当前位置:文档之家› 理科数学2010-2019高考真题分类训练专题三导数及其应用第八讲导数的综合应用

理科数学2010-2019高考真题分类训练专题三导数及其应用第八讲导数的综合应用

理科数学2010-2019高考真题分类训练专题三导数及其应用第八讲导数的综合应用
理科数学2010-2019高考真题分类训练专题三导数及其应用第八讲导数的综合应用

专题三 导数及其应用 第八讲 导数的综合应用

2019年

1(2019天津理8)已知a ∈R ,设函数222,1,

()ln ,1,x ax a x f x x a x x ?-+=?->??若关于x 的不等式

()0f x …在R 上恒成立,则a 的取值范围为

A.[]0,1

B.[]0,2

C.[]0,e

D.[]1,e 2.(2019全国Ⅲ理20)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性; (2)是否存在

,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求

出,a b 的所有值;若不存在,说明理由.

3.(2019浙江22)已知实数0a ≠

,设函数()=ln 0.f x a x x +>

(1)当3

4

a =-

时,求函数()f x 的单调区间; (2)对任意2

1[

,)e x ∈+∞

均有

()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.

4.(2019全国Ⅰ理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2

π

-存在唯一极大值点; (2)()f x 有且仅有2个零点.

5.(2019全国Ⅱ理20)已知函数()1

1

ln x f x x x -=-

+.

(1)讨论f ()的单调性,并证明f ()有且仅有两个零点;

(2)设0是f ()的一个零点,证明曲线y =ln 在点A (0,ln 0)处的切线也是曲线e x y =的切线. 6.(2019江苏19)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f ()的导函数. (1)若a =b =c ,f (4)=8,求a 的值;

(2)若a ≠b ,b =c ,且f ()和()f 'x 的零点均在集合{3,1,3}-中,求f ()的极小值;

(3)若0,01,1a b c =<=?,且f ()的极大值为M ,求证M ≤

427

. 7.(2019北京理19)已知函数3

21()4

f x x x x =

-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[]2,4x ∈-时,求证:()6x f x x -≤≤.

(III)设()()()F x f x x a a =-+∈R ,记()F x 在区间[]2,4-上的最大值为()M a ,当()M a 最小时,求a 的值.

8.(2019天津理20)设函数()e cos ,()x

f x x

g x =为()f x 的导函数.

(Ⅰ)求()f x 的单调区间;

(Ⅱ)当ππ,42

x ??

∈????时,证明π

()()02f x g x x ??+- ??

?

; (Ⅲ)设n x 为函数()()1u x f x =-在区间ππ2,2π42m m ??

+

+ ??

?

内的零点,其中n ∈N ,证明200

π22sin c e os n n n x x x π

π-+-<-.

2010-2018年

一、选择题

1.(2017新课标Ⅱ)若2x =-是函数2

1

()(1)x f x x ax e

-=+-的极值点,则

21()(1)x f x x ax e -=+-的极小值为

A .1-

B .3

2e -- C .3

5e - D .1

2.(2017浙江)函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图

像可能是

x

x

A .

B .

x

x

C .

D . 3.(2016全国I) 函数2

||

2x y x e =-在[–2,2]的图像大致为

A .

B .

C .

D .

4.(2015四川)如果函数()()()()21281002f x m x n x m n =

-+-+≥≥,

在区间122??

????

单调递减,那么mn 的最大值为

A .16

B .18

C .25

D .

812

5.(2015新课标Ⅱ)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,

'()()xf x f x -0<,则使得f ()>0成立的x 的取值范围是

A .()(),10,1-∞-U

B .()()1,01,-+∞U

C .()(),11,0-∞--U

D .()()0,11,+∞U

6.(2015新课标Ⅰ)设函数()(21)x

f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,

使得0()0f x <,则a 的取值范围是 A .3[,1)2e -

B .33[,)24e -

C .33[,)24e

D .3

[,1)2e

7.(2014新课标Ⅱ)若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是

A .(],2-∞-

B .(],1-∞-

C .[)2,+∞

D .[)1,+∞

8.(2014陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),

已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为

x

(千米)

