析的最大数值为128则不需要填洼,否则需要填挖。

ArcGIS实验-Ex18-利用水文分析方法提取山脊、山谷线.

第十一章水文分析 练习1:利用水文分析方法提取山脊、山谷线 一、背景 山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。 二、目的 理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。 三、要求 1、利用水文分析思想和工具提取研究区域的山脊线; 2、利用水文分析思想和工具提取研究区域的山谷线。 四、数据 一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。数据存于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。结果数据保存在…/ChP11/Ex1/Result中。 五、算法思想 对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。 基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。 六、操作步骤 1、正负地形的提取 (1) 启动ArcToolbox,展开Analysis Tools工具箱,打开hydrology工具集。在图层管理器中加载研究区域的原始DEM数据。 (2) 加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,点击neighborhood statistics菜单工具,利用邻域分析的方法以11×11的窗口计算平均值,如图1。分析结果命名为meandem,如图2所示。

ArcGIS 水文分析介绍

ArcGIS 水文分析介绍(详细内容见附件) 和客户交流ArcGIS的水文分析功能,搜集了些资料,顺便整理了这篇文档。从水文分析的基本原理、算法入手,分别介绍了Hydrology和 ArcHydro,并以汤国安编写ArcGIS水文分析作为实例,演示如何在ArcGIS中基于DEM执行水文分析。 1基本原理 DEM是数字高程模型的英文简称(Digital Elevation Mode),是流域地形、地物识别的重要原始资料。自20世纪60年代以来,在利用数字高程模型DEM提取流域水文特征,模拟地表水 文过程方面,国内外都开展了大量的研究。 1.1基于DEM进行流域分析的原理 从DEM提取流域特征,一个良好的流域结构模式是确定算法的前提和关键。1967年ShreveL¨描述的流域结构模式一直被后来的水文学者所引用.并设计了一些成熟的算法。Shreve使用一个具有一个根的树状图来描述流域结构(如图1所示)。在这个结构中,主要包括两个部分,一部分是结点集,一部分是界线集。沟谷结合点和沟谷源点共同组成一个沟谷结点集。所有的沟谷段组成沟谷段集,形成一个沟谷网络;所有的分水线段组成分水线段集,形成一个分水线网络;沟谷段集和分水线段集共同组成界线集。 沟谷网络中的每一段沟谷都有一个汇流区域,这些区域由流域分水线集来控制。外部沟谷段有一个外部汇流区.而内部沟谷段有两个内部汇水区,分布在内部沟谷段的两侧。整个流域被分割成一个个子流域.每个子流域好象是树状图上的一片“叶子”。Shreve的树状图流域结构模型是简单明确的.虽然沟谷网络的结点模型和线模型与在栅格DEM中用于表示沟谷结点和沟谷线的栅格点和栅格链之间存在着拓扑不一致性。但它给出了沟谷网络、分水线网络和子汇流区的定义,明确表达了它们之间的相关关系,成为设计 流域特征提取技术的基础。 1.1常用算法 流向判定建立在3×3 的DEM 栅格网的基础上,其方法有单流向法和多流向法之分,但单 流向法因其确定简单、应用方便而应用广泛。 1.1.1单流向法 单流向法假定一个栅格中的水流只从一个方向流出栅格,然后根据栅格高程判断水流方向。目前应用的单流向法是D8法。此外,还有Rho8 方法、DEMON 法、Lea 法和D∞法等。最常用的是D8 法:假设单个栅格中的水流只能流入与之相邻的8 个栅格中。它用最陡坡度法来确定水流的方向,即在3×3 的DEM 栅格上,计算中心栅格与各相邻栅格间的距离权落差(即栅格中心点落差除以栅格中心点之间的距离),取距离权落差最大的栅格为中 心栅格的流出栅格。 所谓最陡坡度法的原理是假设地表不透水,降雨均匀.那么流域单元上的水流总是流向最低的地方“窗口滑动指以计算单元为中心,组合其相邻的若干个单元形成一个窗口”,以

