当前位置:文档之家› 反式脂肪酸的危害

反式脂肪酸的危害

反式脂肪酸的危害

反式脂肪酸的危害

反式脂肪酸,即常见的植物奶油、咖啡伴侣中的植脂末、饼干和小食品中的

氢化植物油……这些东西严重危害着大家的健康。看过本文后,能让大家对氢化脂肪酸这个魔鬼有一个简单的认识,避免遭受不必要的危害。

反式脂肪Trans Fatty Acid(反式脂肪酸),又称为“逆态脂肪酸。属不饱和脂肪酸指至少含有一个反式构型双键的不饱和脂肪酸。为食品业者以植物油为原

料通过部分“氢化”处理所产生的油脂。与一般的植物油相比,反式脂肪具有耐高温、不易变质、存放更久等优点例如,糖果不用氢化脂肪也许有30天保存期,而用了的话保存期可为18 个月!还会增加食品口感,让食物变得更松脆美味。

但是研究显示反式脂肪含量高的饮食和诸如心脏动脉疾病以及动脉硬化等疾病

有关联性。一些国家已经立法限制食物里反式脂肪的含量与使用。专家们普遍

认为,反式脂肪酸对人的心脏的损害程度远远高于任何一种动物油。一些最新

研究初步表明,反式脂肪酸还可能增加乳腺癌、不孕和糖尿病的发病率,并有

可能影响儿童生长发育和神经系统健康。

来源

1、氢化植物油。这种植物油一般用于油炸食品,也存在于一些小食品之

中。人造黄油、奶油、蛋糕之类的西式糕点,烘烤食物如饼干、油炸方便面、

炸面包圈、炸薯条、油炸土豆片等当中。冰淇淋沙拉酱食物包装上一般列出成

份如为“氢化植物油”、“部分氢化植物油”、“氢化脂肪” 、“氢化菜油”、“固体菜油”、“人造酥油”、“雪白奶油”植物奶精、奶油“植脂末”起酥油”、如果出现“精制”“精炼”等字眼,那么在加工的过程中就有可能出现反式脂肪酸。如出现“氢化”字眼的产品,则含有反式脂肪酸

反式脂肪酸在体内如何代谢

反式脂肪酸在体内如何代谢 1、反式脂肪酸同顺式脂肪酸一样能作为能源同样会被氧化而供能; 2、反式脂肪酸的确会导致VDL(极低密度脂蛋白)/LDL(低密度脂蛋白)的水平,它在体内的积累是因为不能通过脂合成途径合成体内其他脂质。 什么是反式脂肪酸? 反式脂肪酸是一类不饱和脂肪酸,包含至少一个反式结构的双键。 反式脂肪酸的来源于食品工业加工产生“氢化油”中以及反刍动物体内。 在食品工业中,由于天然植物油的双键是“顺式”结构,这种油抗氧化能力差,不稳定,工业上将植物油氢化,在这个过程中,部分油脂异构化产生了“反式”双键。以rans 9-Elaidic Acid(t9一C18:1)为主。 反刍动物的油脂以及牛奶中也存在反式脂肪酸,这是由于反刍动物瘤胃中的微生物将脂肪酸氢化而产生。以trans 11.Vaccenic Acid(t11一C18:1)为主,也还有顺9,反11一共轭亚油酸(c9, t11一CLA)和反10,顺12一共轭亚油酸(t10,c12一CLA)。 反式脂肪酸会增加体内VDL/LDL的水平,易导致心血管疾病、肥胖、胰岛素抗性、糖尿病等。 共轭亚油酸也是一种反式脂肪酸,但共轭亚油酸却与其他反式脂肪酸不同,它具有抗癌、降脂、抗动脉粥样硬化等功能。 反式脂肪酸在体内如何被氧化?

饱和脂肪酸的β-氧化过程大致经过4个步骤,既脱氢、加水、再脱氢和硫解这四个步骤。 由于反式脂肪酸为不饱和脂肪酸,因此先讲单不饱和脂肪酸的β-氧化过程。 体内正常的不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化时,生成3-顺烯脂酰CoA, 此时需要顺-3反-2异构酶催化使其生成2-反烯脂酰CoA以便进一步反应。2-反烯脂酰CoA加水 后生成D-β-羟脂酰CoA,需要β-羟脂酰CoA差向异构酶催化,使其由D-构型转变成L-构型,以 便再进行脱氧反应(只有L-β-羟脂酰CoA才能作为β-羟脂酰CoA脱氢酶的底物)。 下图为多不饱和脂肪酸氧化示意图: 从不饱和脂肪酸的β-氧化过程可以看出,其“顺式”双键需要首先经过异构酶的催化变成“反式”双键才能进行 下一步氧化反应,而反式脂肪酸的氧化过程则不需要经过顺-3反-2异构酶的催化,直接完成加水、脱氢和硫解过程。 反式脂肪酸在体内的积累和对VDL/LDL水平的影响 体内的脂质作为前体能合成其他多不饱和脂肪酸,该过程需要脂肪酸去饱和酶的参与,但是该类酶 的底物为顺式双键,含有反式双键的脂肪酸则不能被延长或去饱和而被积累下来。

浅谈反式脂肪酸

浅谈反式脂肪酸 自上世纪八十年代,反式脂肪酸开始被我们使用。而近期,有关反式脂肪酸对人体健康不利的话题引起了社会的广泛关注,在此,我根据相关科学知识浅谈一下反式脂肪酸的性质及对人体的危害。 一、反式脂肪酸的性质、构成及特点。 反式脂肪酸又称为逆态脂肪酸,属不饱和脂肪酸指至少含有一个反式构型双键的不饱和脂肪酸,一般是由4到24个碳原子组成的线形链,双键2个碳原子上结合的2个氢原子分别在碳链的两侧,在室温下呈现固态。反式双键的存在使脂肪酸的空间构型产生了很大的变化,反式脂肪酸分子呈刚性结构,性质接近饱和脂肪酸。空间结构的改变使反式脂肪酸的理化性质也产生了极大改变,最显著的是熔点,一般反式脂肪酸的熔点远高于顺式脂肪酸,如油酸的熔点是13.5℃,室温下呈液体、油状,反式油酸的熔点为46.5℃,室温下呈固态、脂状。 二、反式脂肪酸的来源 反式脂肪酸普遍存在于多种天然食物中,如牛羊肉、乳及乳制品、水果和蔬菜等。虽然普遍存在,但是自然界中本身存在的反式脂肪酸含量很低,大部分是由人工合成的。膳食中的反式脂肪酸主要有以下几种来源:(1)反刍动物(如牛、羊)的脂肪组织和乳及乳制品,饲料中的不饱和脂肪酸经反刍动物肠腔中的丁酸弧菌属菌群的酶促生物氢化作用,形成反式不饱和脂肪酸异构体,这些脂肪酸能结合于机体组织或分泌入乳中。(2)食用油脂的氢化加工商品为了防止食用油脂的酸败、延长保存期、减少在加热过程中产生的不适气味及味道,20世纪60年代初期兴起了油脂氢化加工的生产工艺。通过对油脂的氢化加工,可形成多种双键位置和空间构型不同的脂肪酸异构体。通常情况下液体植物性脂肪含反式脂肪酸较少,固化油脂含反式脂肪酸较多,平均占总脂肪的30%左右,如豆油、色拉油和人造黄油中反式脂肪酸含量一般在5%~45%之间,最高可达65%。(3)温度过高的油,精炼油及烹调油加热温度过高时,部分顺式脂肪酸会转变为反式脂肪酸。因此,烹调时应尽量避免油温过高。膳食反式脂肪酸的其它来源还包括蔬菜(卷心菜、菠菜、豌豆)、禽肉、猪肉、鱼和蛋等,由于其含量有限,在膳食中所占的比例甚微。 三、食用反式脂肪酸的危害

