陈纪修《数学分析》(第2版)(下册)配套题库【课后习题(9-12章)】(圣才出品)
- 格式:pdf
- 大小:28.19 MB
- 文档页数:166
第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
第2章数列极限§1 实数系的连续性1.(1)证明不是有理数;(2)是不是有理数?证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在:解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有,所以min B不存在.max C与min C都不存在,因为,所以max C与min C都不存在.3.A,B是两个有界集,证明:(1)A∪B是有界集;(2)也是有界集.证明:(1)设,有,有,则,有.(2)设,有,有,则,有.4.设数集S有上界,则数集有下界.且.证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即.5.证明有界数集的上、下确界惟一.证明:设sup S既等于A,又等于B,且A<B.取,因为B为集合S的上确界,所以,使得,这与A为集合S的上确界矛盾,所以A=B,即有界数集的上确界惟一.同理可证有界数集的下确界惟一.6.对任何非空数集S,必有.当时,数集S有什么特点?解:对于,有,所以.当时,数集S 是由一个实数构成的集合.7.证明非空有下界的数集必有下确界.证:参考定理2.1.1的证明.具体过程略.8.设并且,证明:(1)S没有最大数与最小数;(2)S在Q内没有上确界与下确界.证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数.(2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能:(i),由(1)可知存在充分小的有理数r>0,使得,这说明,与矛盾;(ii),取有理数r>0充分小,使得,于是,这说明也是S的上界,与矛盾.所以S没有上确界.同理可证S没有下确界.§2 数列极限1.按定义证明下列数列是无穷小量:(1);(2);(3);(4);(5);(6);(7)(8).证明:(1),取,当n>N时,成立.(2),取,当时,成立.(3),取,当时,成立;取,当时,成立,则当时,成立.(4),取,当n>N时,成立.(5)当n>11时,有.于是,取,当n>N时,成立.(6)当n>5,有.于是,取,当n>N时,成立.(7),取,当n>N时,成立(8)首先有不等式,取,当n>N时,成立.2.按定义证明下述极限:证明:(1),取,当时,成立(2),取,当时,成立(3),取,当n>N时,成立(4)令,则.当n>3时,有所以,取,当时,成立.(5),取,当n>N时,若n是偶数,则成立;若z是奇数,则成立.3.举例说明下列关于无穷小量的定义是不正确的:(1)对任意给定的,存在正整数N,使当n>N时,成立;(2)对任意给定的,存在无穷多个,使.解:(1)例如,则满足条件,但不是无穷小量.(2)例如则满足条件,但不是无穷小量.4.设k是一正整数,证明:的充分必要条件是.证明:设,则,成立,于是也成立,所以;设,则,成立,取,则,成立,所以.5.设,证明:.证明:由可知,成立,成立.于是,成立.6.设.且,证明:.证明:首先有不等式.由,可知,成立,于是.7.是无穷小量,是有界数列,证明也是无穷小量.证明:设对一切.因为是无穷小量,所以,,成立.于是,成立,所以也是无穷小量.。
第11章Euclid空间上的极限和连续一、判断题1.若f(x,y)在D内对x和y都是连续的,则f(x,y)对(x,y)∈D为二元连续函数.[重庆大学研]【答案】错【解析】举反例:,很明显但是不存在,如果选取路径y=kx趋于0,有不唯一.二、填空题(1)函数的定义域是______,它是______区域;(2)函数的定义域是______;(3)函数的定义域是______;(4)二元函数的定义域是______;(5)函数的定义域是______.[西安交通大学研]【答案】(1)(2)(3)椭圆与抛物线所围的区域;(4)(5)三、解答题1.设f(x)为定义在上的连续函数,α是任意实数,有证明:E是开集,F是闭集.[江苏大学2006研]证明:对任意的,有.因为f(x)在上连续,所以由连续函数的局部保号性知,存在的一个邻域使得当时有,从而,故E是开集.设为F 的任意一个聚点,则存在F中的点列使得.由于f(x)在上连续,所以,又,从而,即,故F是闭集.2.