=3x -6

y =-

A .321122y x x x =

-- B .3211

322y x x x =+- C .314y x x =- D .32

11242

y x x x =+-

9.(2014新课标Ⅱ)设函数(

)x f x m

π=.若存在()f x 的极值点0x 满足

()2

22

00x f x m +

A .()(),66,-∞-?+∞

B .()(),44,-∞-?+∞

C .()(),22,-∞-?+∞

D .()(),11,-∞-?+∞

10.(2014陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千

米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为

A .3131255y x x =

- B .3241255y x x =- C .33125y x x =- D .331

1255

y x x =-+

11.(2014辽宁)当[2,1]x ∈-时,不等式3

2

430ax x x -++≥恒成立,则实数a 的取值范

围是

A .[5,3]--

B .9

[6,]8

-- C .[6,2]-- D .[4,3]-- 12.(2014湖南)若1201x x <<<,则

A .2121ln ln x

x

e e x x ->- B .2121ln ln x

x

e e x x -<- C .1221x

x

x e x e > D .1221x

x

x e x e < 13.(2014江西)在同一直角坐标系中,函数2

2

a y ax x =-+

与232

2

y a x ax x a =-++

()a R ∈的图像不可能...

的是

B

14.(2013新课标Ⅱ)已知函数()3

2

f x x ax bx c =+++,下列结论中错误的是

A .?()00,0x R f x ∈=

B .函数()y f x =的图像是中心对称图形

C .若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞单调递减

D .若0x 是()f x 的极值点,则()0'0f x =

15.(2013四川)设函数()e x f x x a =+-(a R e ∈,为自然对数的底数),若曲线x

y sin =上存在点)(00y x ,使得00))((y y f f =,则a 的取值范围是 A . ]e ,1[ B .]11e

[1

,-- C . [1e 1+,] D . [1e 1e 1--+,]

16.(2013福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一

定正确的是

A .0,()()x R f x f x ?∈≤

B .0x -是()f x -的极小值点

C .0x -是()f x -的极小值点

D .0x -是()f x --的极小值点 17.(2012辽宁)函数x x y ln 2

12

-=

的单调递减区间为 A .(-1,1] B .(0,1]

C . [1,+)

D .(0,+)

18.(2012陕西)设函数()x

f x xe =,则

A .1x =为()f x 的极大值点

B .1x =为()f x 的极小值点

C .1x =-为()f x 的极大值点

D .1x =-为()f x 的极小值点

19.(2011福建)若0a >,0b >,且函数3

2

()422f x x ax bx =--+在1x =处有极值,

则ab 的最大值等于

A .2

B .3

C .6

D .9

20.(2011浙江)设函数()()2

,,f x ax bx c a b c R =++∈,若1x =-为函数()x

f x e 的一

个极值点,则下列图象不可能为()y f x =的图象是

A B C D

21.(2011湖南)设直线x t = 与函数2

()f x x =,()ln g x x = 的图像分别交于点,M N ,

则当MN 达到最小时t 的值为

A .1

B .

1

2

C

.2

D

2

二、填空题

22.(2015安徽)设3

0x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅

有一个实根的是 (写出所有正确条件的编号)

①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==; ⑤1,2a b ==.

23.(2015四川)已知函数x

x f 2)(=,ax x x g +=2

)((其中R a ∈).对于不相等的实数

21,x x ,设2121)()(x x x f x f m --=

,2

121)

()(x x x g x g n --=,现有如下命题:

①对于任意不相等的实数21,x x ,都有0>m ;

②对于任意的a 及任意不相等的实数21,x x ,都有0>n ; ③对于任意的a ,存在不相等的实数21,x x ,使得n m =; ④对于任意的a ,存在不相等的实数21,x x ,使得n m -=. 其中的真命题有 (写出所有真命题的序号). 24.(2015江苏)已知函数|ln |)(x x f =,??

?>--≤<=1

,2|4|1

0,0)(2

x x x x g ,则方程 1|)()(|=+x g x f 实根的个数为 .

25.(2011广东)函数3

2

()31f x x x =-+在x =______处取得极小值. 三、解答题

26.(2018全国卷Ⅰ)已知函数1

()ln f x x a x x

=

-+. (1)讨论()f x 的单调性;

(2)若()f x 存在两个极值点12,x x ,证明:

1212

()()

2-<--f x f x a x x .

27.(2018全国卷Ⅱ)已知函数2

()e =-x

f x ax .

(1)若1=a ,证明:当0≥x 时,()1≥f x ;

(2)若()f x 在(0,)+∞只有一个零点,求a .

