当前位置:文档之家› 电磁场与微波实验报告(极化波)

电磁场与微波实验报告(极化波)

电磁场与微波实验报告(极化波)
电磁场与微波实验报告(极化波)

实验报告

课程名称: 电磁场与微波技术实验 指导老师: 谢银芳、王子立 成绩:

实验名称: 极化波 实验类型: 验证型实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得

一、实验目的和要求

1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。

2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。

3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。

二、实验内容和原理

原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E 随时间变化的规律。若 E 的末端轨迹在一条直线上时,称为线极化波; 若E 末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。而椭圆极化波末端为椭圆形。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。设同频率的两个正交线极化波为:

()()

j kz x x xm j kz y y ym E E e E E e ψψ----==

当,x y xm ym E E ψψψ===±时,是线极化波 当,2

x y xm ym E E π

ψψ-=±

=±时,是圆极化波

当x y ψψ-介于线极化波与圆极化波时,是椭圆极化波

内容:1.圆极化波的调整与测量 2.线极化波的调整与测量 3.椭圆极化波的调整与测量

三、主要仪器设备

如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。其中固态信号源工作频率为f =9375MHz 。接收喇叭由矩形喇叭,检波器,,微安表等组成。其它装置基本上与实验一相同。

四、实验步骤和结果记录

1、圆极化波

根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差2

π

±

。因此,

先使发射喇叭的转角为o

45左右,分别将接收喇叭垂直与水平放置,收到2m 1m E E 和,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于1m E 值的情况。然后慢慢移动2r P 的位置,知道接收喇叭在各个角度上的输出指示值都相等。这样就实现了

2

kz kz 21π

ψ±

=-=?,记此时2r P 的位置为0l ,依照表格记录相关数据。

P r0:α=50.0° P r2:l 0=25.214mm

P r3:|E m1|=|E m2|∝I=3.46

圆极化波调整与测试数据记录:

2、线极化波

在前面产生圆极化波实验的基础上,调整r 2P 的位置0l ,使x y ψψπ-=±即可产生线极化波。调整r 2P 的位置使10/8l l λ=± ,所以把

的位置往前调整 /8λ就产生了线极

化波。 当转动角度为0、10、20、......170度时记录测量数据填入表二中。

P r0:α=50.0° P r2:l 1=29.685mm

当max I I =时,θr =θ0=110°max I I ==4.06A μ

3、椭圆极化波

在前两部分实验的基础上,改变

的位置,使120l l l <<即可产生椭圆极化波。

当r3P 转动角度为0、10、20、......170度时记录测量数据填入表三中并计算出椭圆极化波的椭圆度e

选择保持Pr0 的转角不变为α=50° 移动金属栅网位置到0208

l l l λ

<<+,测得2l =27.492mm

椭圆极化波实验数据记录如下:

五、实验数据记录和处理

实验数据记录见上文表格。 数据处理结果见上文表格。

实验处理过程:对于一个读数22

()I A μ

为了求其正比于I 2

的E ,需要将读数开根号即可。

椭圆度:对于圆极化波,椭圆度e=I min /I max ,求出e=0.81>0.8的实验要求,因此,实验达到目的。在圆极化波中,数据呈现先增大后减小再增大的趋势,我们进行了分析,认为这是因为调试的时候,没有严格地将椭圆的长轴短轴与接收面的垂直水平对应起来。这个在实验中是不规范的,以后应该注意。

对于圆极化波,因为所有的数值相差不大,所以,我们有充分的理由相信,它是一个在误差允许范围内的圆极化波。

对于线极化波,因为需要对比实验读数和角度余弦的关系,为了更加方便地看出其线性关系,所以,我们作了一张比较图,图像结果如下:

可以看出,它们的趋势大致相同,但是存在一定的误差,在误差允许范围内,可以认为线极化波已经达到(实验理论应为两线重合)。

对于椭圆极化波,本身是比较随意的,因为除了两种特殊的极化波:线极化波和圆极化波,其他都是椭圆极化波,这里就不作多的分析。对于该椭圆,椭圆度为:e=0.609.