Arcgis水文分析模块介绍

水文分析--arcgis水文分析模块 水文分析是DEM数据应用的一个重要方面。利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型应用于研究与地表水流有关的各种自然现象如洪水水位及泛滥情况,或者划定受污染源影响的地区,以及预测当某一地区的地貌改变时对整个地区将造成的影响等,应用在城市和区域规划、农业及森林、交通道路等许多领域,对地球表面形状的理解也具有十分重要的意义。这些领域需要知道水流怎样流经某一地区,以及这个地区地貌的改变会以什么样的方式影响水流的流动。 基于DEM的地表水文分析的主要内容是:利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和基本水文分析,可以在DEM表面之上再现水流的流动过程,最终完成水文分析过程。 本章主要介绍ArcGIS水文分析模块的应用。ArcGIS提供的水文分析模块主要用来建立地表水的运动模型,辅助分析地表水流从哪里产生以及要流向何处,再现水流的流动过程。同时,通过水文分析工具的应用,也可以有助于了解排水系统和地表水流过程的一些基本的概念和关键的过程,以及怎样通过ArcGIS水文分析工具从DEM数据上获取更多的水文信息。 图11.1 ArcToolBox中的水文分析模块 ArcGIS9将水文分析中的地表水流过程集合到ArcToolbox里,如图11.1所示。主要包括水流的地表模拟过程中的水流方向确定、洼地填平、水流累计矩阵的生成、沟谷网络的生成以及流域的分割等。本章1至5节主要是依据水文分析中的水文因子的提取过程对ArcGIS中的水文分析工具逐一介绍。文中所用的DEM数据在光盘中chp11文件夹下的tutor文件夹里面,每个计算过程以及每一节所产生的数据存放在tutor文件夹的result文件夹里面,文件名与书中所命名相同,读者可以利用该数据进行参照联系。第6节主要是提供了三个使用水文分析工具以及水文分析思想的实例。 11.1 无洼地DEM生成 DEM被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM表面存在着一些凹陷的区域。那么这些区域在进行地表水流模拟时,由于低高程栅格的存在,从而使得在进行水流流向计算时在该区域的得到不合理的或错误的水流方向,因此,在进行水流方向的计算之前,应该首先对原始DEM数据进行洼地填充,得到无洼地的DEM。 11.1.1 水流方向提取水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS中通过将中心栅格的8个邻域栅格编码,水流方向便可以其中的某一值

基于DEM的水文分析

基于DEM的水文分析 介绍:基于基于DEM的水文分析的主要内容是利用水纹分析工具提取水流方向、汇流累积量、水流量积量、水流长度、河流网络、河网分级以及流域分割。 (一)无洼地DEM生成 DEM被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如采石场或喀斯特地貌)的存在,使得DEM表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,从而使得在进行水流流向计算时得到不合理的或错误的水流方向,因此,在进行水流方向的计算之前,应该首先对原始DEM数据进行洼地填充,得到无洼地的DEM。 数据:DEM数据dem (1)原始DEM数据提取水流方向 执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology]>>[Flow Direction ] 在[ Flow Direction ]对话框中,“Force all edge cells to flow outward(Optional)”的复选框前打钩,则所有在DEM数据边缘的栅格的水流方向全部流出DEM数据区域(默认为不选择)。

“drop raster”是该栅格在其水流方向上与其临近的栅格之间的高程差与距离的比值,以百分比的形式记录,它反映了在整个区域中最大坡降的分布情况(可选步骤)。 (2)洼地计算 执行[ Arctoolbox ] >> [Spatial Analyst Tools]>>[Hydrology] >>[Sink]。

