当前位置:文档之家› 重力坝坝顶超高计算书标准格式

重力坝坝顶超高计算书标准格式

重力坝坝顶超高计算书标准格式
重力坝坝顶超高计算书标准格式

专业资料

混凝土重力坝坝顶超高计算书标准格式

工程设计分院坝工室

2006.3.

核定:审查:校核:编写:

——水电站工程(或水库工程、水利枢纽工程)

混凝土重力坝坝顶高程计算书

1计算说明

1.1适用范围(设计阶段)

本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。

1.2工程概况

工程位于省市(县)的江(河)上。该工程是以为主,兼顾、、等综合利用的水利水电枢纽工程。

本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。选定坝址为,选定坝型为。

根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。)

1.3计算目的和要求

通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。

1.4计算原则和方法

1.4.1计算原则

(1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括

最大浪高、波浪中心线至水库静水位的高度和安全超高。

(2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。

(3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空)

对坝顶高程的要求。

1.4.2计算方法

因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即:

?h=h1%+h z+h c

式中,?h—防浪墙顶至水库静水位的高差,m;

—浪高,m;

h

1%

?波浪中心线至水库静水位的高度,m;

h

z

?安全超高,m。

h

c

1.5计算工况

(1)正常蓄水位+相应的墙顶高差;

(2)设计洪水位+相应的墙顶高差;

(3)校核洪水位+相应的墙顶高差。

2计算依据

2.1规程规范和相关的技术文件

(1)规程规范

《水电枢纽工程等级划分及设计安全标准》DL5180—2003。

《混凝土重力坝设计规范》DL 5108-1999。

《水工建筑物抗震设计规范》DL 5073-1997。

《水工建筑物荷载设计规范》DL 5077-1997。

(2)设计大纲

《—工程—阶段—设计大纲(工作计划)》(年.月)

(3)任务书

《—工程—阶段—计算任务书》(年.月)

(4)相关的技术文件

《—工程—阶段—(设计报告)》(年.月)。

《—工程—阶段—(设计报告)审查意见》(年.月)。

2.2原始资料和数据

依据—审查意见(或—报告或—接口单),原始资料和数据为:

(1)水库特征水位

正常蓄水位:m;

汛期限制水位:m;

死水位:m;

设计洪水位:m;

校核洪水位:m;

防洪最高水位:m。

(2)风速、风向

年最大风速:m/s;

重现期为50年的年最大风速: m/s;

多年平均年最大风速: m /s ; 多年平均年最大风速相对应的风向: 。 (3) 坝轴线方位角: 。

(4) 上游坝坡: ;大坝建基面高程: m ;坝前库底最低高程: m (见

附图1)。

(5) 工程场地地震基本烈度: 度,设计烈度: 度。

2.3 重要设计参数和系数

依据《水工建筑物荷载设计规范DL 5077-1997》14.1.3条、G.1.2条的规定及坝前库区工程地形图(附图2),设计风速和风区长度等取值见表2.1。

表2.1 设计风速和风区长度

2.4 引用定理及公式 2.4.1 波浪要素计算

波浪要素主要包括波浪的平均波高、平均周期和平均波长。根据拟建水库条件,宜按 公式计算:

(1) 平原、滨海地区水库,按照莆田试验站公式计算:

[]

??

??????????

????

?

??=7

.02045.0207

.02

020)/(7.013.0)/(0018.07.013.0v gH th v gD th v gH th v gh m m m

5.020

0)(9.13v gh v gT m m = 或5

.0438.4m m h T = 式中:h m —平均波高(m ); T m —平均波周期(s); v 0—计算风速(m/s ); D —风区长度(m ); H m —水域平均水深(m ); g —重力加速度,9.81m/s 2。 平均波长按下式计算:

m

m

m m L H th

gT L ππ222

= 对于深水波,即H >0.5Lm 时,π

22

m m gT

L =

式中:Lm —平均波长(m )

(2) 丘陵、平原地区水库,宜按鹤地水库公式计算(适用范围:水库较深、v 0

<26.5m/s 及D <7.5km ):

3/12

6

/10

2

%2)(

00625.0v gD v v gh =

2

/12

2

)(

0386.0v gD v gL m = 式中 h 2%—累积频率为2%的波高(m);

L m —平均波长(m )。

(3) 内陆峡谷水库,可采用官厅水库公式计算(适用范围:v 0<20m/s 及D <20km ):

3

/120

12/1020)(0076.0v gD v v gh -= 75.3/12

15

.2/10

2

)(

331.0v gD v v gL m -=

式中 h —当gD/ v 02 =20~250时,为累积频率5%的波高h 5%,m ;当gD/ v 02

=250~1000时,为累积频率10%的波高h 10%,m 。 (4) 累积频率p%的波高h p 与平均波高h m 的比值按表2.2确定:

表2.2 累积频率为P%的波高与平均波高比值(m P h h /)

2.4.2 波浪中心线至水库静水位的高度h z (m)

m

m

z L H

cth

L h h ππ2%

12=

式中:h z —波浪中心线至水库静水位的高度(m );

h

—累积频率为1%的波高 (m);

1%

—平均波长(m);