六、收获与体会

第二次的实验明显比第一次复杂很多,但是也不难理解,该实验的条理、思路非常清晰,这将有利于我们理解波的叠加等问题。本实验很繁琐,调试的时候需要一定的耐心,但是更需要的是调试的技巧,我们两个人协作,一个人调整,一个人监督数据的变化,细微地调整,终于功夫不负有心人调了出来。另外,实验前面的数据对后面实验结果影响较大,所以,在实验开始的时候需要特别认真。

由于本实验是在调节出圆极化波的基础上来调节出线极化波的,所以对圆极化波的调节有比较高的要求。实际测量中发射喇叭的角度α并不等于45度,根据装置的差异会有一定的微调,大致在50度左右。在调节圆极化波的过程中,要将介质板角度、发射喇叭偏转角度和移动平台的调整调节结合起来。这样才能得到较为理想的圆极化波。另外在测量的过程中要注意对其他组别的实验装置的电磁波的屏蔽,否则会产生较大的误差。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

实验二 电磁波极化的研究

实验三 电磁波极化的研究 1. 实验目的 (1) 研究线极化波、圆极化波、椭圆极化波的形成和特点。 (2) 了解线极化波、圆极化波和椭圆极化波特性参数的测试方法 2. 实验原理与说明 电磁波极化是指波在无限大均包媒质中传播时,在空间某点位置上电场强度矢量E 随时间变化的规律。当E 末端总在一直线上周期变化时,称为线 极化波,当E 末端的轨迹是圆(或椭圆)时,称为圆极化波;若圆轨道运动 与波前进方向符合右手螺旋规则时,则称为右旋(或左旋)圆极化波,无论是线、圆或椭圆极化波都可由两个同频率的正交场线极化波组合而成。设两同频率正交场线极化波为 () x j x x xm E E e βφ--= ① () y j x y ym E E e βφ--= ② 1) 组成线极化波如图所示,式①和式②中,当 0x y φφ-=,xm ym E E =±(或xm ym E E ≠)时,两个波在空间叠加 ()j z x y m E xE yE E e βφ--=+= 式中

m xm ym E xE yE =+ 合成场矢量E 的方向与x 轴夹角不变,即: ()( ) y y m x x m E E arctg arctg E E θ=± =±=常数 若 ym xm E E 的值不同,则 θ为不同的定值,从而获得合成场矢量末端沿直线 轨迹周期变化的极化波。若ym E =0则θ=0这时线极化波为在空间某点的场,且仅在x 轴方向上周期变化。同理,线极化波也可以分成为频率相同、场相垂直的两个线极化波。 2)组成圆极化波 根据式①和②,若xm ym m E E E ==,及0x φ=,2 y π φ=- ,这时合成波可写成: 2()j x y m E xE yE E x j y e β -=+=- ………………………………………………④ 合成场E 与 x 轴的夹角(在0z 处)为 00 0cos() 2( )( )cos() y x w t z E arctg arctg w t z E w t z π βθββ-+ ===-- 当z z θ=时,θ随时间向正值增大,合成场矢量末端按右手螺旋规则作圆周运动,故称为右旋圆极化波,如图所示

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

极化波实验报告

篇一:电磁场与微波实验报告(极化波)实验报告 课程名称:电磁场与微波技术实验指导老师:谢银芳、王子立成绩: 实验名称:极化波实验类型:验证型实验同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。 2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。 3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。 二、实验内容和原理 原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量e随时间变化的规律。若 e的末端轨迹在一条直线上时,称为线极化波;若e末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。而椭圆极化波末端为椭圆形。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。设同频率的两个正交线极化波为: ex?exme?j(kz??x)ey?eyme?j(kz??y) 当?x??y??,exm??eym时,是线极化波当?x??y?? ? 2 ,exm??eym时,是圆极化波 当?x??y介于线极化波与圆极化波时,是椭圆极化波 内容:1.圆极化波的调整与测量 2.线极化波的调整与测量 3.椭圆极化波的调整与测量 三、主要仪器设备 如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。其中固态信号源工作频率为f=9375mhz。接收喇叭由矩形喇叭,检波器,,微安表等组成。其它装置基本上与实验一相同。 四、实验步骤和结果记录 1、圆极化波 根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差? o ? 2 。因此, 先使发射喇叭的转角为45左右,分别将接收喇叭垂直与水平放置,收到em1和em2,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于em1值的情况。然后慢慢移动pr2的位置,知道接收喇叭在各个角度上的输出指示值都相等。这样就实现了 ???kz1?kz2?? pr0:α=50.0° pr2:l0=25.214mm ? 2 ,记此时pr2的位置为l0,依照表格记录相关数据。 pr3:|em1|=|em2|∝i=3.46 圆极化波调整与测试数据记录: 2、线极化波