求.[南京大学研、厦门大学研、山东科技大学研]解:方法一由于令,有所以方法二由于,,所以,故有3.设f(x,y)在[a,b]×[c,d]上连续,证明:在[c,d]上连续.[南京理工大学研、华东师范大学研]证明:反证法.假设g(y)在某点处不连续,则存在及点列,使得因为f(x,y)在[a,b]×[c,d]上连续,故在[a,b]×[c,d]上一致连续.于是对,存在δ>0,当时恒有.特别当时,即.固定y,让x在[a,b]上变化,取最大值,可得即时,.因为,所以对δ>0,存在N >0,当n>N时有,从而有,这与一开始得到的不等式矛盾,结论得证.4.设,为有界闭集,试证:开集W、V,使得A证明:A、B为有界闭集.[四川大学研]令显然W、V为开集.5.设试讨论下面三种极限:[南京工学院研]解:由于在y=0和x=0的函数极限不存在,故在(0,0)点的两个累次极限都不存在.6.设f(x,y是区域D:|x|≤1,|y|≤1上的有界k次齐次函数(k≥1),问极限是否存在?若存在,试求其值.[南京大学研]解:令x=rcosθ,y=rsinθ.由于f(x,y)是区域D上的有界k次齐次函数7.设二元函数f(x,y)在正方形区域[0,1]×[0,1]上连续.记J=[0,1].(1)试比较的大小并证明之;(2)给出并证明使等式成立的(你认为最好的)充分条件.[浙江大学研]解:(1),有上式对于任意的x都成立,则由y的任意性可知(2)若,使下面证明上面条件为充分条件显然8.设为n维欧氏空间,A是的非空子集,定义x到A的距离为证明:上的一致连续函数.[南京大学研] 证明:有对使故对时,即上的一致连续函数.9.[暨南大学2013研] 解:设,则。
第14章曲线积分、曲面积分与场论1.计算曲线积分,其中L是绕原点的简单闭曲线.解:方法一当时,可以验证,所以可将曲线L换成以原点为中心,适当小的>0为半径的小圆周:易见构造辅助函数:仍有.若定义A(0,0)=0,B(0,0)=1,则A,B在原点连续.事实上,由泰勒展开式,有.所以有即补充定义后A在原点连续,同理可证B也在原点连续.于是I=J=2π.方法二在L′上,有故积分值与无关.注意到被积函数关于连续,令,在积分号下取极限即得2.设封闭曲线的正向与z轴正向符合右手法则,求曲线积分解:由可得因此可设曲线L的参数方程为:,t从-3π/4到3π/4.于是3.设函数f(x)在(-∞,+∞)上具有一阶连续导数,L是上半平面y>0内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记(1)证明:曲线积分I与积分路径无关;(2)当ab=cd时,求I的值.证明:(1)因为所以在上半平面内曲线积分I与积分路径无关.(2)由(1)知,是某个函数u(x,y)的全微分,而设F(x)是f(x)的一个原函数,则,因此4.计算积分其中(n,x),(n,y)分别是由x轴、y轴正向与L的外法向n之间的夹角,L为逐段光滑的简单闭曲线.解:表示L的正向,即沿逆时针方向,切线方向τ与一致,如图14-1所示.从n逆时针旋转π/2即到τ,于是有(n,x)=(τ,y),(n,y)=π-(τ,x),故cos(n,x)ds=cos(τ,y)ds=dy,cos(n,y)ds=-cos(τ,x)ds=-dx.从而其中S表示L所围的面积.图14-15.计算曲面积分,其中S是球面解:将球面S分成三部分S1,S2,S3,其中此时曲面S1在xOy平面的投影区域为,S1的方程为z=,故有从而6.计算曲面积分,其中S为下半球面的上侧,a>0为常数.解:采用补面法.按常规应补平面S1:x2+y2≤a2,z=0.仔细观察发现被积函数在原点处有奇性,不能直接应用高斯公式,但注意到在下半球面上的点(x,y,z)满足x2+y2+z2=a2,则可将原曲面积分改写成这样,取S1的法向方向与z轴正向相反,就可对上式使用高斯公式了.于是有其中V是S1,S所围的空间区域.故7.计算曲线积分L是x2+y2+z2=2r1x与x2+y2=2r2x的交线(0<r2<r1,z>0),L的方向是使L所围的球面上较小部分区域保持在左边.解:由于球面的外法向的方向余弦为所以由斯托克斯公式,有其中S是球面x2+y2+z2=2r1x由L所围的部分.由于曲面S关于xOz平面对称,所以.又由可知,。
