当前位置:文档之家› 关于非线性约束最优化方法-乘子法

关于非线性约束最优化方法-乘子法

关于非线性约束最优化方法-乘子法
关于非线性约束最优化方法-乘子法

非线性约束最优化方法 ——乘子法

1.1 研究背景

最优化理论与方法是一门应用性相当广泛的学科,它的最优性主要表现在讨论决策问题的最佳选择性,讨论计算方法的理论性质,构造寻求最佳解的计算方法,以及实际计算能力。伴随着计算数学理论的发展、优化计算方法的进步以及计算机性能的迅速提高,规模越来越大的优化问题得到解决。因为最优化问题广泛见于经济计划、工程设计、生产管理、交通运输、国防等重要领域,它已受到政府部门、科研机构和产业部门的高度重视。然而,随着人们对模型精度和最优性的要求所得到的优化命题往往具有方程数多、变量维数高、非线性性强等特点,使得相关变量的存储、计算及命题的求解都相当困难,从而导致大规模非线性优化很难实现。因此,寻求高效、可靠的大规模非线性优化算法成为近年来研究的热点。

本文讨论的问题属于非线性约束规划的范畴,讨论了其中的非线性等式约束最优化问题方面的一些问题。 1.2非线性约束规划问题的研究方法

非线性约束规划问题的一般形式为

(NPL ) {}{}

m in (),,

s.t. ()0,1,2,...,,

()0,1,2,...,n

i i f x x R c x i E l c x i I l l l m ∈=∈=≤∈=+++

其中,(),()i f x c x 是连续可微的.

在求解线性约束优化问题时,可以利用约束问题本身的性质,

但是对于非线性约束规划问题,由于约束的非线性使得求解这类问题比较复杂、困难。因此,我们将约束问题转化为一系列无约束优化问题,通过求解一系列无约束优化问题,来得到约束优化问题的最优解。我们用到的几类主要的方法有:罚函数法、乘子法以及变尺度法。

传统上我们所提出的非线性约束最优化方法一般都遵循下列三个基本思路之一

1 借助反复的线性逼近把线性方法扩展到非线性优化问题中来

2 采用罚函数把约束非线性问题变换到一系列无约束问题

3 采用可变容差法以便同时容纳可行的和不可行的X 矢量

其中源于思路2 的乘子罚函数法具有适合于等式及不等式约束不要求初始点为严格内点,甚至不要求其为可行点对自由度的大小无任何要求等特点。

1.3乘子法

罚函数法的主要缺点在于需要惩罚因子趋于无穷大,才能得到约束问题的极小点,这会使罚函数的Hesse矩阵变得病态,给无约束问题的数值求解带来很大问题,为克服这一缺点,Hestenes和Powell 于1964年各自独立地提出乘子法。所谓乘子法是:由问题的Lagrange 函数出发,考虑它的精确惩罚,从而将约束优化问题化为单个函数的无约束优化问题,它同精确罚函数法一样,具有较好的收敛速度和数值稳定性,且避免了寻求精确罚函数法中关于罚参数阈值的困难,它们一直是求解约束优化问题的主要而有效的算法。

考虑如下非线性等式约束优化问题:

(NEP ) min f (x )

s.t. 0)(=x c i , i=1,2,...,l 设*

x

为问题(NEP )的最优解,且它的 Lagrange 函数为

)()(),(x c x f x L T

λλ-=

其中T

l x c x c x c x c ))(),...,(),(()(21=,T

l ),...,,(21λλλλ=是与x 相对

应的Lagrange 的乘子向量。在一般正规假设条件(Fritz John 必要

条件)下,),(*

*λx 是),(λx L 的稳定点,即0),(*

*=?πx L x 。因此,若能找到*

λ,则),(*

λx L 的极小值是*

λ,那么求解问题(NEP )转化

成求解一个无约束极小化问题。然而),(λx L 的极小值往往不存在。

为了避免出现),(λx L 的极小值不存在的问题,我们构造增广Lagrange 函数

)()(2

1)()(),,(x c x c x c x f x T

T

σλσλ?+

-=

由于0),(*

*=?πx L x ,则

0)()()()(),(),,(*

*******=?=?+?=?x c x c x c x c x L x x x σσλσλ?

这样*

x

是),,(*

σλ?x 的一个稳定点。

由此可知,当*

λλ=时,适当的选取σ可以使),,(*

σλ?x 的无

约束极小点就是问题(NEP ) 的最优解。 1.4 乘子法的相关定理和引理

引理 设W 是n n ?阶矩阵,a 为n 阶向量,若对一切d 满足

0,0T

d a d ≠=,均有0

T

d W d >,则存在*

σ

>,使当*

σ

σ

≥时,矩阵

T

W aa

σ+正定.