28.(2018全国卷Ⅲ)已知函数2

()(2)ln(1)2f x x ax x x =+++-.

(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .

29.(2018北京)设函数2

()[(41)43]x

f x ax a x a e =-+++.

(1)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 30.(2018天津)已知函数()x f x a =,()log a g x x =,其中1a >.

(1)求函数()()ln h x f x x a =-的单调区间;

(2)若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln a

x g x a

+=-

; (3)证明当1e

e a ≥时,存在直线l ,使l 是曲线()y

f x =的切线,也是曲线()y

g x =的切线.

31.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足

00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.

(1)证明:函数()f x x =与2

()22g x x x =+-不存在“S 点”; (2)若函数2

()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;

(3)已知函数2

()f x x a =-+,e ()x

b g x x

=.对任意0a >,判断是否存在0b >,使函

数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.

32.(2018浙江)已知函数()ln f x x =

(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一

公共点.

33.(2017新课标Ⅰ)已知函数2()(2)x

x f x ae

a e x =+--.

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

34.(2017新课标Ⅱ)已知函数2

()ln f x ax ax x x =--,且()0f x ≥.

(1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且2

20()2e

f x --<<.

35.(2017新课标Ⅲ)已知函数()1ln f x x a x =--.

(1)若()0f x ≥,求a 的值;

(2)设m 为整数,且对于任意正整数n ,21

11

(1)(1)(1)2

22n

m ++

???+<,求m 的最小值.

36.(2017浙江)已知函数()(x f x x e

-=1()2

x ≥.

(Ⅰ)求()f x 的导函数;

(Ⅱ)求()f x 在区间1

[,)2

+∞上的取值范围.

37.(2017江苏)已知函数3

2

()1f x x ax bx =+++(0,)a b >∈R 有极值,且导函数()f x '

的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:2

3b a >;

(3)若()f x ,()f x '这两个函数的所有极值之和不小于7

2

-

,求a 的取值范围. 38.(2017天津)设a ∈Z ,已知定义在R 上的函数4

3

2

()2336f x x x x x a =+--+在区

间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;

(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;

(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且

00[1,)(,2],p

x x q

∈U 满足04

1|

|p x q Aq -≥. 39.(2017山东)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中

2.71828e =L 是自然对数的底数.

(Ⅰ)求曲线()y f x =在点(,())f ππ处的切线方程;

(Ⅱ)令()()()h x g x af x =-()a R ∈,讨论()h x 的单调性并判断有无极值,有极值

时求出极值.

40.(2016年山东)已知()221

()ln ,R x f x a x x a x

-=-+

∈. (I )讨论()f x 的单调性;

(II )当1a =时,证明()3

()'2

f x f x +

>对于任意的[]1,2x ∈成立. 41.(2016年四川) 设函数2

()ln f x ax a x =--,其中a R ∈.

(I )讨论()f x 的单调性;

(II )确定a 的所有可能取值,使得11()x

f x e x

->

-在区间(1,)+∞内恒成立(e=2.718…为自然对数的底数).

42.(2016年天津)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,

(I)求)(x f 的单调区间;

(II)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...4

1. 43.(2016年全国Ⅰ) 已知函数2

()(2)(1)x

f x x e a x =-+-有两个零点.

(I )求a 的取值范围;

(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<. 44.(2016年全国Ⅱ)

(I)讨论函数2()e 2

x

x f x x -=

+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2

e =(0)x ax a

g x x x

--> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.

45.(2016年全国Ⅲ) 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>,

记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;

(Ⅲ)证明|()|2f x A '≤.

46.(2016年浙江高考)已知3a ≥,函数()F x =2

min{2|1|,242}x x ax a --+-,其中

min{,}p q =,>p p q

q p q ??

?

,≤ .

(I )求使得等式2

()242F x x ax a =-+-成立的x 的取值范围; (II )(i )求()F x 的最小值()m a ;

(ii )求()F x 在区间[0,6]上的最大值()M a .

47.(2016江苏) 已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠.

(1)设2a =,1

2

b =

. ①求方程()2f x =的根;

②若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; (2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 48.(2015新课标Ⅱ)设函数2()mx

f x e

x mx =+-.

(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;

(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围. 49.(2015山东)设函数2

()ln(1)()f x x a x x =++-,其中a R ∈.

(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ?>,()0f x ≥成立,求a 的取值范围.