L

m

H—坝迎水面前水深(m)。

2.4.3安全超高h c

依据《水电枢纽工程等级划分及设计安全标准》DL5180—2003和《混凝土重

按表2.3确定。

力坝设计规范》DL 5108-1999,安全超高h

c

表2.3 安全超高h

c

当库区有可能发生大体积塌岸或滑坡并在壅水建筑物形成涌浪时,坝顶超高应进行专门研究后确定。

3计算过程与结果分析

3.1防浪墙顶在水库静水位以上的高差及墙顶高程计算

见Excel计算过程表3.1~3.3。

3.2成果汇总

不同工况的计算成果汇总见表3.4。

表3.4 防浪墙顶在水库静水位以上的高差及墙顶高程计算成果表

4计算结论和建议

(1)混凝土重力坝坝顶上游防浪墙顶高程按以上运用条件计算后,取表3.4中

的最大值,即为 m。

(2)因防浪墙高 m,最终确定坝顶高程 m,高于水库正常蓄水位及设计洪

水位 m,满足规范要求,可作为坝体标准剖面设计的依据。

(3)下阶段可根据新的水文、地形和地质条件再复核。

5计算附表及附图

附图1:坝体计算标准剖面图

附图2:坝前水库区工程地形图

坝体稳定计算书

1 坝顶高程及护坡计算 根据《碾压式土石坝设计规范》(SL274-2001),坝顶高程等于水库静 水位与坝顶超高之和,应分别按以下运用条件计算,取其最大值:①正常蓄水位加正常运用条件的坝顶超高;②设计洪水位加正常运用条件的坝顶超高;③校核洪水位加非常运用条件的坝顶超高。考虑坝前水深、风区长度、坝坡等因素的不同,分别计算安全加固前后主坝及一、二、三副坝的坝顶高程。 计算波浪要素所用的设计风速的取值:正常运用条件下,采用多年平 均年最大风速的倍;对于非常运用条件下,采用多年平均年最大风速。根据水库所处的地理位置,多年平均年最大风速值采用15.2m/s 计算。主坝风区长度为886m西营副坝风区长度为200m马尾副坝风区长度为330m 采用公式法进行计算。 坝顶超高计算 根据《碾压式土石坝设计规范》SL274— 2001,坝顶在水库静水位的超 高应按下式计算: y=R+e+A 式中:R――最大波浪在坝坡上的爬高(m; e —最大风壅水面高度(m ; A安全超高(m,对于3级土石坝,设计工况时A=0.7m,校 核工况时A=0.4m; 加固前坝顶超高的计算 1.2.1计算参数 各大坝计算采用的参数见表121.1 —2。

表 121.1 主坝加固前波浪护坡计算参数表 1.2.2加固前坝顶高程复核 各坝坝顶高程计算成果见表1.2.2.1?2 从表1.2.2.1可以看出,校核工况下主坝坝顶高程最大,所以坝顶高 程取17.39m,小于现状防浪墙顶高程~17.63m ,现坝顶高程满足现行规范的 西营副坝加固前波浪护坡计算参数表 主坝加固前坝顶高程计算成果表 表 121.2

钢筋混凝土单向板肋梁楼盖课程设计计算书

钢筋混凝土单向板肋梁楼盖课程设计计算书 一、设计资料 某建筑现浇钢筋混凝土楼盖,建筑轴线及柱网平面见图1。层高4.5m。楼面可变荷载标准值5kN/m2,其分项系数1.3。楼面面层为30mm厚现制水磨石,下铺70mm厚水泥石灰焦渣,梁板下面用20mm厚石灰砂浆抹灰梁、板混凝土均采用C25级;钢筋直径≥12mm时,采用HRB335钢,直径<12mm,采用HPB235钢。 二、结构布置 楼盖采用单向板肋形楼盖方案,梁板结构布置及构件尺寸见图1。 图1 单向板肋形楼盖结构布置 三、板的计算 板厚80mm。板按塑性内力重分布方法计算,取每m宽板带为计算单元,有关尺寸及计算简图如图2所示。 图2 板的计算简图 1.荷载计算 30mm现制水磨石0.65kN/ m2 70mm水泥焦渣14kN/ m3×0.07m=0.98 kN/ m2

80mm 钢筋混凝土板 25kN/ m 3×0.08m =2 kN/ m 2 20mm 石灰砂浆 17kN/ m 3×0.02m =0.34 kN/ m 2 恒载标准值 g k =3.97 kN/ m 2 活载标准值 q k =5.0 kN/ m 2 荷载设计值 p =1.2×3.97+1.3×5.0=11.26 kN/ m 2 每米板宽 p =11.26 kN/ m 2.内力计算 计算跨度 板厚 h =80mm ,次梁 b×h =200mm×450mm 边跨l 01=2600-100-120+80/2=2420mm 中间跨l 02=2600-200=2400mm 跨度差(2420 3.配筋计算 b =1000mm ,h =80mm ,h 0=80-20=60mm ,f c =11.9 N/mm 2, f t =1.27 N/mm 2, f y =210 N/mm 2 对轴线②~④间的板带,考虑起拱作用,其跨内2截面和支座C 截面的弯矩设计值可折减20%,为了方便,近似对钢筋面积折减20%。 其中ξ均小于0.35,符合塑性内力重分布的条件。 281 0.35%100080 ρ= =?>min 1.270.2%45450.27%210t y f f ρ==? =及

单向板肋形楼盖设计案例

单向板肋形楼盖设计案例 某水电站副厂房楼盖采用现浇钢筋混凝土单向板肋形结构。其平面尺寸为 22.5m×18.0m,平面布置如图1 所示。 楼板上层采用20mm厚的水泥砂浆抹面,外墙采用240mm厚砖墙,不设边柱,板在墙上的搁置长度为120mm,次梁和主梁在墙上的搁置长度为240mm。 板上可变荷载标准值qk=6 kN/m 2 。混凝土强度等级为C20,梁中受力钢筋为HRB335 级,其余钢筋为PRB235 级。 初步拟定尺寸:板跨为 2.5m,板厚为100mm;次梁的跨度为 6.0m,其截面尺寸为200mm×500mm;主梁跨度为7.5m,其截面尺寸300mm×800mm。按刚度要求,板厚h≥l/40 =2500/40=63mm,次梁高度h≥l/25=240mm,主梁高度h≥l/15=500mm,拟定尺寸均满足刚度要求。 该厂房为3级水工建筑物,基本组合时的安全系数K=1.25。试为此楼盖配置钢筋并绘出结构施工图。