反式脂肪酸定义及危害

反式脂肪酸的定义及危害 反式脂肪酸的定义为若脂肪酸中含有不饱和双键,且这些双键是独立的(非共轭),则此类脂肪酸为反式脂肪酸. 氢原子在碳链的两侧,碳链以直链形式构成空间结构,其空间构象成线性,与饱和脂肪酸相似反式的脂肪酸的油脂多为固态或半固态,熔点较高。反式脂肪酸表现的一些特性是介于饱和脂肪酸和顺式脂肪酸之间的. 膳食中的TFA 90%左右是单不饱和脂肪酸,只有一小部分为双烯和多烯不饱和脂肪酸。 危害:反式脂肪酸摄入量多时可使血浆中低密度脂蛋白胆固醇上升,高密度脂蛋白胆固醇下降,增加罹患冠心病的危险。过量的反式脂肪酸还会增加人体血液的黏稠度,容易导致血栓形成。 1 影响生长发育 反式脂肪酸能通过胎盘转运给胎儿,母乳喂养的婴幼儿会因母亲摄入人造黄油使 婴幼儿被动摄入反式脂肪酸。而受膳食和母体中反式脂肪酸含量的影响,母乳中 反式脂肪酸含量占总脂肪酸的1%~18%。反式脂肪酸对生长发育的影响包括: 使胎儿和新生儿比成人更容易患上必需脂肪的缺乏症,影响生长发育;对中枢神 经系统的发育产生不良影响,抑制前列腺素的合成,干扰婴儿的生长发育。 2 导致血栓形成 反式脂肪酸有增加血液粘稠度和凝聚力的作用。有实验证明,摄食占热量6%反 式脂肪酸的人群的全血凝集程度比摄食占热能2%的反式脂肪酸人群增加,因而 使人容易产生血栓。 3 促进动脉硬化 研究人员发现:在降低血胆固醇方面,反式脂肪酸没有顺式脂肪酸有效;含有丰 富反式脂肪酸的脂肪表现出能促进动脉硬化。具体表现在反式脂肪酸在提高LDL 水平的程度与饱和脂肪酸相似;此外,反式脂肪酸会降低HDL水平,这说明反 式脂肪酸比饱和脂肪酸更有害。 4 诱发妇女患Ⅱ型糖尿病 Frank Hu博士在为期14年的研究中分析了84000多例妇女的资料[6],结果表明,虽然与碳水化合物的热量相比,她们摄入的脂肪总量、饱和脂肪或单不饱和脂肪均和患糖尿病无关,但摄入的反式脂肪含量却显著增加了患糖尿病的危险。硬化处理过的植物油可能要比饱和的动物脂肪更为危险,因为这种处理会增加其中的反式脂肪含量。对于Ⅱ型糖尿病患者来说,无论其年龄、种族及性别差异如何,他们患心脏梗塞或中风的危险性要比非糖尿病患者增加3倍以上,这也意味着糖尿病患者患心脏疾病的危险实际上和那些心脏病患者是一样的。这主要是因为胰岛素耐受性不仅会提高血糖水平,而且还会通过对脂肪代谢的不利影响而升高对心脏有害的LDL含量。 5造成大脑功能的衰退

对于反式脂肪酸的看法

成绩论文题目:对于反式脂肪酸的看法 课程名称:生活中的有机化学 授课教师:张治广 院系:国际艺术学院 年级:2014级 姓名:卢雪 学号:140200505

对于反式脂肪酸的看法 一、认识反式脂肪酸 脂肪酸是一类羧酸化合物,由碳氢组成的烃类基团连结羧基所构成。我们常提到的脂肪,就是是由甘油和脂肪酸组成的三酰甘油酯。这些脂肪酸分子可以是饱和的,即所有碳原子相互连接,饱和的分子室温下是固态。当链中碳原子以双键连接时,脂肪酸分子可以是不饱和的. 中国GB/Z21922-2008《食品营养成分基本术语》中是这样定义的,反式脂肪酸是油脂加工中产生的一个或一个以上的非共轭反式双键的不饱和脂肪酸的 总和,通过氢化过程使植物油变成固态或半固态油脂,反式脂肪酸就在上述工艺中产生。 这是反式脂肪酸的科学定义,听上去离我们的生活很遥远,但是实际上却和我们生活息息相关,下面我要从生活的角度介绍它。 反式脂肪酸是通过反式键形成的一种不饱和脂肪酸,植物油加氢可将顺式不饱和脂肪酸转变成室温下更稳定的固态反式脂肪酸人类使用的反式脂肪主要来 自经过部分氢化的植物油。氢化植物油与普通植物油相比更加稳定,成固体状态,可以使食品外观更好看,口感松软;与动物油相比价格更低廉,而且在20世纪早期,人们认为植物油比动物油更健康,用便宜而且“健康”的氢化植物油代替动物油脂在当时被认为是一种进步,因而大量氢化油被运用到了食品加工里。 可以说,所有添加了氢化油的食物里都有反式脂肪酸的存在,如薄脆饼干、焙烤食品、谷类食品、面包、快餐如炸薯条、炸鱼、洋葱圈、人造黄油特别是粘性人造黄油,牛奶、羊奶,糖果类。有研究人员证明,品牌食品百分之百含有反式脂肪酸。 反式脂肪酸又称反式脂肪、反式酸、逆态脂肪酸和转脂肪酸等. 二、含有反式脂肪酸的食物 常见含反式脂肪酸的加工食品有:一、各色高脂肪零食,如泡芙、薄脆饼、油酥饼、蛋黄派或者草莓派等;二、各色蛋糕,如生日蛋糕、奶油夹心饼等;三、各色薄脆饼干、曲奇、威化饼干等;四、脂肪含量高的面包,如起酥面包、丹麦面包等;五、各种以“植物末”或“奶精”命名的,如咖啡伴侣、珍珠奶茶等;六、休闲零食,