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

电磁场和微波技术znjn

——电磁场与微波技术实验报告 班级:06 姓名:张妮竞男 学号:84 序号:31# 日期:2014年5月31日 邮箱: 实验二:分支线匹配器 一、实验目的 1、掌握支节匹配器的工作原理 2、掌握微带线的基本概念和元件模型 3、掌握微带分支线匹配器的设计与仿真 二、实验原理 1、支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2、微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 微带线元件模型 3、元器件库里包括有: MLIN:标准微带线 MLEF:终端开路微带线 MLSC:终端短路微带线 MSUB:微带线衬底材料 MSTEP:宽度阶梯变换 MTEE:T型接头 MBENDA:折弯 微带线的不均匀性 上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。一般的微带电路元件都包含着一些不均匀性,例如微带滤波器中的终端开路线;微带变阻器的不同特性阻抗微带段的连接处,即微带线宽度的尺寸跳变;微带分支线电桥、功分器等则包含一些分支T型接头;在一块微带电路板上,为使结构紧凑及适应走线方向的要求,时常必须使微带弯折。由此可见,不均匀性在微带电路中是必不可少的。由于微带电路是分布参数电路,其尺寸已可与工作波长相比拟,因此其不均匀性必然对电路产生影响。从等效电路来看,它相当于并联或串联一些电抗元件,或是使参考面发生一些变化。在设计微带电路时,必须考虑到不均匀性所引起的影响,将其等效参量计入电路参量,否则将引起大的误差。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

电磁场与电磁波实验报告-反射实验和极化波的产生与检测

内蒙古工业大学信息工程学院实验报告 课程名称:电磁场与电磁波 实验名称:反射实验和极化波的产生与检测 实验类型:验证性■综合性□设计性□ 实验室名称:电磁场与电磁波实验室 班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩: 实验日期: 2013年5月21

电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉DH926AD型数据采集仪、DH926B型微波分光仪的使用方法 掌握分光仪验证电磁波反射定律的方法 实验设备与仪器 DH926AD型数据采集仪 DH926B型微波分光仪 DH1121B型三厘米固态信号源 金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度θ入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启DH1121B型三厘米固态信号源。DH926B型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与

金属板的法线方向一致。 将DH926AD型数据采集仪提供的USB电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的USB口和计算机的USB口,此时,DH926AD型数据采集仪的USB指示灯亮(蓝色),表示已连接好。然后打开DH926AD型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看DH1121B型三厘米固态信号源的“等幅”和“方波”档的设置,将DH926AD型数据采集仪的“等幅/方波”设置按钮等同于DH1121B型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数,然后转动活动臂在DH926AD型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应注意系统的调整和周围环境的影响。 采集过程中,DH926AD型数据采集仪的USB指示灯连续闪动(蓝色),表示采集过程正在继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针匀速转动DH926B型微波分光仪的活动臂,随着活动臂的移动,采集点数依次增加,当您停止移动活动臂,绘图框会保持原来的状态直到您再次开始移动活动臂。这个过程中,您便可在绘图框中实时观察到信号变化(如图10)。当采集过程中的已采集的脉冲变化等于您在进入采集过程界面之前设定的采集点数时,屏幕上会出现“此次采集完毕”的采集结束实验结果及分析 记录实验测得数据,验证电磁波的反射定律

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 2 04q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 122 101 4n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量) (1-3) 电位为 12101 4n i n i i q r ????πε==+++= ∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

相关主题
文本预览
相关文档 最新文档