(一)板的设计 1.计算简图 板的尺寸及其支承情况如图2(a)所示。 计算跨度:边跨ln1=2500–120–200/2=2280mm l01=ln1+b/2+h/2=2280+200/2+100/2=2430mm l01=ln1+a/2+b/2=2280+120/2+200/2=2440mm l01=1.1ln1=1.1×2280=2508mm 应取L01= 2430mm,但为了计算方便和安全,取L01=2500mm

中间跨L02=lc=2500mm 两跨相差(L02–L01)/L02=(2500–2430)/2500=2.8 %<10 %,应按等跨来考虑, 9 跨按5 跨计算。其计算简图如图2(b)所示。 图 2 连续板的构造及计算简图 2.荷载计算: 在垂直于次梁的方向取1m宽的板带作为板的计算单元。 永久荷载:100mm厚钢筋混凝土板自重25×1.0×0.1=2.5kN/m 20mm厚水泥砂浆面层重20×1.0×0.02=0.4kN/m 永久荷载标准值gk=2.5+0.4=2.9kN/m 可变荷载:可变荷载的标准值qk=6.0kN/m 折算荷载:gk′=gk+qk/2=2.9+6.0/2=5.9kN/m qk′=qk/2=6.0/2=3.0kN/m 3.内力计算

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

土石坝稳定计算安全评价与计算毕业设计

第4章大坝稳定计算 4.1. 计算方法 4.1.1. 计算原理 本设计稳定分析采用简单条分法——瑞典圆弧法。该法基本假定土坡失稳破坏可简化为一平面应变问题,破坏滑动面为一圆弧形面,将面上作用力相对于圆心形成的阻滑力矩与滑动力矩的比值定义为土坡的稳定安全系数。计算时将可能滑动面上的土体划分成若干铅直土条,略去土条间相互作用力的影响。 图4.1 瑞典圆弧法计算简图 下游坝坡有渗流水存在,应计入渗流对稳定的影响。在计算土条重量时,对浸润线以下的部分取饱和容重,对浸润线以上的部分取实重(土体干重加含水重)。假设土条两侧的渗流水压力基本上平衡,则稳定安全系数的综合简化计算公式为:

∑∑+±+ψ--±= ] /cos )[(} sec ]sin sec cos ){[(R e Q V W b c tg Q b u V W K i i i i i i i i i i i i i i i i i C ααααα‘ ’ (4.1) 其中:i ——土条编号; W ——土条重量; u ——作用于土条底部的孔隙水压力; ,b α——分别为土条宽度和其沿滑裂面的坡角; //,c ?——有效抗剪强度指标; S ——产生滑动的作用力; T ——抗力。 表4.1 坝体安全系数表 4.1.2. 计算工况 根据水工建筑物教材的要求,稳定渗流期校核两种工况的上下游坝坡稳定:正常运用条件和非正常运用条件I ,对于设计洪水位的上下游坝坡,其浸润线和水位均处于正常和校核条件之间,在坝体尺寸和材料相同的情况下,正常和校核满足要求,设计即满足要求。 4.1.3. 基础资料 表4.2 三百梯水库坝体土物理力学指标建议值

单向板肋梁楼盖设计计算书

目录 一、荷载情况及材料选用 (1) 二、计算跨径及主梁截面设计 (1) 三、荷载计算 (2) 四、计算简图 (2) 五、内力计算 (3) 六、内力包络图 (5) 七、正截面受弯承载力计算 (6) , 八、斜截面受剪承载力计算 (8) 九、附加箍筋计算 (8)

现浇钢筋混凝土单向板肋梁楼盖设计计算书 一、荷载情况及材料选用 1.荷载选用 排名32,查表1、表2、表3得:恒载标准值8.2/k g kN m = 活载标准值16.6/k q kN m = 粉刷层厚20mm ,重度取17kN/m 3,混凝土重度取25 kN/m 3 恒载分项系数取;活载分项系数取 2.材料选用 混凝土C30(2 2 14.3; 1.43c t N N f f mm mm ==);梁中纵向受力钢筋采用 HRB400(2 360c t N f f mm ==),其他钢筋均采用HRB335(2 300c t N f f mm ==) 二、计算跨径及主梁截面设计 由于主梁线刚度较柱线大很多,故中间支座可安脚趾考虑。主梁计算跨径按取为。 截面高1 1( )4807201510h L mm ==,取700h mm =; 截面宽11()2303503 2 b h mm ==,取300b mm =

为简化计算,主梁自重按集中荷载考虑。 次梁传来的恒载 8.27.259.04kN ?= 主梁自重 250.3(0.70.08) 2.411.16kN ??-?= 主梁粉刷 170.02(0.70.08) 2.42 1.01kN ??-??= 恒载标准值 71.15kN 活载标准值 16.67.2119.52kN ?= 恒载设计值 71.15 1.285.38G kN =?= 活载设计值 119.52 1.4167.33Q kN =?= 四、计算简图