反式脂肪酸的产生、危害及控制措施

反式脂肪酸的产生、危害及控制措施 反式脂肪酸是分子中含有一个或多个反式(trans)双键的非共扼不饱和脂肪酸。天然脂肪酸中的双键多为顺式(cis),氢原子位于碳链的同侧,反式双键的两个氢原子位于碳链的两侧。反式双键的键角小于顺式异构体,其锯齿形结构空间上为直线型的刚性结构,这些结构上的特点使其具有比顺式脂肪酸更高的熔点和更好的热力学稳定性,性质更接近饱和脂肪酸。 一、反式脂肪酸的产生 1.天然的反式脂肪酸 天然的反式脂肪酸主要来自于反刍动物(如牛、羊)的肉和乳制品,但含量很低,主要是由饲料中的部分不饱和脂肪酸经反刍动物瘤胃中微生物的生物氢化作用生成的。主要途径是亚油酸(Linoleic Acid)和亚麻酸(Linolenic Acid)在瘤胃微生物特别是丁酸弧菌属菌群作用下氢化成终产物硬脂酸(Stearic Acid)。在瘤胃内,中间产物可能会逃过微生物的进一步生物氢化而经血液循环进入乳腺和肌肉脂肪组织中,Vaccenic Acid(反式-异油酸)是这两个路径的最主要的中间产物,在乳脂和肌肉脂肪组织中大概占总TFA的60% ~70%。以牛为例,牛脂中TFA的含量为2.5%~4% ,其乳脂中的含量为5%~9.7%。乳制品中TFAs的含量普遍较低,且以11tC18:1为主。随季节、地区、饲料组成、动物品种的不同,乳制品中TFAs的含量和组成也会产生较大差异,例如羊奶中的TFAs含量低于牛奶。研究还发现,TFA的异构体也有一部分经由油酸异构化而来。 2.油脂的氢化和精炼 油脂的氢化就是将氢加成到脂肪酸链的双键上。传统是在镍的催化下进行的,由于反式脂肪酸具有比顺式脂肪酸更稳定的结构,因此在高温(140~225℃)、高压(表压413.69kPa)的催化条件下能够大量生成。在此氢化过程中一部分双键被饱和,另一部分双键发生位置异构或转变为反式构型(这部分产物即为反式脂肪酸)。氢化工艺使植物油饱和度增加,由液态转化为半固态或固态,具有很好的塑性和口感,可适应特殊用途,如起酥油和人造奶油;其次,油的氧化稳定性提高,可延长食品的货架期。反式脂肪酸的含量和种类由于氢化条件、氢化深度和原料中不饱和脂肪酸含量的不同而有较大的差异,一般以transC18:1为主。配方中含氢化油的食品,如各种糕点、冰淇淋、炸鸡、薯条等食品中存在含量不等的反式脂肪酸。 精炼过程中,反式脂肪酸主要产生在脱臭阶段。天然植物油均由顺式不饱和脂肪酸所构成,而基本不含TFAs或含量很低。但在进行脱臭处理时,油脂中的不饱和脂肪酸暴露在空气和高温环境中,其中的二烯酸酯、三烯酸酯发生热聚合反应,更易发生异构化,使TFA含量增加,通常会形成3%~6%的反式异构体。形成反式异构体的量和加热温度、温度保持时间以及植物油的种类有关,脱臭温度越高、高温状态保持时间越长,TFAs形成量也就越多。研究表明,高温脱臭后的油脂TFA含量增加了1%~4%。 3.食品加工

反式脂肪酸的现状及控制

与媒体沟通资料 反式脂肪酸的现状及应对措施 一、反式脂肪酸的产生原因(来源) 1.天然来源——反刍动物(牛、羊)肉、脂肪、乳及乳制品 牛奶、羊奶中反式脂肪酸的含量占总脂肪酸的3%~5%。 2.植物油氢化加工——氢化植物油、起酥油 用氢化过程植物油变成固体或半固态油脂,反脂肪酸就在上述工艺中产生。 上世纪八十年代,由于担心存在于荤油中的胆固醇可能会对心脏带来威胁,植物油又有高温不稳定及无法长时间储存等问题。 优点:熔点高、氧化稳定性好、货架期长、口感好,易储存 3.植物油精炼和烹调过程 植物油在脱色、脱臭等精炼过程中,多不饱和脂肪酸发生热聚合反应,造成脂肪酸的异构化,产生部分反式脂肪酸。有研究表明,高温脱臭后的油脂中反式脂肪酸的含量可增加l%—4%; 另外,在不当的烹调习惯中,过度加热或反复煎炸也可导致反式脂肪酸的产生。 二、氢化油脂 ?特点:熔点高、氧化稳定性好、货架期长、口感好,易储存。 ?应用范围: ?主要应用于烘焙和糖果行业,也可应用在饮料、冰激凌、煎炸等其他一些食品领域,通常出现在面包、饼干、蛋糕、代可可脂巧克力及派等食品

的夹心、涂层或面饼中。 采用部分氢化工艺的植物油脂会含有反式脂肪酸,但不同氢化油脂中反式脂肪酸含量因加工工艺不同差异很大。完全氢化的植物油脂不含反式脂肪酸。 三、食用专用油脂中降低反式脂肪酸的方法 ?酶法或化学酯交换 通过酶或化学催化剂的作用,在较温和的条件下进行酯交换反应,反式脂肪酸含量极低。是取代氢化工艺生产低反式脂肪酸含量产品的理想技术。 ?产品配方的调整 通过加入一些有特殊性能的油脂(例:棕榈油或高油酸/低亚麻酸油),代替氢化油脂,在保持甚至提高油脂应用性能的前提下,降低反式酸的含量。 ?改进氢化工艺技术 采用新型贵金属铂(Pt)或钯(Pd)替代传统的镍(Ni)为催化剂,可在较低的温度条件下进行氢化反应,从而在一定程度地降低反式不饱和脂肪酸。 ?分提技术 以棕榈油为例,通过分提技术获得不同性能的产品,分提过程不产生反式脂肪酸。 四、反式脂肪酸的健康危害 1、提高血清中低密度脂蛋白(LDL)胆固醇及三甘油脂(TG),可能增加心血管疾病(CVD或CHD)的危险,危险性与饱和脂肪酸相似。 2、降低血清高密度脂蛋白(HDL)胆固醇,影响健康。 3、抑制胰岛素(insulin),导致血糖值上升。