第16章Fourier级数一、判断题存在实数,,使得.()[华东师范大学2009研]【答案】对【解析】可选取周期为的连续可微函数,且当时,;时,,取,,为的Fourier系数,则有,.结论得证.二、解答题1.将函数展开为余弦级数.[华中科技大学2008研]解:对作偶式周期延拓,则的傅里叶系数为:,,即,(),所以.2.(1)试讨论级数关于0≤x≤1是否一致收敛;(2)设函数f的周期为2π,且,试利用f的Fourier展开计算的和数.[复旦大学研]解:(1),取,则故关于0≤x≤1不一致收敛.(2)Fourier系数由于f(x)在(0,2π)上连续,由收敛定理知对,有在端点x=0和x=2π处,其傅里叶级数收敛于令x=2π,有故3.把函数展开成Fourier(傅立叶)级数.[中山大学研]解:将f(x)延拓成以2π为周期的按段光滑函数.故f(x)的Fourier级数为由收敛定理知它收敛于4.设在上黎曼可积,证明:的傅里叶展开式有相同系数的充要条件是[北京大学2007研]证明:此处只需证明的情况(对于一般的情况只是区间的平移和拉伸).都为0,,5.在[0,π]上展开f(x)=x+cosx为余弦级数.[华中科技大学研]解:将f(x)= x+cosx延拓为[-π,π]上的偶函数.则由收敛定理,对在点x=π处,其傅里叶级数收敛于6.设f(x)为以为周期且在[-π,π]上可积的函数,和为f(x)的傅里叶系数.(1)试求f(x+h)的傅里叶系数,(其中h为常数);(2)令,求函数F(x)的傅里叶系数,并利用所得结果证明巴塞瓦(Parseval)等式:[哈尔滨工业大学研]解:(1)设f(x+h)的傅里叶系数为和即同理(2)设F(x)的傅里叶系数为,易知F(x)是以2π为周期的函数.因为f(x)连续,所以由含参变量积分性质知,F(x)是连续函数,又故F(x)是[-π,π]上的偶函数,从而F(x)的傅里叶系数另外,根据含参变量积分的积分顺序可交换定理,令x+t =u可得由F(x)的连续性和收敛定理得或取x=0,则得Parseval等式7.将函数展成级数,并求的和.[苏州大学2005研]解:根据题意,f(x)在上是奇函数因此。
第13章重积分§1 有界区域上的重积分1.设一平面薄板(不计其厚度),它在xy平面上的表示是由光滑的简单闭曲线围成的闭区域D.如果该薄板分布有面密度为的电荷,且在D上连续,试用二重积分表示该薄板上的全部电荷.解:设电荷总量为Q,则2.设函数在矩形上有界,而且除了曲线段外,在D上其他点连续.证明f在D上可积.证明:设,将D用平行于两坐标轴的直线分成n个小区域,记,不妨设,将曲线段包含在内,于是在有界闭区域上连续,因此在上可积,即,当时,而当时,取,当时,就有所以f在D上可积.3.按定义计算二重积分,其中解:将D分成n2个小正方形取,则4.设一元函数f(x)在[a,b]上可积,.定义二元函数,证明F(x,y)在D上可积.证明:将[a,b]、[c,d]分别作划分:和则D分成了nm个小矩形记是f(x)在小区间上的振幅,是F在上的振幅,则于是由f(x)在[a,b]上可积,可知,所以即F(x,y)在D上可积.5.设D是R2上的零边界闭区域,二元函数在D上可积.证明和也在D上可积.证明:首先有设,将D划分成n个小区域,利用不等式,可得于是所以由f,g在D上可积,可知即在D上可积.类似地可得从而在D上也可积.§2 重积分的性质与计算1.证明重积分的性质8.证明:不妨设,M、m分别是f(x)在区域Ω上的上确界、下确界,由、性质1和性质3,可得当,积分中值定理显然成立.当,有所以存在,使得即如果f在有界闭区域Ω上连续,由介值定理,存在,使得所以2.根据二重积分的性质,比较下列积分的大小:(1),其中D为x轴、y轴与直线x+y=1所围的区域;(2),其中D为闭矩形[3,5]×[0,1].解:(1)因为在D上成立0<x+y<1,所以,于是(2)因为在D上成立x+y≥3,所以,于是3.用重积分的性质估计下列重积分的值:(1),其中D为闭矩形[0,1]×[0,1];(2),其中D为区域(3),其中Ω为单位球解:(1)因为在D上成立,所以(2)因为在D上成立,所以(3)因为在Ω上成立,所以4.计算下列重积分:(1),其中D为闭矩形[0,1]×[0,1];(2),其中D为闭矩形[a,b]×[c,d];(3),其中Ω为长方体[1,2]×[1,2]×[1,2].解:5.在下列积分中改变累次积分的次序:(改成先y方向,再x方向和z方向的次序积分);(改成先x方向,再y方向和z方向的次序积分).解:6.计算下列重积分:(1),其中D为抛物线和直线所围的区域;(2),其中D为圆心在(a,a),半径为a并且与坐标轴相切的圆周上较短的一段弧和坐标轴所围的区域;(3),其中D为区域(4),其中D为直线和0)所围的区域;(5),其中D为摆线的一拱与x轴所围的区域;(6),其中D为直线和x=1所围的区域;。