A江坝后式厂房双曲拱坝设计计算书

目录 第一章调洪演算 ........................ - 3 - 1.1 调洪演算的原理.......................................... - 3 - 1.2 调洪方案的选择.......................................... - 3 - 1.2.1对以下四种方案进行调洪演算......................... - 3 - 1.2.2方案比较........................................... - 7 - 1.2.3 2浅孔+2中孔方案选定后坝顶高程的计算 .............. - 8 -第二章大坝工程量比较 .................. - 10 - 2.1 大坝剖面设计计算....................................... - 10 - 2.1.1混凝土重力坝设计.................................. - 10 - 2.2 大坝工程量比较......................................... - 17 - 2.2.1重力坝工程量...................................... - 17 - 2.2.2拱坝工程量........................................ - 18 - 2.2.3重力坝与拱坝工程量比较............................ - 19 -第三章第一主要建筑物的设计 ............ - 19 - 3.1 拱坝的型式尺寸及布置................................... - 19 - 3.1.1坝型选择.......................................... - 19 - 3.1.2拱坝的尺寸........................................ - 19 - 3.2 荷载组合............................................... - 23 - 3.2.1 正常水位+温降 .................................... - 23 - 3.2.2 设计水位+温升 .................................... - 23 - 3.2.3 校核水位+温升 .................................... - 23 - 3.2.4 正常水位+温降+地震 ............................... - 23 - 3.3 拱坝的应力计算......................................... - 23 - 3.3.1对荷载组合1,2,3使用FORTRAN程序进行电算........ - 23 - 3.3.2对荷载组合4进行手算.............................. - 24 - 3.4 坝肩稳定验算........................................... - 37 - 3.4.1计算原理.......................................... - 37 - 3.4.2验算工况.......................................... - 38 - 3.4.3验算步骤.......................................... - 38 - 4.1泄水建筑物的型式尺寸 ................................... - 42 - 4.2坝身进水口设计 ......................................... - 42 - 4.2.1管径的计算........................................ - 42 - 4.2.2进水口的高程...................................... - 42 - 4.3泄槽设计计算 ........................................... - 43 - 4.3.1坎顶高程.......................................... - 43 - 4.3.2坎上水深h ........................................ - 43 - c 4.3.3反弧半径R ........................................ - 44 -

《土石坝设计与施工》实训任务书(五组)

《土石坝设计与施工》实训任务书 一、设计资料: 1、地形、地质资料。 某河流位于山区峡谷内,全长约122km,两岸地势高峻,土石坝坝址处位于其中游地段的峡谷地带,为梯形河谷,河床比较平缓,坡降不太大,河床宽约120m,河床基面高程为380.0m。坝址一带均为原生黄土,河槽底部有深4~5m的沙卵石。 2、水文水利计算资料如下: 正常高水位436.0m,相应下游水位382.0 m; 设计洪水位437.0 m,相应下游水位385.0 m; 校核洪水位438.0 m,相应下游水位386.40 m; 死水位516.2 m; 3、气象地理资料如下: 多年平均最大风速 12m/s 水库吹程:1km; 该地区地震烈度5度。 4、建筑材料资料如下: ①该坝址附近壤土比较丰富,蕴藏量约为500万m3,河床中有沙砾料可供开 采,运距约1.5km,但储量仅为15万m3,距坝址8km处可开采块石,交通较方便; ②壤土试验有关指标:干容重16.5kN/ m3,浮容重10.6kN/ m3,饱和容重 20.6 kN/ m3,粘结力19Kpa,内摩擦角18度,渗透系数2.4×10-5cm/s; ③可供作堆石排水体的石料有关指标:比重2.71,干容重19.50 kN/ m3, 饱和容重22.30 kN/ m3,浮容重12.30 kN/ m3,湿容重20.30 kN/ m3,内摩擦角31°,渗透系数2×10-2cm/s。 二、实训要求 1、根据所给资料规划工程布置;绘制其布置图 2、试按选择坝形设计土石坝,按比例绘制其剖面图并做必要的计算; 3、画出防渗、排水和护坡等细部构造,标明必要的尺寸和高程; 4、编制设计说明书,绘制设计图(设计图手绘、机打均可)

单向板配筋计算书

水工钢筋混凝土结构课程设计 计算书 设计题目:某水电站副厂房楼盖结构设计 题目类型:钢筋混凝土单向板肋形结构 题号: 班级:水电0601 姓名:李海斌 学号:200690250127 指导教师:王中强彭艺斌任宜春 日期:2009年6月8-14 日

目录 1课程设计任务书…………………………………………………………………… 2 计算书正文………………………………………………………… 第一章结构布置及板梁截面的选定和布置…………………………………… 1.1 结构布置....................................................................................... .1 1.2初步选定板、梁的截面尺寸. (2) 1.2.1板厚度的选定 1.2.2次梁的截面尺寸 1.2.3主梁截面尺寸 第二章单向板的设计 2.1板的荷载计算 (3) 2.1.1板的永久荷载的计算 2.1.2板的可变荷载的计算 2.2板的计算跨度计算 (1) 2.2.1边跨的计算 2.2.2中间跨度计算 2.2.3连续板各界面的弯矩计算 2.3板的正截面承载能力计算及配筋计算…………………………………………. .1 第三章次梁的设计 3.1次梁的荷载计算………………..………………… 3.1.1次梁的永久荷载设计值计算 (1) 3.1.2次梁承受可变荷载设计值……………………………… 3.1.3次梁承受荷载设计值………… 3.2 次梁的内力计算………………..………………………………………… 3.2.1次梁边跨计算………………..………………… 3.2.2次梁中间跨计算 (1) 3.3.3次梁的弯矩设计值和剪力设计值的计算…………………………… 3.4次梁的承载力计算 (3) 3.4.1正截面受弯承载力计算 3.4.2翼缘计算宽度的计算………………………………… 3.4.3 T形梁截面类型的判定………………..………………… 3.4.4次梁正截面承载能力计算………………………………………. .1 3.4.5次梁斜截面受剪承载力计算 (1) 第四章主梁设计………………..……………… 4.1主梁内力的弹性理论设计 (1) 4.1.1主梁承受永久荷载的计算………………………………………

单向板肋梁楼盖设计算书(参考例题)