浅谈对于反式脂肪酸的认识

浅谈对于反式脂肪酸的认识反式脂肪酸,是一类羧酸化合物,属于脂肪酸的一类。说到脂肪酸,在生物界里真是无处不在。众所周知,作为储存能量的物质,脂肪是最为主要的一种,每种动物体内都会贮有很多脂肪,不仅储存了能量,还起到了维持体温、防御伤害、保护脏器等功能。 在分子的层面上,脂肪是由脂肪酸和甘油合成的酯类化合物,叫做三酰甘油酯。每个三酰甘油酯上,都有三个脂肪酸分子与甘油以脱羧方式形成的结构,叫做酯键。组成甘油酯的脂肪酸有两种,一种是顺式,另一种为反式。两者在结构上有着明显的差别。如果放大足够的倍数,我们可以看到顺式脂肪酸的结构近似于“U”形,而反式脂肪酸更像是一条直线。 我们说,结构决定性质,性质决定作用。顺式脂肪酸和反式脂肪酸在化学性质上也有一定的不同,这就决定了两者在生物作用上的大相径庭。比如大量存在于红花油、玉米油、棉籽油中的不饱和脂肪酸,有着降低胆固醇浓度的作用;然而当这些酸加氢变为反式之后,却能使胆固醇含量升高。另外,顺式脂肪酸大多表现为不饱和酸的特点,而反式脂肪酸多表现为饱和酸的特点,如稳定、易保存等等。 在我们的生活当中,反式脂肪酸的应用非常广泛。自从1902年,德国化学家威廉·诺曼的氢化工艺获得专利以来,反式脂肪酸就一直被大量用于食品工业。 在使用的时候,氢化后的反式脂肪酸比普通的顺式脂肪酸有着一定的优点,比如保存方便,不易变质。而且氢化的植物油往往成固体,比流质更加易于运输、贮藏。于是,为了增加货架期和提高产品稳定性,商家开始不加节制地使用氢化

技术,是反式脂肪酸更多地由食物被摄入人体。久而久之,人们发现了这类物质所带来的一系列问题。 于以前常用的普通生物脂肪相比,经过氢化的反式脂肪酸制品更容易使人罹患心血管疾病、糖尿病和肥胖症等疾病。科学家经过研究发现,反式脂肪酸会让血液中有害胆固醇的成分增大,同时还会刺激人体细胞癌变。这对人类来说无疑是很有损害的。 随着反式脂肪酸的负面问题被人们渐渐关注,一系列措施也渐渐出台。联合国粮农组织和世界卫生组织在2003年出版的《膳食营养与慢性疾病》中提出,“为了增进心血管健康,应该尽量控制膳食中的反式脂肪酸,最大摄取量不超过总能量的1%”。各国也相应出台了控制反式脂肪酸应用的各项政策与措施。 其实,万物都会有其利弊。在我看来,反式脂肪酸在其表现为稳定性良好的同时,就已经为其对人体的危害留下了隐患。据我了解,反式脂肪酸之所以能够比顺式保持更长时间的稳定,其关键在于反式的双键上。我们知道,双键碳的顺式没有反式稳定,因为原子间作用力不对称。反式的脂肪酸双键稳定受力,这种性质使其在受到生物体自由基攻击时不易瓦解,人们也是看中了这一点,才将其广泛应用于食物生产中。但是,生物自由基的自由活动,是生物界不可逆转,也是不可违背的过程。人们如果刻意改变生物界的规则,试图将这种物质的保存期变长,其代价就是用以替代的反式脂肪酸在体内更易聚集对人体有害、且具有同类稳定性的固醇类物质,并最终引发各种疾病。也就是说,反式脂肪酸所带来的各种健康问题,很大程度上是人类贪图小利的咎由自取。 大自然本身有着一套用以循环往复,繁衍不息的规律和法则。从生物链的循

反式脂肪酸的产生、危害及控制措施

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 反式脂肪酸的产生、危害及控制措施 反式脂肪酸是分子中含有一个或多个反式(trans)双键的非共扼不饱和脂肪酸。天然脂肪酸中的双键多为顺式(cis),氢原子位于碳链的同侧,反式双键的两个氢原子位于碳链的两侧。反式双键的键角小于顺式异构体,其锯齿形结构空间上为直线型的刚性结构,这些结构上的特点使其具有比顺式脂肪酸更高的熔点和更好的热力学稳定性,性质更接近饱和脂肪酸。 一、反式脂肪酸的产生 1.天然的反式脂肪酸 天然的反式脂肪酸主要来自于反刍动物(如牛、羊)的肉和乳制品,但含量很低,主要是由饲料中的部分不饱和脂肪酸经反刍动物瘤胃中微生物的生物氢化作用生成的。主要途径是亚油酸(Linoleic Acid)和亚麻酸(Linolenic Acid)在瘤胃微生物特别是丁酸弧菌属菌群作用下氢化成终产物硬脂酸(Stearic Acid)。在瘤胃内,中间产物可能会逃过微生物的进一步生物氢化而经血液循环进入乳腺和肌肉脂肪组织中,Vaccenic Acid(反式-异油酸)是这两个路径的最主要的中间产物,在乳脂和肌肉脂肪组织中大概占总TFA的60% ~70%。以牛为例,牛脂中TFA的含量为2.5%~4% ,其乳脂中的含量为5%~9.7%。乳制品中TFAs的含量普遍较低,且以11tC18:1为主。随季节、地区、饲料组成、动物品种的不同,乳制品中TFAs的含量和组成也会产生较大差异,例如羊奶中的TFAs含量低于牛奶。研究还发现,TFA的异构体也有一部分经由油酸异构化而来。 2.油脂的氢化和精炼 油脂的氢化就是将氢加成到脂肪酸链的双键上。传统是在镍的催化下进行的,由于反式脂肪酸具有比顺式脂肪酸更稳定的结构,因此在高温(140~225℃)、高压(表压413.69kPa)的催化条件下能够大量生成。在此氢化过程中一部分双键被饱和,另一部分双键发生位置异构或转变为反式构型(这部分产物即为反式脂肪酸)。氢化工艺使植物油饱和度增加,由液态转化为半固态或固态,具有很好的塑性和口感,可适应特殊用途,如起酥油和人造奶油;其次,油的氧化稳定性提高,可延长食品的货架期。反式脂肪酸的含量和种类由于氢化条件、氢化深度和原料中不饱和脂肪酸含量的不同而有较大的差异,一般以transC18:1为主。配方中含氢化油的食品,如各种糕点、冰淇淋、炸鸡、薯条等食品中存在含量不等的反式脂肪酸。 精炼过程中,反式脂肪酸主要产生在脱臭阶段。天然植物油均由顺式不饱和脂肪酸所构成,而基本不含TFAs或含量很低。但在进行脱臭处理时,油脂中的不饱和脂肪酸暴露在空气和高温环境中,其中的二烯酸酯、三烯酸酯发生热聚合反应,更易发生异构化,使TFA含量增加,通常会形成3%~6%的反式异构体。形成反式异构体的量和加热温度、温度保持时间以及植物油的种类有关,脱臭温度越高、高温状态保持时间越长,TFAs形成量也就越多。研究表明,高温脱臭后的油脂TFA含量增加了1%~4%。 3.食品加工