证明 考虑集合

{}

1K d d ==,

只需证明,,d K ?∈当*

σ

σ

≥时,有

()0.T T

d W aa d σ+> (4.20)

事实上,

z ?≠,则

z d K

z

=

∈,则

()0

T T

z W aa

z σ+>

与()0T

T

d W aa d σ+>等价.

{}'0,,T

K d d W d d K =≤∈

'K =?

,则

,

d K ?∈有

T

d W d >,因此0

σ?>,有()T

T

T

d W a a d

d W d

σ+≥

>.因此假设

'K ≠?

,当

/'

d K K ∈时,有

0T

d

W d >,因此0σ?>,有()0T

T

T

d W aa d d W d σ+≥>.

下面考虑'd K ∈,由于'K 是有界闭集,则函数T

d

W d

与2

()

T

a

d 在'

K

上取到极小值,不妨设(1)(1)()T d W d 与(2)2()T a d 分别为函数的极小值,并且(2)0T a d ≠;否则由定理条件,有(2)

(2)

()0T d

W d

>与(2)

'd

K ∈矛盾.因此

(1)

(1)

*

(2)

2

()0,()

T T

d

W d

a d

σ>

>

当*

σ

σ

≥时,有

2

(1)

(1)

(2)

2

()()()()0,T

T

T

T

T T d W aa d d W d a d d W d

a d

σσσ+=+≥+>

因此,,d K ?∈(4.20)式成立. 定理1 设*

x

是问题(NEP )的最优解,且满足二阶充分条件,其

相应的Lagrange 乘子为*λ ,则当σ充分大时,*

x 为无约束优

化问题

),,(*

min

σλ?x x

=

的最优解,且满足二阶充分条件。

证 只要证明对于充分大的σ,使得0),,(*

*=?σλ?x x 并且

),,(*

*2

σλ?x x ? 为对称正定矩阵,则命题成立。

由于*

x

是最优解所以l i x c i ,...,2,1,0)(*

==

∑=?-?=?l

i i i x x c x f x 1

*

*

*

*

*

)()(),,(λσλ?

B

B +?=B B +?-?=?∑=T

x T

l

i i i x x L x c x f x σλσλσλ?),()()(),,(**2

1

*2*

*

2

*

*

其中))(),...,((*

*1x c x c l ??=B 为l h ?阶的矩阵,有一阶必要条件知

0),,(*

*=?σλ?x x

再有二阶充分条件可知,若对任意的{}0|)(*=B =∈y y x M y ,且0≠y ,

0),(*

*2

>?y x L y x T

λ 成立.因此,存在0*

>σ,使得

B B +?T

x x L ***2

),(σλ

为对称正定矩阵.事实上,只需要证明B B +?T

x x L ***2

),(σλ在

{}1|=∈=Ωy R y n

上是正定的即可.对任意的Ω∈y ,

2

*

**2

***2

),()),((y

y x L y y x L y x T

T x T

B +?=B B +?σ

λσλ

y x L y x T

),(*

*2

λ?≥ 故只需证存在0*

>σ使得B B +?T

x x L ***2

),(σλ在 {

}

0),(|*

*2

≤?Ω∈=Ω-y x L y y x T

λ 上正定.对任意的-Ω∈y ,

2

*

***2

inf )),((y y x L y y T x T

B +≥B B +?-

Ω

∈σσσλ

其中σ为),(*

*2λx L x ?的最小特征值。

下面只需证明 0inf 2

>B -

Ω

∈y y

若0inf 2

=B -

Ω∈y

y ,则存在-Ω∈k y

,使得0

lim

=B ∞

→k k y .