一、设计题目及目的 题目:某工业厂房车间的整体式钢筋混凝土单向板肋梁楼盖设计。 目的:1、了解单向板肋梁盖的荷载传递关系及其计算简图的确定。 2、通过板及次梁的计算,掌握考虑塑性内力重分布的计算方法。 3、通过主梁的计算,掌握按弹性理论分析内力的方法,并熟悉内力包络图和材料图的绘制方法。 4、了解并熟悉现浇梁板的有关构造要求。 5、掌握钢筋混凝土结构施工图的表达方式,制图规定,进一步提高制图的基本技能。 6、学会编制钢筋材料表。 二、设计内容 1、结构平面布置图:柱网、主梁、次梁及板的布置 2、板的强度计算(按塑性内力重分布计算) 3、次梁强度计算(按塑性内力重分布计算) 4、主梁强度计算(按弹性理论计算) 5、绘制结构施工图 (1)结构平面布置图(1:200) (2)板的配筋图(1:50) (3)次梁的配筋图(1:50;1:25) (4)主梁的配筋图(1:40;1:20)及弯矩M、剪力V的包络图 (5)钢筋明细表及图纸说明 三、设计资料 1、楼面的活荷载标准值为9.0kN/m2 2、楼面面层水磨石自重为0.65kN/m2,梁板天花板混合砂浆抹灰15mm. 3、材料选用:(1)、混凝土:C25 (2)、钢筋:主梁及次梁受力筋用HRB335级钢筋,板内及梁内的其它钢筋可以采用HPB235级。

一、结构平面结构布置: 1、确定主梁的跨度为m 6.6,次梁的跨度为m 0.5,主梁每跨内布置两根次梁,板的跨度为m 2.2。楼盖结构布置图如下: 2、按高跨比条件,当mm l h 5540 1 =≥ 时,满足刚度要求,可不验算挠度。对于工业建筑的楼盖板,要求mm h 80≥,取板厚mm h 80=。 3、次梁的截面高度应满足 121(=h ~278()181=L ~mm )417,取mm h 400=;则2 1 (=b ~ 133()3 1 =h ~mm )200,取mm b 200=。 4、主梁的截面高度应该满足81(=h ~440()141=L ~mm )660,mm h 400=,则2 1 (=h ~ 200()31 =h ~mm )300,取mm b 250=。

O江水利枢纽工程毕业设计计算书.doc

O江水利枢纽工程毕业设计计算书- 本设计以O 江流域的水文、地形、地质为基础,通过调洪演算确定了坝型及枢纽布置、大坝设计、泄水建筑物设计和施工组织设计等方面进行简略的计算。在设计中对经济、技术及安全等方面进行了详细分析与比较,拟定相应的斜心墙土石坝设计方案。 本设计以O 江流域的水文、地形、地质资料为基础,通过调洪演算确定了水库的特征水位,进行了枢纽布置;对大坝、泄水建筑物进行了比较详细的设计。通过编制施工组织计划,确定了枢纽工程各主体部分的进度。设计中考虑了经济、技术及安全等方面的因素,并对各部分可行的方案进行了比较,确定了最优方案。 O江水利枢纽工程毕业设计计算书.zip

P&G公司诉上海晨铉智能科技发展有限公 司不正当竞争案- 本案是上海法院受理的第一起计算机网络域名与商标相冲突的案件。本案判决是人民法院认定驰名商标的酋例生效判决,也是人民法院就域名与商标的冲突作出的酋例生效判决。本案主要解决了以下问题:第一,确认将他人商标注册为域名使用产生的纠纷属于法院受理民事诉讼的范围第二,法院在审理将他人商标注册为域名使用的案件中,可以根据当事人的请求,就系争商标是否构成驰名商标作出调定;第三,确立了将他人商标注册为域名使用构成不正当竞争的判定标准。 案情 原告:(美国)普罗克特和甘布尔公司(Procter &Gamble,简称P&G公司) 被告:上海晨铉智能科技发展有限公司 1976年5月,(瑞士)P&G公司在中国注册了“SAFEGUARD”商标,核定使用商品为第70类香皂、肥皂等。原告(美国)P&G公司(中译为宝洁公司)于1992年8月经国家工商行政管理局核准,从(瑞士)P&G公司受让上述商标。1994年6月,宝洁公司在中国注册了“safeguard/舒肤佳”商标,核定使用商品为第3类肥皂、护发制剂等。宝洁公司还在中国注册了“舒肤佳”。“safeguard”及其组合的多个商标。宝洁公司自

单向板肋梁楼盖设计计算书.

单向板肋梁楼盖设计 计算书 姓名: 学号: 班级: 宁波大学建筑工程与环境学院 2013年12 月12日

目录 一.某多层工业建筑楼盖设计任务书 1 (1)设计要求 1 (2)设计资料 1 二.某多层工业建筑楼盖设计计算书 1 (1)楼盖结构平面布置及截面尺寸确定 1 (2)板的设计 1 (3)次梁的设计 3 (4)主梁的设计 6 附图1.厂房楼盖结构平面布置图 附图2.板的配筋示意图 附图3.次梁配筋示意图 附图4.主梁配筋示意图 附图5.板平法施工图示例 附图6.梁平法施工图示例