专家称信息过量有害心理健康

2019 养猪SWINE PRODUCTION (4)乙猪场NH 3浓度极显著低于甲猪场(P <0.01);两个猪场保育猪舍内CO 2与TSP 浓度均差异不显著,乙猪场NH 3浓度显著低于甲猪场(P <0.05);两个猪场肥育舍内CO 2浓度差异不显著,乙猪场NH 3浓度显著低于甲猪场(P <0.05),TSP 浓度极显著低于甲猪场(P <0.01),详见表1。 3 讨论 随着猪场向规模化、高密度饲养方向转变,猪舍环境控制成为影响养猪生产的关键因素。猪舍空气质量的重要检测指标包括氨气、二氧化碳、硫化氢等有害气体浓度以及舍内粉尘浓度等。氨气主要由在猪舍内粪便分解产生,易溶于水,具有刺激性,可吸附于黏膜。同时经呼吸道进入血液循环,引起呼 吸中枢的反射性兴奋,抑制猪群血氧水平[5]。当猪群长期生活在高浓度氨气环境中,其体质会变弱,生产性能下降[4],并诱发萎缩性鼻炎、肺炎等呼吸道疾病[6]。二氧化碳无色无味无毒,但高浓度的二氧化碳可导致空气中的氧气不足,造成猪群慢性缺氧,出现精神 萎靡、食欲减退,生产力和抵抗力下降。二氧化碳的卫生学意义主要在于它的含量表明了猪舍内空气的污浊程度,当二氧化碳含量增加时,其它有害气体含量也可能增高,因此,二氧化碳浓度被作为监测舍内空气质量的可靠指标[7]。猪舍内粉尘由饲料、猪的皮 毛等产生。饲料结构影响猪舍空气中的粉尘浓度,例如饲喂粉料的猪舍粉尘含量明显大于饲喂颗粒饲料猪舍。猪舍内的粉尘浓度还受猪群的活动状况影响。粉尘可以吸附于猪只皮肤表面,造成皮肤发痒或发炎。此外,病原微生物以尘埃作为载体,形成微生物气溶胶,并随呼吸道进入机体,从而利于疾病的传播[8]。4结论 保证猪舍内温度不明显下降的前提下适当加强通风,并按时做好清粪等卫生工作可以有效降低舍内空气中NH 3、CO 2等有害气体以及粉尘浓度,表明猪场的卫生管理水平与猪舍的通风条件是影响猪舍环境空气质量的关键因素。 参考文献 [1]伍清林, 金兰梅,周玲玲,等.规模化猪场舍内外空气质量变 化的研究[J].中国畜牧兽医,2012,39(11):220-225. [2]陈剑波,武守艳,杨丽华,等.规模化猪场合区空气污染及预警[J].山西农业科学,2014,42(6):606-609.[3]吕国邦,朱继章,李吉元,等.标准化猪舍风机选择原理及通 风程序的设计和光照[J].中国动物保健,2014,16(2):68-72.[4]刘希颖, 赵越.畜舍中有毒有害气体对畜禽的危害及防治[J]. 饲料工业,2004,25(10):58-60. [5]芦惟本,黄川.重视氨危害重视猪群血氧水平[J].养猪,2009(2):70-72.[6]曹进,张峥.封闭猪场内氨气对猪群生产性能的影响及控制 试验[J].养猪,2003(4):42-44.[7]李如治.家畜环境卫生学[M].北京: 中国农业出版社,2003:263-266. [8]黄藏宇,李永明,徐子伟.舍内气态及气载有害物质对猪群健康的影响极其控制技术[J].家畜生态学报,2012,33(2):80-84.(编辑:富春妮) 检测 指标肥育舍甲猪场乙猪场甲猪场乙猪场甲猪场乙猪场CO 23384±5704261±16354930±9743874±16346220±9075204±2971NH 310.03A ±2.156.35B ±2.719.47a ±2.424.75b ±2.356.16a ±1.584.46b ±1.76H 2S 000000 TSP 1.13±0.430.75±0.36 1.24±0.691.12±0.382.01A ±0.271.19B ±0.31 注:同行同一项肩标不同小写字母表示差异显著(P <0.05),不同大写字母表示差异极显著(P <0.01),含相同字母或无肩标表示差异不显著(P >0.05)。 哺乳母猪舍保育舍表1不同猪场猪舍有害气体(NH 3、CO 2、H 2S )、TSP 浓度比较mg/m 3 专家称信息过量有害心理健康 【阿根廷布宜诺斯艾利斯经济新闻网3月18日报道】巴西精神病学家奥古斯托·库里说:“思维过快综合征是一种焦虑。太多的信息、活动、关注和社交压力可能会以惊人的速度加快人们的思维。在数字化时代,这种现象正在以前所未有的强度出现在生活中,思维建构的剧烈加速会导致人情绪紊乱以及对压力的耐受力降低。”他将这种思维过快综合征称为“本世纪的第一大病”。 西班牙精神病学家、心理治疗师恩里克·德罗萨说:“从疾病的定义上来说,思维过快综合征并不存在,因为它实际上是其他疾病的症状,不足以自成一种综合征。” 在这一问题上,精神病学家、心理治疗师塞巴斯蒂安·阿尔瓦诺解释说:“重要的是要认识到,大量 的精神疾病都会伴有‘思维过快’。在这些疾病中,思 维过快都是判断是否达到特定疾病诊断标准的指标之一。不同疾病之间的鉴别诊断及合并症对于获得正确的诊断和治疗效果也是至关重要的。” 关于当今可以获取的信息过多会对人类心理造成何种伤害,德罗萨说:“我们生活的这个时代,除了信息过多之外,还缺乏对各种信息进行分类和优先等级排序的能力。这一点对心理健康也是极为不利的。” 德罗萨说:“太多的信息一方面会造成一定程度的分心,阻碍系统化的认知活动,特别是那些‘高级’认知活动,例如书写一些严肃而重要的内容、进行数学计算或具有一定重要性的思考。” (转自参考消息[N],2019-03-20) 76