因为{}k y 是有界序列,故有收敛子列,不妨设-Ω∈→y y k ,因此有

0),(*

*

2

≤?y x L y x T

λ.又由于

0lim lim =B =B =B ∞

→∞

→k k k k y y y

故)(*

x M y ∈,这与0),(*

*2

>?y x L y x T

λ矛盾,从而有

0inf 2

>B -

Ω∈y

y ,这就证明了对于充分大的

σ

,矩阵

B B +?T

x x L σλ),(*

*

2

是对称正定的。

定理2 对给定的),...,2,1(l i i =λ和0>σ,设*

x 是无约束优化问题

)

,,(min σλ?x x

=的最优解,且满足二阶充分条件.如果

),...,2,1(0)(*

l i x c i ==,则*

x 也是问题(NEP )的最优解,且满足

二阶充分条件. 1.5 乘子罚函数法

乘子罚函数法是解决非线性等式约束优化问题的一种重要方法,它具有不要求初始点为严格内点,不要求其为可行点,对自由度的大小无任何要求的特点 ,它利用Lagrange 乘子求近似解的方法逼近原问题最优解,而不需要无穷大的罚因子,因此对它的研究有重要的理论和实用价值 .最早的乘子罚函数法是由 Henstenes (1969)针对等式约束问题导出的,其形式为:

2

2)(2

)()(),,(x c x c x f x p T

σ

λσλ+

-=

增广Lagrange 函数的另一种等价形式是在1969年由Powell 提出的,其特征是对)(x c i 进行平移,即用i i x c θ-)(代替)(x c i ,i θ 是参数,由此Powell(1969)得到罚函数:

2

1

))((2

)()(),,(∑=-+-=m

i i

i

T

x c x c x f x p θ

σ

λσλ

当构造出函数(,)x φσ后,可以通过求解一个无约束问题得到约束问题的最优解.但事实上,做到这一点很困难.因为(,)x φσ中的*

λ未

知,在得到*

x 之前,我们是无法知道它的.为了克服上述困难的我们

用参数λ代替*

λ,得到增广Lagrange 函数也就是我们所说的乘子罚

函数

2

(,,)()()(),2

x f x c x c x σ

φλσλ=++

考虑其相应的无约束问题

min (,,),x φλσ

其最优解为(,).x

x λσ=

由前面定理1我们知道,只要当σ充分大(不一定趋于∞),就有

**

lim (,).x x λλ

λσ→=

因此,要想求得*x ,只需要不断的调整参数λ使之逐渐接近最优乘子*

λ.

下面考虑如何调整参数λ,使它逐渐接近*

λ

在给定()

,k k λ

σ后,求解无约束问题

()

m in (,,),k k x φλσ

其最优解为()

k x

.由无约束问题的一阶必要条件有

()

()

()

()

()

()

()

(,,)()()()()0,k k k k k k k x k k x

f x

c x

c x

c x

φλ

σλ

σ?=?+?+?=

当k σ充分大时,由*

lim (,)x x σ

λσ→∞

=可知 ()

*()

*()

*

,()(),()(),k k k x

x f x

f x c x

c x ≈?≈??≈?

因此有

*()

()

*

()[()]()0k k k f x c x

c x λ

σ?++?≈

而在*

x 处,由约束问题的一阶条件有

*

*

*

()()0,f x c x λ?+?=

所以有

*()

()

(),k k k c x

λλ

σ≈+

这样得到乘子迭代公式

(1)

()

()

().k k k k c x

λ

λ

σ+=+

最后就是算法的终止准则条件

若()

k x 是无约束问题的局部解,并且满足() ()0k c x =,则有

()

()

()

()()0,k k k f x

c x

λ

?+?=

因此,

()

k x 是约束问题的K-T 点,()k λ为相应的乘子. 有定理2知()k x 是约束问题(NEP )的最优解,停止计算.因此其终止准则为

ε≤)(k

x c

其中ε是指定的精度要求. 1.6 结论

从原问题的Lagrange 函数出发,加上适当的罚函数,从而将原问题转化为一系列的无约束优化问题。在乘子法中引入拉格朗日函数以及罚函数,克服了外罚函数法中的罚参数趋于无穷时增广目标函数“越来越病态”的缺点,有效的简化了计算过程,提高了精度。