单向板肋梁楼盖设计任务书 (1)设计要求 ①板、次梁内力按塑性内力重力分布计算。 ②主梁内力按弹性理论计算。 ③绘出结构平面布置图、板、次梁和主梁的施工图。 本设计主要解决的问题有:荷载计算、计算简图、内力分析、截面配筋计算。 构造要求、施工图绘制。 (2)设计资料 ①楼面均布活荷载标准值 q k =5.2KN/m 2 ②楼面做法 楼面面层用15mm 厚水磨石(3/25m KN =γ ),找平层用20mm 厚水泥砂浆(3/20m KN =γ ),板底、梁底及其两侧用15mm 厚混合砂浆顶棚 抹灰(3/17m KN =γ) 。 ③材料 混凝土强度等级采用30C ,主梁和次梁的纵向受力钢筋采用HRB400, 箍筋采用HPB400级。 单向板肋梁楼盖设计计算书 1.楼盖结构平面布置及截面尺寸确定 确定主梁(L 1)的跨度为6.0m ,次梁(L 2)的跨度为6.0m 主梁每跨内布置 两根次梁,板的跨度为2.0m 。楼盖结构的平面布置图见附图1。 按高跨比条件,要求板厚h ≥l/40=2000/30=67mm ,对于工业建筑的楼板, 按要求h ≥80mm ,所以板厚取h=80mm 。 次梁截面高度应满足h=l/18~l/12=333~500mm ,取h=500mm ,截面宽b= (1/2~1/3)h ,取b=200。 主梁截面高度应满足h=l/15~l/10=400~600mm ,取h=600mm ,截面宽b= (1/2~1/3)h ,取b=300mm 。 柱的截面尺寸b×h=400mm×400mm 。 2.板的设计——按考虑塑性内力重分布设计 ①.荷载计算 恒荷载标准值(自上而下) 15mm 水磨石面层 0.015×25=0.375KN/㎡ 20mm 水泥砂浆找平层 0.020×20=0.40KN/㎡ 80mm 钢筋混凝土板 0.080×25=2.00KN/㎡ 15mm 板底混合砂浆 0.015×17=0.255KN/㎡ 小计: 3.03KN/㎡ 活荷载标准值: 5.2KN/㎡

楼盖课程设计单向板楼盖设计

目录 一、设计资料 (2) 二、单向板楼盖设计 (3) 1.承载能力极限状态设计 (3) 1)板(塑性方案设计) (3) 2)次梁(塑性方案设计) (7) 3)主梁(弹性方案设计) (11) 2.正常使用极限状态裂缝与挠度验算 (16) 1)主梁裂缝宽度验算 (16) 2)主梁挠度验算 (17) 三、双向板楼盖设计 (20) 1.承载能力极限状态设计 (20) 1)板的计算(塑性方案设计) (20) 2)支承梁的计算(弹性方案设计) (24) 2.正常使用极限状态裂缝与挠度验算 (29) 1)短边 (29) 2)长边 (31)

设计资料: 某多层民用建筑平面尺寸为b ×h=16.2m ×27m ,采用砖混结构,分别按单向板和双向板肋形楼盖进行设计。墙厚240mm ,壁柱截面尺寸500mm ×500mm ,中柱为混凝土柱,截面尺寸为400mm ×400mm 。 楼盖面层做法:20mm 厚水泥砂浆找平后做10mm 厚水磨石面层,板底采用20mm 厚混合砂浆天棚抹灰。 材料选用:梁内纵向受力钢筋采用HRB400级热轧钢筋,其余采用HRB335级热轧钢筋。混凝土强度等级为C35,可变荷载标准值3.5kN/2 m 。 由规范查得:16.7c f MPa = 1.57t f MPa = 2.20tk f MPa = 43.1510c E MPa =? 由规范查得: HRB400级钢筋:360y f MPa = 52.010s E MPa =? HRB335级钢筋:'300y y f f MPa == 52.010s E MPa =? 要求: 1、按考虑内力重分布的方法进行单向板肋形楼盖板及次梁的内力及配筋计算,按弹性方法进行单向板楼盖主梁的内力、配筋、变形及裂缝计算; 2、按塑性方法进行双向板肋形楼盖板内力及配筋计算,按弹性方法进行双向板肋形楼盖梁的内力、配筋、变形及裂缝计算。 3、分别绘出单、双向板肋形楼盖的结构平面布置和梁板配筋图,要求单向板肋形楼盖的结构平面布置和梁板配筋图一张(A3),双向板肋形楼盖的结构平面布置和梁板配筋图一张(A3)。

碾压土石坝计算书_毕业设计

目录 第一章水文水利计算 (1) 1.1推理公式法推求设计洪水位 (1) 1.1.1工程地点流域特征值 (1) 1.1.2设计暴雨的查算 (1) 1.1.3设计24小时净雨过程的计算 (6) 1.1.4推求30年一遇设计洪水 (6) 1.2调洪演算 (10) 第二章大坝剖面确定 (14) 2.1 正常运行情况下的超高计算 (14) 2.1.1波浪爬高 (14) 2.1.2 风雍高度 (15) 2.1.3 正常情况下超高 (15) 2.2 非常运行情况下的超高计算 (16) 2.2.1波浪爬高 (16) 2.2.2 风雍高度 (17) 2.2.3 正常情况下超高 (17) 2.3 坝顶高程 (17) 第三章土石坝渗流计算 (19) 3.1 计算方法及计算假定 (19) 3.2 本设计土坝渗流的具体计算 (20) 第四章土石坝坝坡稳定计算 (27) 4.1 稳定计算方法 (27) 4.2计算过程 (27) 4.3 稳定成果分析 (31) 第五章溢洪道设计 (36) 5.1 控制堰设计 (36) 5.1.1 克—奥Ⅰ型堰的剖面设计 (36) 5.2 泄槽设计 (37) 5.2.1. 泄槽的布置 (37) 5.2.2泄槽水面曲线计算 (38) 5.2.3克—奥Ⅰ型堰的抗滑稳定验算 (2) 5.3出口消能设计 (3) 参考文献 (8)