n-3多不饱和脂肪酸与恶性肿瘤

中华普通外科学文献 渊电子版冤 圆园员员 年 员圆 月第 缘 卷第 远 期 悦 澡蚤 灶 粤 则 糟 澡 郧 藻 灶 杂怎则 早渊耘 造 藻 糟 贼 则 燥 灶蚤 糟耘 凿蚤 贼 蚤 燥 灶冤袁 阅 藻 糟 藻 皂 遭藻 则圆园员员袁 灾 燥 造 缘 晕 燥 援 远 窑讲座与综述窑 DOI:10.3877/cma.j.issn.1674-0793.2011.06.016 作者单位:510080 广州,中山大学附属第一医院东山院区外科 n-3 多不饱和脂肪酸主要来源于多脂的深海冷水鱼,人类很难完整地合成 n-3 多不饱和脂肪酸,主要 通过食物摄取遥流行病学调查显示,增加 n-3 多不饱和脂肪酸摄取量可以抑制多种肿瘤的发生尧发展,减轻 进展期恶性肿瘤患者恶病质症状, 减少体重丢失甚至增加体重遥 但近年来也有学者对这一观点提出了异 议遥 人类约有 2/3 以上疾病的发生与膳食不当有关遥 越来越多的科研证据表明,危害人类健康的心血管疾 病尧糖尿病尧肥胖症以及癌症等与膳食有着不解之缘遥 根据美国的一项统计,超过 80%的患者的死亡原因 与上述几种疾病密不可分遥 血脂的含量与这些疾病的发生密切相关, 而血脂的高低又受到膳食中脂类物 质的成分及人们摄入脂类物质量的影响遥 如今西化的膳食习惯,导致人们脂肪总摄入量大大增加,此外,膳 食中 n-6 多不饱和脂肪酸(n-6 PUFAs)过量,n-3 PUFAs 严重不足,n-6/n-3 比例的失衡也是多种疾病发生 的潜在危险因素遥 目前,有关 n-3 PUFAs 对心血管疾病尧癌症尧肥胖尧糖尿病等疾病的预防作用的研究广泛 而深入,但环境对基因的作用如何,尤其是对于人体健康而言,膳食与基因存在怎样的相关性,彼此之间是 如何相互作用,相关的研究报道较少遥 现有的动物实验结果提示,膳食中脂肪的量和成份严重影响着动物 的健康,对于具有不同遗传背景以及遗传易感性的人群而言,膳食可能对基因发生的影响力,但目前尚无 明确定论遥 本文主要综述了 n-3 PUFAs 的膳食来源,在人体的代谢情况,及 n-3 PUFAs 在肿瘤防治尧临床 试验和治疗中的作用遥 一尧n-3尧n-6 PUFAs 的膳食来源 人体可以从头合成或从食物中摄取多种饱和及单不饱和脂肪酸遥 但哺乳动物缺乏合成 n-3尧n-6 PU鄄 FAs 的脱氢酶,因此这些必需脂肪酸只能从食物中摄取遥 陆生植物可以合成 n-6 系列 PUFAs 的第 1 个成员要要 要亚油酸(LA;18颐 2n-6)遥 几乎所有食用植物油如 玉米油尧 葵花油尧 红花油尧 橄榄油中 LA 的含量都很丰富遥 植物也能合成 n-3 系列 PUFAs 的第一个成 员要要 要琢 -亚麻酸(琢 -LNA,18颐 3 n-3),富含 琢 -LNA 的植物包括大豆尧核桃尧深绿色叶蔬菜如甘蓝尧菠菜尧椰 菜尧抱子甘蓝的种子等,一些油类如亚麻子油尧芥菜籽油尧菜籽油中,琢 -LNA 的含量也很丰富,同时也富含大 量 LA遥 膳食中的长链 n-3 PUFAs 主要以二十碳五烯酸(EPA,20颐 5 n-3)和二十二碳六烯酸(DHA,22颐 6 n-3) 的形式储存于冷水鱼体内遥 鱼类可以从浮游植物和浮游动物中摄取 EPA 和 DHA,不同种类尧栖息在不同 水域的鱼类,体内总脂肪及 n-3 PUFAs 的含量变化很大即便同一种类的鱼,生活在大西洋和太平洋,体内 n-3 PUFAs 含量的差异也很大遥 总之,深海冷水鱼如鲭鱼尧金枪鱼尧鲑鱼等,含 DHA 和 EPA 的量最高遥 人工 饲养的鱼类,喂食不同的饲料,其体内脂肪酸的组成也有显著区别遥 二尧n-3尧n-6 PUFAs 在人体内的代谢 虽然哺乳动物不能从头合成 n-3尧n-6 PUFAs,但哺乳动物细胞可以通过碳链的延长尧去饱和作用和逆 转等方式使 PUFAs 之间发生转化 [1] 遥 摄食后,LA 通过一系列氧化去饱和及碳链延长的交替作用被代谢,生 成花生四烯酸(AA,20颐 4 n-6)遥PUFAs 转化的主要代谢途径见图 1遥驻 6 途径负责 LA 转化为 AA,琢 -LNA 转化 为 EPA,这个步骤主要在肝脏细胞的内质网中进行遥驻 8 途径主要存在于植物中,可以生成 AA 与 EPA,但是 灶-猿 多不饱和脂肪酸与恶性肿瘤 杨婷 余红兰 石汉平 530 窑 窑

反式脂肪酸的危害

反式脂肪酸的危害及饮食控制 食工081 2008031050 姜欢笑 摘要油脂在加工过程中由于加氢或长时间高温等引起脂肪酸结构变化,顺式脂肪酸转变为反式脂肪酸。反式脂肪酸易导致肥胖、心血管疾病、糖尿病等疾病;长时间高温脱臭后油脂中反式脂肪酸含量将增加4%~6%,最高达8%~9%。我们应从改进油脂生产的脱臭工艺与设备方面,更应从日常生活中控制油炸食品、饼干、快餐食品摄入等入手,控制减少反式脂肪酸的摄入。 关键词:反式脂肪酸;来源;危害;饮食控制 一般民众对饮食中油脂的健康概念,通常仅限于“不要摄取过量的油脂”,或许有些人会注意不要摄取过多的动物性脂肪,但说到油脂中含有的“反式脂肪酸”,相信有很多人会感到陌生。那么反式脂肪酸是否危害人类身体健康?单就美国食品药品管理局自2006年1月1日起,规定食品营养标签中必须标注产品的饱和脂肪酸含量及反式脂肪酸含量,我们就可以知道反式脂肪酸危害人体健康是肯定的。 1 何谓反式脂肪酸 脂肪酸是由碳氢组成的烃类基团连结羧基所构成,这些脂肪酸分子中所有碳原子相互连接。链中碳原子以双键连接,当一个双键形成时,这个链存在两种形式:顺式和反式。一般油脂中的不饱和脂肪酸多以顺式的结构存在。所谓顺式即双键两旁的氢原子在碳键的同一边,而反式则是双键两旁的氢原子位于碳键的两侧。反式脂肪酸又称为反式脂肪、逆态脂肪酸或转脂肪酸。 2 反式脂肪酸来源 反式脂肪酸分为天然反式脂肪酸和非天然反式脂肪酸两种。 2.1 天然反式脂肪酸 天然反式脂肪酸主要存在于反刍动物(牛、羊)脂肪中,通过牛羊脂肪组织、乳及其乳制品等膳食消费进入人体[1]。例如,牛脂中含2.5%~4%反式脂肪酸,乳脂中含5%~9.7%反式脂肪酸[2]。饲料中的不饱和脂肪酸经由反刍动物肠腔内丁酸弧菌属酶作用氢化形成了一种单烯键不饱和脂肪酸既反式脂肪酸。这类反式脂肪酸是瘤胃微生物将多不饱和脂肪酸氢化的产物。 2.2 非天然反式脂肪酸