通过上述过程分析可知只要我们改变罚函数并结合Lagrange 函数就会得到不同的乘子罚函数法,因此在以后的研究工作中我们可以试着给出新的罚函数,证明其收敛性,从而得到一种更好的方法,这有待于我们进一步研究推导证明。

用外点法求解非线性约束最优化问题

题目:用外点法求解非线性约束最优化问题 学院信息管理学院 学生姓名余楠学号 81320442 专业数量经济学届别 2013 指导教师易伟明职称教授 二O一三年十二月

用外点法求解非线性约束最优化问题 摘要 约束最优化问题是一类重要的数学规划问题。本文主要研究了用外点罚函数法对约束非线性规划问题进行求解。对于一个约束非线性规划用罚函数求解的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。本文最后利用c语言编程得到满足允许误差内的最优解。 本文主要对一个约束非线性规划问题的实例,首先利用上述迭代的方法,计算出各迭代点的无约束极值问题的最优解。然后应用c语言编程,得到精确地最优解,需迭代四次次才使得ε≤0.001,得到的最优解为* X=(333 .0)T。 .0, 666 关键词:外点罚函数法非线性规划约束最优化迭代最优解

一、背景描述 线性规划的目标函数和约束条件都是决策变量的线性函数,但如果目标函数或约束条件中含有决策变量的非线性函数,就称为非线性规划。非线性规划与线性规划一样,也是运筹学的一个极为重要的分支,它在经济、管理、计划、统计以及军事、系统控制等方面得到越来越广泛的应用。 非线性规划模型的建立与线性规划模型的建立类似,但是非线性规划问题的求解却是至今为止的一个研究难题。虽然开发了很多求解非线性规划的算法,但是目前还没有适用于求解所有非线性规划问题的一般算法,每个方法都有自己特定的适用范围。 罚函数法是应用最广泛的一种求解非线性规划问题的数值解法,它的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。这种惩罚体现在求解过程中,对于企图违反约束的那些迭代点,给予很大的目标函数值,迫使这一系列无约束问题的极小值点无限的向可行集(域)逼近,或者一直保持在可行集(域)内移动,直到收敛于原来约束问题的极小值点。 外点法的经济学解释如下:若把目标函数看成“价格”,约束条件看成某种“规定”,采购人员在规定的范围内采购时价格最便宜,但若违反了规定,就要按规定加收罚款。采购人员付出的总代价应是价格和罚款的综合。采购人员的目标是使总代价最小,当罚款规定的很苛刻时,违反规定支付的罚款很高。这就迫使采购人员在规定的范围内采购。数学上表现为罚因子足够大时,无约束极值问题的最优解应满足约束条件,而成为约束问题的最优解。 二、基础知识 2.1 约束非线性优化问题的最优条件 该问题是一个约束非线性优化问题,利用外点罚函数法求解该问题,约束非线性优化问题的最优解所要满足的必要条件和充分条件是我们设计算法的依据,为此有以下几个定理。

线性和非线性最优化理论、方法、软件及应用

线性和非线性最优化理论、方法、软件及应用 最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况. 1. 线性最优化 线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差. 1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法. 线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是https://www.doczj.com/doc/8817721123.html,/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序. 这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。关于内点法的软件也在研制之中.BPMP D是Cs.Mzos基于原始对偶内点法研制的解线性和整数规划的软件,其FTP地址是ftp://ftp.sztaki.hu/pub /oplab/SOFTWARE/BPMPD/ ,可以自由下载.此外,在互联网上能访问到的解线性和整数规划问题的软件还有:EQPS(线性,整数和非线性规划),FMP(线性和混合整数规划),HS/LPLO(线性规划),KORBX(线性规划),LAMPS(线性和整数规划),LPBLP(线性规划),MILP(混合整数规划),MINTO(混合整数规划),MPSIII(线性和混合整数规划),OML(线性和混合整数规划),OSL(线性,二次和混合整数规划),PROCLP(线性和整数规划),WB(线性和混合整数规划),WHIZARD(线性和混合整数规划),XPRESSMP(线性和混合整数规划)等.