50.(2015湖南)已知0a >,函数()sin ([0,))ax

f x e x x =∈+∞.记n x 为()f x 的从小到

大的第n *

()n N ∈个极值点. 证明:(1)数列{()}n f x 是等比数列;

(2)若

a ,则对一切*n N ∈,|()|n n x f x <恒成立.

51.(2014新课标Ⅱ)已知函数3

2

()32f x x x ax =-++,曲线()y f x =在点(0,2)处

的切线与x 轴交点的横坐标为-2. (Ⅰ)求a ;

(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.

52.(2014山东)设函数())ln 2

(2x x

k x e x f x +-=(k 为常数, 2.71828e =L 是自然对数

的底数).

(Ⅰ)当0k ≤时,求函数()f x 的单调区间;

(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 53.(2014新课标Ⅰ)设函数()()2

1ln 12

a f x a x x bx a -=+

-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.

(Ⅰ)求b ;

(Ⅱ)若存在01,x ≥使得()01a

f x a <

-,求a 的取值范围. 54.(2014山东)设函数1

()ln 1

x f x a x x -=++ ,其中a 为常数.

(Ⅰ)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性. 55.(2014广东) 已知函数3

21()1()3

f x x x ax a R =

+++∈.

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ)当0a <时,试讨论是否存在01

1(0,)(,1)22x ∈U ,使得01()()2

f x f =. 56.(2014江苏)已知函数x x x f -+=e e )(,其中e 是自然对数的底数.

(Ⅰ)证明:)(x f 是R 上的偶函数;

(Ⅱ)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;

(Ⅲ)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(03

0x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.

57.(2013新课标Ⅰ)已知函数2

()()4x

f x e ax b x x =+--,曲线()y f x =在点(0,(0))

f 处切线方程为44y x =+. (Ⅰ)求,a b 的值;

(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 58.(2013新课标Ⅱ)已知函数2()x f x x e -=.

(Ⅰ)求()f x 的极小值和极大值;

(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 59.(2013福建)已知函数()1x a

f x x e

=-+

(a R ∈,e 为自然对数的底数). (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (Ⅱ)求函数()f x 的极值;

(Ⅲ)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大

值.

60.(2013天津)已知函数2

()ln f x x x =.

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ) 证明:对任意的0t >,存在唯一的s ,使()t f s =. (Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为()s g t =,

证明:当2

t e >时,有

2ln ()15ln 2

g t t <<. 61.(2013江苏)设函数()ln f x x ax =-,()x

g x e ax =-,其中a 为实数.

(Ⅰ)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值

范围;

(Ⅱ)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 62.(2012新课标)设函数()2x

f x e ax =--.

(Ⅰ)求()f x 的单调区间;

(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 63.(2012安徽)设函数1

()(0)x x f x ae b a ae

=+

+>. (Ⅰ)求()f x 在[0,)+∞内的最小值;

(Ⅱ)设曲线()y f x =在点(2,(2))f 的切线方程为3

2

y x =,求,a b 的值. 64.(2012山东)已知函数ln ()x

x k

f x e

+=

(k 为常数,Λ71828.2=e 是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;

(Ⅱ)求()f x 的单调区间;

(Ⅲ)设2

()()()g x x x f x '=+,其中()f x '是()f x 的导数.

证明:对任意的0x >,2

()1g x e -<+. 65.(2011新课标)已知函数ln ()1a x b

f x x x

=

++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;

(Ⅱ)证明:当0x >,且1x ≠时,ln ()1

x

f x x >

-. 66.(2011浙江)设函数ax x x a x f +-=2

2

ln )(,0>a . (Ⅰ)求)(x f 的单调区间;

(Ⅱ)求所有实数a ,使2

1()e f x e -≤≤对],1[e x ∈恒成立.注:e 为自然对数的底

数.

67.(2011福建)已知a ,b 为常数,且0a ≠,函数()ln f x ax b ax x =-++,()2

f e =(e=2.71828…是自然对数的底数). (Ⅰ)求实数b 的值;

(Ⅱ)求函数()f x 的单调区间;

(Ⅲ)当1a =时,是否同时存在实数m 和M (m M <),使得对每一个t ∈[,]m M ,

直线y t =与曲线()y f x =(x ∈[

1

e

,e ])都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.

68.(2010新课标)设函数2

()(1)x

f x x e ax =--.