(3)洼地深度计算 1、双击Hydrology工具集中的Watershed工具。 2、

ARCGIS水文分析

水文分析是DEM数据应用的一个币要方式。利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的卞要输入数据。表ICI水文分析模型应用十研究与地表水流有关的各种自然现象如洪水水位及泛滥情况,或者一划定受污染源影响的地区,以及预测当某一地区的地貌改变时一对整个地区将造成的影响等,应用在城市和区域规划、农业及森林、交通道路等许多领域,对地球表ICI形状的理解也具有}一分要的b,义。这些领域需要知道水流怎样流经某一地区,以及这个地区地貌的改变会以什么样的方式影响水流的流动。 基十DEM的地表水文分析的卞要内容是利用水文分析土具提取地表水流径流模型的水流方向、汇流祟积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基木水文因子的提取和基木水文分析,可以在DEM表ICI之 上再现水流的流动过程,最终完成水文分析过程。 主要介绍ArcGIS水文分析模块的应用。ArcGIS提供的水文分析模块卞要用来建立地表水的运动模型,辅助分析地表水流从哪里产生以及要流向何处,再现水流的流动过程。同时,通过水文分析土具的应用,也可以有助了解排水系统和地表水流过程的一些基木的概念和关键的过程,以及怎样通过ArcGIS水文分析土具从DEM数据上获取更多的水文信息。 ArcGIS9将水文分析中的地表水流过程集合到ArcToolbox里,卞要包括水流的地表模拟过程中的水流方向确定、汁地填平、水流祟不}一矩阵的生成、沟谷网络的生成以及流域的分割等。 1.无洼地DEM生成 DEM被认为是比较光滑的地形表n的模拟,但是由十内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM表ICI存在着一些}u}陷的区域。那么这些区域在进行地表水流模拟时一,由十低高程栅格的存在,从而使得在进行水流流向不}一算时一在该区域的得到不合理的或错误的水流方向,因此,在进行水流方向的不}一算之前,应该首先对原始DEM数据进行汁地填充,得到无洼地的DEMO 水流方向是指水流离开何一个栅格单儿时一的指向。在ArcGIS个邻域栅格编码,水流方向便可以其中的某一值来确定,栅格方向编码例如:如果中心栅格的水流流向I,边,则其水流方向被赋中通过将中心栅格的8值为160输出的方向值以2的幂值指定是因为存在栅格水流 方向不能确定的情况,此时一须将数个方向值相加,这样在后续处理中从相加结果便可以确定相加时一中心栅格的邻域栅格状己。 水流流向编码 水流的流向是通过不}一算中心栅格与邻域栅格的最大距离权落差来确定。距离权落差是指中心栅格与邻域栅格的高程差除以两栅格间的距离,栅格间的距离与方向有关,如果邻域栅格对中心栅格的方向值为2, 8, 32, 128,则栅格间的距离为2的开平方根,否则距离为1。 洼地计算 注地区域是水流方向不合理的地方,可以通过水流方向来判断那些地方是注地,然后再对注地进行填充。有一点必须清楚的是,并不是所有的注地区域都是由十数据的误差造成的,有很多洼地区域也是地表形态的真实反映,因此,在进行洼地填充之前,必须计算 注地深度,判断哪些地区是由十数据误差造成的注地而哪些地区又是真实的地表形态,然后在进行注地填充的过程中,设置合理的 填充值。 洼地填充 汁地填充是无汁地DEM生成的最后一个步骤。在通过汁地不}一算之后,知道了原始的

利用ArcGIS水文分析工具提取河网

利用A r c G I S水文分析工具提取河网 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

利用ArcGIS水文分析工具提取河网(转自Gissky)2007年06月15日星期五14:06DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个大步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox->Spatial Analysis Tools->Hydrology -> Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DEM采用第一步的Fill1_exam1 3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。 4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。 6.矢量河网处理 由于Stream to Feature工具.将所有栅格象素均转为矢量线段。所以要进行处理,方法是利用属性查询的方法把所有GRID_CODE为1的全部选择出来。导出就得到了由dem所生成的河网矢量。 最后得到的河网如下图所示。但是由于是栅格转换而来。生成的河网并不是连续的矢量。可以根据需要做简单的处理。 ArcGIS Spatial Analyst包含一些从水文和地形信息中处理和获取新信息的专门工具。 当进行水流建模时,您需要了解水流的来源和去向. ArcGIS Spatial Analyst提供了用于进行地形表面汇流计算的工具, 它为描绘汇流网络和汇水盆地、流长计算以及确定水系级别等提供了必要的基础.该类数据通常用于将地形信息综合到水文模型中。

相关主题
文本预览
相关文档 最新文档