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

最优化课程的一本好教材 ——《非线性最优化理论与方法》书评

Advances in Education教育进展, 2019, 9(4), 450-453 Published Online July 2019 in Hans. https://www.doczj.com/doc/8817721123.html,/journal/ae https://https://www.doczj.com/doc/8817721123.html,/10.12677/ae.2019.94076 A Good Textbook for Optimization —Review of Theory and Algorithms on Nonlinear Programming Naiyang Deng School of Science, China Agricultural University, Beijing Received: Jun. 30th, 2019; accepted: Jul. 12th, 2019; published: Jul. 22nd, 2019 Abstract This paper provides a review for the textbook written by Professors Yiju Wang and Naihua Xiu, named Theory and Method of Nonlinear Optimization published by Science Publishing House in 2012 by pointing out some highlights and features of the book, and giving some suggestions for improvement. Keywords Book Review, Highlights and Features, Suggestions 最优化课程的一本好教材 ——《非线性最优化理论与方法》书评 邓乃扬 中国农业大学理学院,北京 收稿日期:2019年6月30日;录用日期:2019年7月12日;发布日期:2019年7月22日 摘要 本文对王宜举教授和修乃华教授2012年在科学出版社出版的《非线性最优化理论与方法》进行了评述,指出了该书的一些亮点和特色,同时也给出了进一步提升的建议。 关键词 书评,亮点与特色,建议

五种最优化方法

五种最优化方法 1.最优化方法概述 最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法: 3)是一种函数逼近法。 原理和步骤 3.最速下降法(梯度法) 最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 最速下降法算法原理和步骤 4?模式搜索法(步长加速法) 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的 是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

模式搜索法步骤 5.评价函数法 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min (f_1(x),f_2(x),…,f_k(x)) .g(x)<=o 传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权 求合法介绍。 线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 遗传算法基本流程 的就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

MATLAB非线性优化fmincon

M A T L A B非线性优化 f m i n c o n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

active-setandsqpalgorithms不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 一、求解失败 1、在到达迭代次数阈值或目标函数估值次数阈值时,求解器没有最小化目标到要求的精度,此时求解器停止。接下来,可以尝试以下方法: (1)设置‘Display’为‘iter’,查看每步的迭代信息,这些信息包括:目标函数(Fvalorf(x)orResnorm)是否是下降的;检查约束越界(Maxconstraint)是否是递减趋向于0;查看一阶优化是否是递减趋向于0;查看置信域半径(Trust-regionradius)是否下降趋向于一个小的值。若其中至少一种情况为是,就表示结果是不断改善的。如果结果是不断改善的,可以采取下边的措施:设置MaxIter、MaxFunEvals比默认值大的值,默认值可以在优化工具箱或求解器的函数参考页的优化表中查看;从最后计算出的点开始重新求解。如果结果没有改善,尝试以下其他的方法。 (2)放松精度 如果TolX或TolFun太小,当求解器达到一个最小值时可能也不会识别到,这就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解 (4)检查目标函数和约束函数的定义 举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。

关于非线性约束最优化方法-乘子法

非线性约束最优化方法 ——乘子法 1.1 研究背景 最优化理论与方法是一门应用性相当广泛的学科,它的最优性主要表现在讨论决策问题的最佳选择性,讨论计算方法的理论性质,构造寻求最佳解的计算方法,以及实际计算能力。伴随着计算数学理论的发展、优化计算方法的进步以及计算机性能的迅速提高,规模越来越大的优化问题得到解决。因为最优化问题广泛见于经济计划、工程设计、生产管理、交通运输、国防等重要领域,它已受到政府部门、科研机构和产业部门的高度重视。然而,随着人们对模型精度和最优性的要求所得到的优化命题往往具有方程数多、变量维数高、非线性性强等特点,使得相关变量的存储、计算及命题的求解都相当困难,从而导致大规模非线性优化很难实现。因此,寻求高效、可靠的大规模非线性优化算法成为近年来研究的热点。 本文讨论的问题属于非线性约束规划的范畴,讨论了其中的非线性等式约束最优化问题方面的一些问题。 1.2非线性约束规划问题的研究方法 非线性约束规划问题的一般形式为 (NPL ) {}{} m in (),, s.t. ()0,1,2,...,, ()0,1,2,...,n i i f x x R c x i E l c x i I l l l m ∈=∈=≤∈=+++ 其中,(),()i f x c x 是连续可微的. 在求解线性约束优化问题时,可以利用约束问题本身的性质,