浅谈生活习惯对中老年人MDA的影响

浅谈生活习惯对中老年人MDA的影响 发表时间:2014-05-13T15:04:00.200Z 来源:《医药前沿》2014年第3期供稿作者:陈芒好 [导读] 良好的生活习惯如食用较多的青菜水果,饮茶,规律的运动和睡眠等可以抑制脂质的过氧化,保护机体免受自由基的损伤。陈芒好 (厦门市鼓浪屿干部疗养院 361002) 【摘要】目的了解中老年人体内脂质的水平。方法随机抽取2011年-2012年来我院疗养45-80岁的保健干部350名,进行生活习惯的调查和血清学分析。结果中老年人的生活习惯如睡眠情况,从膳食中摄取的维生素量,反式脂肪酸,规律的睡眠等对体内脂质过氧化物水平有较大的影响。 【关键词】生活习惯过氧化物影响 【中图分类号】R195 【文献标识码】A 【文章编号】2095-1752(2014)03-0227-02 随着人口的老龄化,中老年人的保健受到越来越多人的重视。自由基引起的脂质过氧化是引起脑血管疾病,癌变,白内障,细胞老化等许多老年慢性病的重要因素之一[1]。良好的生活习惯如食用较多的青菜水果,饮茶,规律的运动和睡眠等可以抑制脂质的过氧化,保护机体免受自由基的损伤。本研究主要探讨生活习惯与中老年血清MDA水平的相关性,为中老年人的自身保健,延长寿命和生活质量的提高提供依据。 一对象与方法 1 研究对象随机抽取来院疗养的45-80岁的保健对象350人,测定血MDA水平。 2 问卷调查包括基本情况调查膳食情况调查,个人健康情况调查,生活习惯调查,以轻体力活动水平计。 3 实验室分析空腹抽取静脉血, MDA含量测定采取硫代巴比妥酸法,试剂盒由南京建成生物工程研究所提供。二结果 1 基本情况调查对象共350人,男200例,占57.1%,女150例,占49.1%,文化程度上高中以上225例,占64.3%,初中以上125例,占35.7%年龄在45-80岁之间,以离退休居多。 2 膳食情况调查爱吃蔬菜水果者MDA水平较低,喜欢油炸食品,蛋糕甜点MDA水平较高。 3 个人健康情况调查有研究表明糖尿病,高血压,慢性肺阻塞病理过程中有自由基的参与,抗氧化能力降低。4生活习惯调查喜欢喝茶者MDA较低,喜欢食用坚果类如杏仁等可清除自由基,降低MDA水平。良好规律的睡眠可分泌褪黑素,可提高机体的抗氧化水平,清除自由基。吸烟者较未吸烟者MDA水平较高。有规律的运动者如太极、气功、游泳等可以降低MDA水平。三讨论 MDA是器官衰老或在逆境下发生的膜质过氧化作用产生的过氧化物之一,通常利用它作为体内的脂质过氧化物指标,表示细胞膜过氧化程度和对逆境条件反应的强弱。体内的MDA水平的高低与高血压,冠心病,脑血管意外,癌症,白内障,关节炎和类风湿病有一定的关系,它可破坏体内细胞的神经核,影响神经系统的正常功能[1]。MDA随着年龄的增长会升高,良好的生活习惯如喝茶可使机体免受自由基的损伤,降低体内的自由基水平[2];蔬菜水果中含有大量的维生素C可阻断病理状态下的自由基反应,提高机体的抗氧化能力;干果类食物如杏仁,杏仁中含有的银杏叶黄酮具有氧自由基的清除作用,与抗膜脂质过氧化作用密切相关[3]。长期适量的运动如游泳,健身气功等可减弱氧自由基对人体的损害作用,降低MDA水平。油炸食品,蛋糕等甜点中含有大量的反式脂肪酸,可明显减低人体的抗氧化能力和免疫力。急性应激可导致心肌MDA含量显著增加,而心肌营养血流的显著减少(功能性缺血)可能是脂质过氧化反应增强的原因之一[4]。总之,机体氧化与抗氧化系统的不平衡,可以导致氧自由基攻击生物膜中的多不饱和脂肪酸,从而引发脂质过氧化作用,引起细胞损伤。随着年龄的增长,从体外进入机体或机体内生成的有害物质不断集聚增多,保持良好的心态和生活习惯对中老年人的自身保健,减少疾病的发生,延缓衰老,延长寿命,提高生活质量有着十分重要的作用。 参考文献 [1] 刘淮玉,吴建华等达能营养中心 2010 267-269 影响中老年人血清SOD与MDA水平的因素与改善对策. [2] 茶多酚的抗氧化和抑菌活性及其增效[J]生物学杂志2007,24(5)54-56. [3] 吴东方罗顺德等银杏叶黄酮对肝脏MDA生成的影响中国中药杂志1997,22(1)51-52. [4] 吴伟康罗汉川等应激对老年小鼠心肌的营养血流,MDA含量的影响中国病理生理杂志 1991(2)69-70

不饱和脂肪酸知识

脂肪酸(fatty acid),是指一端含有一个羧基的长的脂肪族碳氢链,是有机物,直链饱和脂肪酸的通式是C(n)H(2n+ 1)COOH,低级的脂肪酸是无色液体,有刺激性气味,高级的脂肪酸是蜡状固体,无可明显嗅到的气味。脂肪酸是最简单的一种脂,它是许多更复杂的脂的组成成分。脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。 不饱和脂肪酸:除饱和脂肪酸以外的脂肪酸(不含双键的脂肪酸称为饱和脂肪酸,所有的动物油的主要脂肪酸都是饱和脂肪酸,鱼油除外)就是不饱和脂肪酸。 人体所需的必需脂肪酸,就是多不饱和脂肪酸,可以合成DHA(二十二碳六烯酸)、EPA(二十碳五烯酸)、AA(花生四烯酸),它们在体内具有降血脂、改善血液循环、抑制血小板凝集、阻抑动脉粥样硬化斑块和血栓形成等功效,对心脑血管病有良好的防治效果等等。DHA 亦可提高儿童的学习技能,增强记忆。单不饱和脂肪酸可以降低血胆固醇、甘油三酯和低密度脂蛋白胆固醇(LDL-C)的作用。虽然不饱和脂肪酸虽然益处很多,但易产生脂质过氧化反应,因而产生自由基和活性氧等物质,对细胞和组织可造成一定的损伤。 饱和脂肪酸摄入量过高是导致血胆固醇、三酰甘油、LDL-C升高的主要原因,继发引起动脉管腔狭窄,形成动脉粥样硬化,增加患冠心病的风险。 饱和脂肪酸由于没有不饱和键,所以很稳定,不容易被氧化;不饱和脂肪酸,尤其是多不饱和脂肪酸由于不饱和键增多,所以不稳定,容易被脂质过氧化反应。 不饱和脂肪酸根据双键个数的不同,分为单不饱和脂肪酸和多不饱和脂肪酸二种。食物脂肪中,单不饱和脂肪酸有油酸等,多不饱和脂肪酸有亚油酸、亚麻酸、花生四烯酸等。人体不能合成亚油酸和亚麻酸,必须从膳食中补充。根据双键的位置及功能又将多不饱和脂肪酸分为ω-6系列和ω-3系列。亚油酸和花生四烯酸属ω-6系列,亚麻酸、DHA、EPA属ω-3系列。不同于饱和脂肪,多种不饱和脂肪在室温中是呈液态状态的,而且当冷藏或冷冻时仍然是液体的。单不饱和脂肪,比如在橄榄油中所发现的,在室温下为液体,但当冷藏时就会硬化。 不饱和脂肪酸的作用 1.调节血脂 丹麦科学家通过研究,对比分析食物和血液成分间的关系,发现以鱼类为主要食品的爱斯基摩人其食物中含有大量的脂肪和极少量的蔬菜,但爱斯基摩人却很少患心血管类疾病,原因是他们食物中鱼油的含量极高。 高血脂导致高血压、动脉硬化、心脏病、脑血栓、中风等疾病的主要原因,鱼油里的主要成分EPA和DHA,能降低血液中对人体有害的胆固醇和甘油三脂;能有效地控制人体血脂的浓度;并提高对人体有益的高密度脂蛋白地含量。维持低浓度血脂水平对保持身体健康,预防心血管疾病、改善内分泌都起着关键的作用。 2.清理血栓