(Ⅰ)若1

2

a =

,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

高考理科数学数学导数专题复习

高考理科数学数学导数专题复习

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 导数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学导数题型归纳

导数题型归纳 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(323 1)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值; (Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4:已知R a ∈,函数x a x a x x f )14(2 1121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是), (∞+-∞上的单调函数,求a 的取值范围.

例5、已知函数3211()(2)(1)(0).32 f x x a x a x a =+-+-≥ (I )求()f x 的单调区间; (II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 例6、已知函数232 )1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围; (2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2012高考数学必考题型解答策略:函数与导数

2012高考数学必考题型解答策略:函数与导数 D

而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。8.求极值, 函数单调性,应用题,与三角函数或向量结合,预计2012年基本上还是这个考查趋势,具体为:(1)以选择题或者填空题的形式考查集合的基本关系和基本运算,考查中涉及函数的定义域、不等式的解、方程的解等问题,要特别注意一些新定义试题. (2)以选择题或者填空题的方式考查逻辑用语的知识,其中重点是充要条件的判断和含有一个量词的命题的否定. (3)以选择题或者填空题的方式考查基本初等函数及其应用,重点是函数定义域、值域,函数的单调性和奇偶性的应用,指数函数、对数函数、幂函数的图象和性质的应用,函数的零点判断,简单的函数建模,导数的几何意义的应用,定积分的计算及其简单应用.(4)以解答题的方式考查导数在函数问题中的综合应用,重点是使用导数的方法研究函数的单调性和极值以及能够转化为研究函数的单调性、极值、最值问题的不等式和方程等问题,考查函数建模和利用导数解模.

备考建议 基本初等函数和函数的应用:在掌握好基本知识的前提下重点解决函数性质在解决问题中的综合应用、函数性质在判断函数零点中的应用,指数函数、对数函数的图象和性质的应用,数形结合思想的应用. 导数及其应用:要掌握好导数的几何意义、导数的运算、导数和函数的单调性与极值的关系,由于函数的极值和最值的解决是以函数的单调性为前提的,因此要重点解决导数在研究函数单调性中的应用,特别是含有字母参数的函数的单调性(这是高考考查分类与整合思想的一个主要命题点),在解决好上述问题后,要注意把不等式问题、方程问题转化为函数的单调性、极值、最值进行研究性训练,这是高考命制压轴题的一个重要考查点. 解答策略 1.讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响. 2.运用函数的性质解题时,注意数形结合,

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高考理科数学导数经典题详解

1.(15分)已知函数f(x)=21nx+ax2﹣1 (a∈R) (I)求函数f(x)的单调区间; (Ⅱ)若a=l,试解答下列两小题. (i)若不等式f(1+x)+f(1﹣x)<m对任意的0<x<l恒成立,求实数m的取值范围; (ii)若x1,x2是两个不相等的正数,且以f(x1)+f(x2)=0,求证:x1+x2>2.2.(15分)设函数x e x f x sin ) (+ =,2 ) (- =x x g; (1)求证:函数) (x f y=在) ,0[+∞上单调递增; (2)设)) ( , ( 1 1 x f x P, 22 (,()) Q x g x)0 ,0 ( 2 1 > ≥x x,若直线PQ x //轴,求Q P,两点间的最短距离. 1 / 17

2 / 17 3.(本小题满分15分) 已知函数()1ln (02)2x f x x x =+<<-. (Ⅰ)是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数 ()y f x =的图像上?若存在,求出点M 的坐标;若不存在,请说明理由; (Ⅱ)定义21 1 1221()()()()n n i i n S f f f f n n n n -=-= =++???+∑ ,其中*n ∈N ,求2013S ; (Ⅲ)在(2)的条件下,令12n n S a +=,若不等式2()1n a m n a ?>对 * n ?∈N ,且2n ≥恒成立,求实数m 的取值范围. 4.(本小题满分15分) 已知函数()f x 的定义域为(0,)+∞,若() f x y x =在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”; 若2 () f x y x = 在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的 集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. [来源:.Com] (Ⅰ)已知函数32 ()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ?Ω,求 实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出, 求证:(24)0d d t ?+->; ( Ⅲ ) 定 义 集 合 {}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 请问:是否存在常数M ,使得()f x ?∈ψ,(0,)x ?∈+∞,有

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

文本预览
相关文档 最新文档