但是对于非线性约束规划问题,由于约束的非线性使得求解这类问题比较复杂、困难。因此,我们将约束问题转化为一系列无约束优化问题,通过求解一系列无约束优化问题,来得到约束优化问题的最优解。我们用到的几类主要的方法有:罚函数法、乘子法以及变尺度法。 传统上我们所提出的非线性约束最优化方法一般都遵循下列三个基本思路之一 1 借助反复的线性逼近把线性方法扩展到非线性优化问题中来 2 采用罚函数把约束非线性问题变换到一系列无约束问题 3 采用可变容差法以便同时容纳可行的和不可行的X 矢量 其中源于思路2 的乘子罚函数法具有适合于等式及不等式约束不要求初始点为严格内点,甚至不要求其为可行点对自由度的大小无任何要求等特点。 1.3乘子法 罚函数法的主要缺点在于需要惩罚因子趋于无穷大,才能得到约束问题的极小点,这会使罚函数的Hesse矩阵变得病态,给无约束问题的数值求解带来很大问题,为克服这一缺点,Hestenes和Powell 于1964年各自独立地提出乘子法。所谓乘子法是:由问题的Lagrange 函数出发,考虑它的精确惩罚,从而将约束优化问题化为单个函数的无约束优化问题,它同精确罚函数法一样,具有较好的收敛速度和数值稳定性,且避免了寻求精确罚函数法中关于罚参数阈值的困难,它们一直是求解约束优化问题的主要而有效的算法。 考虑如下非线性等式约束优化问题:

MATLAB非线性优化fmincon

精心整理 active-set and sqp algorithms不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 1、 (1 数( (2 如果 就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解 (4)检查目标函数和约束函数的定义

举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。 (5)对问题进行中心化和标准化 当每个坐标轴对目标函数和约束函数有相同的影响时,求解器更能可靠的运行,对每个坐标轴方向乘以合适的量使得每个坐标轴的影响相同,在特定的坐标轴 (6 (7 2 在可 (1 通过求解一个线性规划问题来找到一个满足界约束和线性约束的点。 i)定义一个目标函数是常值0的线性规划问题 f=zeros(size(x0));%assumesx0istheinitialpoint ii)求解这个线性规划问题看是否有一个可行点 xnew=linprog(f,A,b,Aeq,beq,lb,ub);

iii)如果有可行点xnew,用xnew作为初始点去求解原始问题 iv)如果没有可行点,那说明原始模型建的不好,检查界约束和线性约束。(2)检查非线性约束 在保证界约束和线性约束是可行的之后,检查非线性约束: i)设置目标函数为0,然后求解优化问题,如果能找到一个可行点xnew,令 ii) a. 足。 b. 3 (1)原问题可能确实无界,即存在一系列满足问题约束的点xi,使得limf(xi)=–∞。 (2)检查原问题建模正确,求解器是最小化目标函数,如果想得到最大化,将目标函数乘以-1. (3)试着标准化或中心化原问题。

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这 种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的, 无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过 对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。 所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度 法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯 形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法 可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方 程 0)(min *=X f

的解。也就是求X*使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值 点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性 的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题 的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用 数值迭代的方法直接求解无约束极值问题。 2、数值方法 数值迭代法的基本思想是从一个初始点) 0(X 出发,按照一个可行的搜索方向)0(d ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方向下降最大,得到)1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α (4.2) 在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)(k d ρ。 最常用的数值方法是搜索方法,其基本思想如下图所示: 0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

非线性最优化计算方法与算法

毕业论文 题目非线性最优化计算方法与算法学院数学科学学院 专业信息与计算科学 班级计算1201 学生陶红 学号20120921104 指导教师邢顺来 二〇一六年五月二十五日

摘要 非线性规划问题是一般形式的非线性最优化问题。本文针对非线性规划的最优化问题进行方法和算法分析。传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。 利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。 关键词:非线性规划;最速下降法;牛顿法;遗传算法

ABSTRACT Nonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming. We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function. Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm

相关主题
文本预览
相关文档 最新文档