南昌工程学院本科毕业设计 第一章 水文水利计算 1.1推理公式法推求设计洪水位 市东山街办南山村老虎坑,坝址座落于章江水系二级支流老虎坑河,东经114°44′,北纬25°10′,设计历时为24小时,坝址以上控制集水面积1.2km 2,主河长1.63km ,河床平均坡降43‰,设计频率为30年一遇为例。参照《手册》,计算步骤如下(说明:以下所用附图均来自于手册): 1.1.1工程地点流域特征值 工程地点流域面积F=1.2km 2,主河道长度L=1.63km ,主河道比降J=0.043。 1.1.2设计暴雨的查算 1、求三十年一遇24小时点暴雨量 根据工程地理位置查附图2-4,得流域中心最大24小时点暴雨值P 24=101.5mm;附图2-5得 C v24 =0.37,由设计频率P=3.33%和C S =3.5C v 查附表5-2,得87.1)2333.0(2 .05.038.264.299.124=-?---=K p 则30年一遇24小时点暴雨量mm K P P P 8.18987.15.101%)33.3(242424=?=?= 2、求30年一遇24小时面暴雨量 根据流域面积F=1.2km 2和暴雨历时t=24h 查附图5-1,得点面系数24a =0.9998。 则30年一遇24小时面暴雨量为: mm a P P 8.1899998.08.18924%)33.3(24%)33.3(24=?=?= 3、求设计暴雨24小时的时程分配 ①设计暴雨24小时雨配 查附表2-1,得以60分钟为时段的雨型分配表,如表1-1。 ②查算30年一遇60分钟,3小时,6小时暴雨参数 根据工程地理位置分别查附录图2-6和附图2-8,得流域中心最大6小时和60分钟点暴雨量,P 6=72mm ;P 60min =44.5mm ;查附图2-7和附图2-9,得C v6=0.42;C v60min =0.335。由设计频率P=3.33%和C S =3.5C v 查附表5-2得 77.1)233.3(2564.1875.1825.12)233.3(2582.115.215.2min 606=-?---==-?--- =K K P P 。 则30年一遇60分钟,6小时点暴雨量为:

单向板 计算步骤

LB-1矩形板计算 一、构件编号: LB-1 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2010 四、计算信息 1.几何参数 计算跨度: Lx = 2000 mm; Ly = 6000 mm 板厚: h = 100 mm 2.材料信息 混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 ftk=1.78N/mm2Ec=2.80×104N/mm2钢筋种类: HRB400 fy = 360 N/mm2Es = 2.0×105 N/mm2 最小配筋率: ρ= 0.200% 纵向受拉钢筋合力点至近边距离: as = 40mm 保护层厚度: c = 20mm 3.荷载信息(均布荷载) 永久荷载分项系数: γG = 1.200 可变荷载分项系数: γQ = 1.400 准永久值系数: ψq = 1.000 永久荷载标准值: qgk = 4.100kN/m2 可变荷载标准值: qqk = 2.000kN/m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):简支/简支/固定/固定 6.设计参数 结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数: 1.计算板的跨度: Lo = 2000 mm

2.计算板的有效高度: ho = h-as=100-40=60 mm 六、配筋计算(ly/lx=6000/2000=3.000>2.000,所以选择多边支撑单向板计算): 1.X向底板配筋 1) 确定X向底板弯距 Mx = (γG*qgk+γQ*qqk)*Lo2/24 = (1.200*4.100+1.400*2.000)*22/24 = 1.287 kN*m 2) 确定计算系数 αs = γo*Mx/(α1*fc*b*ho*ho) = 1.00*1.287×106/(1.00*11.9*1000*60*60) = 0.030 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.030) = 0.030 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*11.9*1000*60*0.030/360 = 60mm2 5) 验算最小配筋率 ρ = As/(b*h) = 60/(1000*100) = 0.060% ρ<ρmin = 0.200% 不满足最小配筋要求 所以取面积为As = ρmin*b*h = 0.200%*1000*100 = 200 mm2 6) 计算纵跨分布钢筋面积 不宜小于横跨板底钢筋面积的15%,所以面积为: As1 = As*0.015 = 200.00*0.15 = 30.00mm2 不宜小于该方向截面面积的0.15%,所以面积为: As1 = h*b*0.0015 = 100*1000*0.0015 = 150.00mm2 取二者中较大值,所以分布钢筋面积As = 150mm2 采取方案?8@200, 实配面积251 mm2 2.X向左端支座钢筋 1) 确定左端支座弯距 M o x = (γG*qgk+γQ*qqk)*Lo2/12 = (1.200*4.100+1.400*2.000)*22/12 = 2.573 kN*m 2) 确定计算系数 αs = γo*M o x/(α1*fc*b*ho*ho) = 1.00*2.573×106/(1.00*11.9*1000*60*60) = 0.060 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.060) = 0.062 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*11.9*1000*60*0.062/360 = 123mm2 5) 验算最小配筋率 ρ = As/(b*h) = 123/(1000*100) = 0.123% ρ<ρmin = 0.200% 不满足最小配筋要求

斜墙土石坝工程设计计算书

目录 第一章洪水调节计算 2第二章挡水建筑物的计算 8 2.1 坝顶高程的计算 8 2.2 渗流计算 14 2.3 土料设计 18 2.4 稳定设计 23 2.5 细部设计 25第三章泄水建筑物的设计 27第四章施工组织设计 32附录1 稳定计算程序 34