反式脂肪酸对人体的危害

反式脂肪酸对人体的危害 反式脂肪酸也叫反式脂肪,又称为“逆态脂肪酸”。而且被戏称之现代饮食的“美味杀手”。它对人体健康的危害,尤其是容易导致心脑血管疾病这一点,民众还未有充分重视。“反式脂肪酸”是一种人工制造的脂肪酸,能让食物变得香味浓郁,口感柔滑。但真相永远是残酷的,反式脂肪酸不仅不利于健康,还容易诱发一系列疾病。反式脂肪酸到底有什么危害它存在于哪些食品中 管反式脂肪酸已经被证实对人体健康有害,但食物含多少反式脂肪酸才在安全范围以内,人每天摄入反式脂肪酸的量在多少范围内才能保证健康,目前我国食品安全部门对这些都没有相应的标准! 什么是反式脂肪酸 脂肪酸是一类羧酸化合物,由碳氢组成的烃类基团连结羧基所构成。我们常提到的脂肪,就是是由甘油和脂肪酸组成的三酰甘油酯。这些脂肪酸分子可以是饱和的,即所有碳原子相互连接,饱和的分子室温下是固态。当链中碳原子以双键连接时,脂肪酸分子可以是不饱和的。当一个双键形成时,这个链存在两种形式:顺式和反式。如右图,顺式(cis)键看起来象U型,反式(trans)键看起来象线形。顺式键形成的不饱和脂肪酸室温下是液态如植物油,反式键形成的不饱和脂肪酸室温下是固态。 营养学家研究发现,反式脂肪酸摄入过量很可能引发心脑血管疾病。反式脂肪酸在自然食物中的含量很少,主要来源是含人造奶油的食品,包括各类西式糕点、巧克力派、咖啡伴侣、速食食品等。85%的糕点里添加有反式脂肪酸。目前我国还没有食品反式脂肪酸含量标准,人们对反式脂肪酸也了解很少。因此,营养学家提醒,为了减少心脑血管疾病的发生,最好少吃含有反式脂肪酸的食品。 反式脂肪酸的多种名称人造脂肪、人工黄油、人造奶油、人造植物黄油、食用氢化油、起酥油、植物脂末等。如果您在食品的包装上看到以上名称,请注意此类食品含有反式脂肪酸,应该注意摄入量。 反式脂肪酸的危害 长期以来,人们一直认为人造脂肪来自植物油,不会像动物脂肪那样导致肥胖,多吃无害。但是,近年来的研究却让人们逐渐看清了它的真面目:“安全脂肪”居然会导致心脏病和糖尿病等疾病。 反式脂肪酸以两种形式影响我们:一种是扰乱我们所吃的食品,一种是改变我们身体正常代谢途径。

科学饮食与健康论文

东华大学 2014~2015学年第1学期饮食与健康课程论文 饮食与健康 ——浅谈珍珠奶茶的价值 班级:管理类1405 姓名:朱童 学号:140750509

一、摘要 目前珍珠奶茶在各年龄阶层中受到热捧,学生人群是主要饮用人群,但是其饮用价值却是值得探究的,因此本文对目前市场上的珍珠奶茶简单地进行了价值分析,主要从食用价值,商业价值,文化价值和健康价值等方面进行论述,其中着重对珍珠奶茶的文化价值进行论述,并简要分析了珍珠奶茶对人体的影响,得出了珍珠奶茶食用价值,健康价值不高但存在商业价值和文化价值,不宜经常性饮用的结论。 二、正文 珍珠奶茶起源于台湾,是台湾最具代表性的饮料与小吃之一,在大陆珍珠奶茶也是以星火燎原之势迅速发展,目前以快乐柠檬、冰拧公主、都可茶饮等为代表的多家奶茶店迅速发展并初具规模,在当前大学生中珍珠奶茶也是受到追捧的。那么,珍珠奶茶到底有什么价值呢? 珍珠奶茶的直接价值就是食用价值,但是珍珠奶茶是否具有食用价值还是值得推敲的。首先从珍珠奶茶的成分说起,市面上销售的珍珠奶茶主要由奶精、珍珠、果粉、水组成目,不含奶类,奶精的主要成分为氢化植物油(反式脂肪酸)、乳化剂和酪蛋白酸钠;珍珠主要由木薯粉或地瓜粉(土豆粉)、防腐剂、色素组成;果粉的主要配料是植脂末、色素、水果原粉、香料、葡萄糖,有的使用甜味剂。珍珠奶茶不属于乳制品类食品。从成分表我们可以看出一杯珍珠奶茶的热量非常高,经常性饮用对身体健康会产生不利影响。奶精其实热量非常高只能偶尔喝一杯,就珍珠奶茶而言,除奶精是高油脂外,珍珠粉圆本身也属于具有热量的淀粉类,「往往一杯约300mL的珍奶热量相当于一碗白饭」,而且依各家浓度、粉圆的数量不同,热量也不同,更何况很多人点饮料时,往往要点一大杯珍奶,虽满足嚼劲但也吃进更多热量。珍珠奶茶并不像我们所想象的奶与茶的混合,奶茶里到底有没有奶?街头奶茶店主均含糊地称,“当然添了鲜奶”,而对于奶精,则讳莫如深。然而,在店子操作台下的柜子里,却有植脂末、植脂乳等奶精制品。对此,营养专家表示,奶精中所含的反式脂肪酸,含有重金属,对人体健康非常

相关主题
文本预览
相关文档 最新文档