第一章 调洪演算 因该河流为山区性河流,故兴利库容与防洪库容不结合,从正常蓄水位开 始调节。将坝址来水单位过程线按同比例缩放,得到不同频率下的洪水过程线。根据初步拟定四组堰顶高程与孔口尺寸计算下泄流量和设计和校核水位。 方案1: ?∩=2811m, B=7m ; 方案2: ?∩=2812m, B=7m ; 方案3: ?∩=2813m , B=8m ; 方案4: ?∩=2812m, B=8m 。 ?∩——堰顶高程; B ——过水净宽 用下列方法计算下泄流量和设计和校核水位: (1)在估计所求B 点附近,任意选定B1、B2、B3(或B1′、B2′、 B3′)向A (或A ′)方向做三条直线,并与洪峰过程线相切,如图1.1所示。 A,A ′分别为Q 设=1680m 3/s (P=1%)和Q 校=2320 m 3/s (P=0.05%)时的起调点(在图中Q 设、Q 校分别用Qmax 和Qmax ′表示),用下式计算分别不同方案和频率下的起调点(Bi ,Bi ′)。 起调点:Q 起调=εm 2/32H g ?×B m ——流量系数,与堰型有关,取0.502; H ——作用水头m ; ε——侧收缩系数取0.86(ε=1-0.2*0.7*1=0.86); B ——过水净宽。 g ——重力加速度取0.981 B1、B2、B3为设计情况下过A 做切线与来水过程线的交点,其流量计算公式 Qi=1680×y Bi /120 y Bi ——为Bi 的纵坐标 B1′、B2′、 B3′校核情况下过A ′做切线与来水过程线的交点,其流量计算公式 Qi ′=2320×y Bi ′/120 y Bi ′——为Bi ′的纵坐标 (2)计算相应直线AB i (或AB i )与洪峰过程线所包围的面积(即相应调节库容)和相应的隧洞最大下泄流量,并V~H 曲线上根据V 总查出高程H 。 在单位过程线上所围面积A ,求出不同频率下的相应调节库容V 见表1.1 (3)根据相应高程H ,在Q~H 曲线上根据交点找出相应的隧洞最大下泄流量,H 设,H 校,如图1.2所示。 将不同方案的计算过程列入表1.1中,并将最后结果汇总至表1.2中。

单向板楼盖设计例题

4.3.2.9 单向板楼盖设计例题第一部分——内力分析 某多层厂房的建筑平面如图4-37所示,环境类别为一类,楼梯设置在旁边的附属楼房内。楼面均布可变荷载标准值为8kN/m2,楼盖拟采用现浇钢筋混凝土单向板肋梁楼盖,试进行设计。其中板、次梁按考虑塑性内力重分布设计,主梁内力按弹性理论计算。 图4-37 +5.00建筑平面 (1)设计资料 楼面做法:水磨石面层;钢筋混凝土现浇板;20mm混合砂浆抹底。 材料:混凝土强度等级C30;梁钢筋采用HRB400级钢筋,板采用HPB300级钢筋。 (2)楼盖的结构平面布置 主梁沿横向布置,次梁沿纵向布置(对应横向承重方案)。主梁的跨度为6.6m,次梁的跨度为6.6m,主梁每跨内布置两根次梁,板的跨度为6.6/3 2.2m,l02/l01=6.6/2.2=3,因此按单向板设计。 根据表4-1,按跨高比条件,要求板厚h≥2200/40=55mm,对工业建筑的楼盖板,要求h≥80mm,故取板厚h=80mm(注:在民用建筑中,楼板内往往要双向布设电线管,故板厚常不宜小于100mm)。 次梁截面高度应满足h=l0/18~l0/12=6600/18~6600/12=367~550mm。考虑到楼面可变荷载比较大,取h=500mm。截面宽度取为b=200mm。 主梁的截面高度应满足h=l0/15~l0/10=6600/15~6600/10=440~660mm,取h=650mm。截面宽度取为b=300mm。

楼盖的平面布置见下图。结构平面布置图上应表示梁、板、柱,墙等所有结构构件的平面位置,截面尺寸、水平构件的竖向位置以及编号,构件编号由代号和序号组成,相同的构件可以用一个序号。 200 图4-38 +4.965结构平面布置图(注:板厚均为80mm)图中柱、主梁、次梁、板的代号分别用“Z”、“KL”、“L”和“B”表示,主、次梁的跨数写在括号内。 (3)板的内力计算 1)荷载 板的永久荷载标准值 水磨石面层 0.65kN/m2 80mm钢筋混凝土板 0.08×25=2.0kN/m2 20mm混合砂浆 0.02×17=0.34kN/m2小计 2.99 kN/m2板的可变荷载标准值 8.0kN/m2永久荷载分布项系数取1.2;因楼面可变荷载标准值大于4.0kN/m2,所以可变荷载分项系数应取1.3(见《规范》)。于是板的 永久荷载设计值g=2.99×1.2=3.59kN/m2 可变荷载设计值q=8×1.3=10.4kN/m2

土石坝毕业设计计算书模板

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 毕业设计( 论文) 计算书 题目西南地区A江 上坝址初步设计 专业水利水电工程 班级级二班 学生莫秋琳 指导教师赵迪 重庆交通大学 目录 第一章调洪演算计算 (3) 1.1洪水调节计算原理 (3) 1.1.1工程等别及建筑物级别 (3) 1.1.2泄洪方式与水库运用方案 (4) 1.2.1堰顶高程及泄洪孔口的选择 (6) 1.2.2堰顶高程及孔口尺寸选择原则 (6) 1.3方案拟定 (6) 1.3.1方案一 (6) 1.3.2方案二 (10) 1.3.3方案三 (13) 1.3.4方案四 (16) 1.4方案选择 (20)

第二章坝高确定 (23) 2.1大坝高程的计算 (23) 2.1.1正常蓄水 (23) 2.1.2设计蓄水 (25) 2.1.3校核蓄水 (27) 3.1大坝轮廓尺寸及排水防渗体设 (29) 3.1.1坝顶宽度 (30) 3.1.2坝坡 (30) 3.1.3坝体排水 (30) 3.1.4大坝防渗体 (31) 3.2细部构造设计 (31) 3.2.1粘性土料设计 (32) 3.2.2坝壳砂砾料设计 (34) 3.2.3筑坝用料 (35) 4.1渗流分析 (36) 4.1.1渗流计算水位 (36) 4.1.2计算内容及目的 (37) 4.1.3计算原理 (37) 4.1.4渗流计算应包括以下水位组合情况: (37) 4.2稳定分析计算 (43) 4.2.1计算方法 (43) 4.2.2正常工况 (44) 4.2.3设计工况 (51) 4.2.4校核工况 (55) 第五章坝基处理及细部结构 (62) 5.1基础处理部分 (62)

相关主题
文本预览
相关文档 最新文档