当前位置:文档之家› 智能结构振动控制

智能结构振动控制

智能结构振动控制
智能结构振动控制

结构振动控制中文

《结构振动控制》教学大纲 课程编号:1322009 英文名称:Control of Structural Vibration 课程类别:选修课学时:36 学分:2 适用专业:土木工程 预修课程:结构动力学、控制理论、随机振动 课程内容: 内容:主要介绍结构振动控制机理,各种减振控制装置,控制律设计中的重要问题以及智能控制。 预期目标:使学生掌握结构控制的原理,能针对不同的要求对结构采用不同的控制策略,提高学生解决实际问题的能力。 重点和难点:被动阻尼器的工作原理及实用设计方法;TMD的工作原理和设计方法;各种主动控制算法的计算步骤、优缺点和使用条件;结构振动的模糊控制和神经网络控制;结构振动控制设计中的模型降阶,溢出,传感器与作动器的定位,鲁棒性,时滞效应;结构半主动控制系统的原理和半主动控制算法;结构振动控制的Benchmark问题。 教材: 欧进萍.结构振动控制-主动、半主动和智能控制.科学出版社 参考书目: 1. 瞿伟廉 .高层建筑和高耸结构的风振控制设计.武汉测绘科技大学出版社 2. 顾仲权.振动主动控制.国防工业出版社 3. 吴波.李惠.建筑结构被动控制的理论与应用.哈尔滨工业大学出版社 4. T.T.Soong.Active Structural Control: Theory and Practice. Longman Scientific & Technical. 5. G.W.Housner.Structural Control: past, present and future.et al. ASCE Journal of Engineering Mechanics, 123(9): 897-971, 1997 考核方式与要求: 课程论文。

振动控制措施(2021新版)

振动控制措施(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0723

振动控制措施(2021新版) 振动是指物体在外力作用下,以中心位置为基准呈往复振荡的现象。 生产过程中的生产设备、工具产生的振动称为生产性振动。 振动的控制措施: (1)从工艺和技术上消除或减少振动源,是预防振动危害最根本的措施。如用油压机或水压机代替气(汽)锤,用水爆清沙或电液清沙代替风铲清沙、以电焊代替铆接等。 (2)选用动平衡性能好、振动小、噪声低的设备。在设备上设置动平衡装置,安装减振支架、减振手柄、减振垫层、阻尼层;减轻手持振动工具的质量等。 (3)基础隔振。将振动设备的基础与基础支撑之间用减振材料(橡胶、软木、泡沫乳胶、矿渣相等)、减振器(金属弹簧、橡胶减

振器和减振垫等)隔振,减少振源的振动输出。 在振源设备周围地层中设置隔振沟、板桩墙等隔振层,切断振波向外传播的途径。 (4)个体防护。穿戴防振手套、防振鞋等个人防护用品,降低振动危害程度。其中最重要的是防止手指受冷。 XXX图文设计 本文档文字均可以自由修改

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

含凸轮机构的机械系统的振动控制研究综述_姚燕安

设计领域综述 SUMMARIES OF DESIGNING DOMAINS 含凸轮机构的机械系统的振动控制研究综述 姚燕安 张 策(天津大学机械系 300072) 1 引言 工业界对于生产率的追求是无止境的,自动化、高速化日益成为现代机械的发展趋势。大量的自动化机械要求实现复杂及精确的位置控制,凸轮机构由于其优良的工作性能而被广泛地用作定位机构。在高速下保持高精度、低噪音是衡量自动化机械产品质量的重要指标,成为制约机械运转速度提高的关键问题。在这方面我们与国际先进水平相比,还有相当差距。工业发达国家弧面分度凸轮机构的转速已达1600r/min,而我国只达到600r/min左右。 因而,对于含凸轮机构的机械系统的振动、尤其与定位精度直接相关的残余振动,必须采取有效的方法予以抑制或消除。抑制凸轮机构振动的方法,按照减振原理可以分为动态设计与振动控制两大类。首先,对前者予以简要评述;然后,重点评述后者的分类、原理以及研究现状;最后,综述并展望凸轮动力学的发展趋势。 2 动态设计 抑制机构振动响应的一个基本方法是进行动态分析与设计。从本世纪五十年代开始,在凸轮机构动力学方面作了许多卓有成效的工作。到八十年代中期,凸轮机构线性系统动力学的建模、分析与综合的理论已经趋于成熟,并成功地应用于指导工程设计。文献C4、H2、K3、N1、S4、T2代表了这一期间的研究成果。八十年代以后,凸轮机构动力学模型继续趋向精细化,计及阻尼、间隙等各种复杂因素的非线性系统动力学建模理论逐渐发展起来[C1,C2,H1,P1,P2]。值得注意的是,各种相关学科的新理论相继被借用到凸轮机构动力学的研究中来,如柔性多体系统动力学理论、弹性接触理论、概率分析理论等[X1],极大地丰富了凸轮动力学的研究手段。然而,迄今为止凸轮机构的非线性系统动力学研究并未取得突破性的进展,其原因主要在于如下几个方面的因难: (1)各种非线性因素的作用机理尚不十分清楚 研究已经证明,阻尼对于凸轮机构的振动,尤其是残余振动有显著的影响[C4]。但是,阻尼特性的精确估计还有赖于摩擦学、弹性接触力学、流体力学等学科理论的进展。目前,在相当程度上还依赖于研究者的经验,很难得出一般性结论。 考虑运动副间隙的机构动力学问题,在连杆机构领域的研究进展已经较为深入[L2]。研究结果表明,运动副间隙将明显地加大机构的振动、噪音和磨损。但是,仍有大量的基础理论问题需要研究和解决。凸轮机构含间隙动力学的分析是由Win-f rey[W2]开始的,以后的研究工作则非常有限[K4,O1,Z1],表明了这一问题的复杂性。 (2)非线性动力学理论的引入有待深入 近年来,在非线性动力学理论研究方面(如分叉与混沌)取得了突破性的成果[C7]。精确地讲,多数机械系统都是复杂的非线性系统。其动力特性的精确分析迫切需要引入非线性动力学理论作为指导。然而,由于数学理论的高深、可操作性差,以及机构学者的非线性动力学知识相对欠缺等原因,机械系统非线性动力学理论的进展十分缓慢。另一方面,非线性动力学理论本身也尚不完备,还有众多的难点问题没有克服,限制了它在机械工程领域的应用[H3]。 1 《机械设计》1997№8 设计领域综述 1997-04-07收到稿件。

振动监测 文献综述

参考文献: 【1】:张义民:《机械振动学漫谈》,科学出版社,2010. 【2】S. S. Rao. Mechanical Vibrations (SI ed.). Prentice Hall, 2005《工程中的振动问题》【3】刘延柱陈文良陈立群:《振动力学》高等教育出版社,1998. 【4】易良榘:《简易振动诊断:现场实用技术》机械工业出版社,2003.4. 【5】A.Dimarogonas. Vibration for Engineers (2nd ed.). Prentice-Hall, 1996 【6】张义民李鹤:《机械振动学基础》高等教育出版社,2010.5 【7】P. L. Gatti, V. Ferrari. Applied Structural and Mechanical Vibrations: Theory, Methods, Measuring Instrumentation. London: E & FN Spon, 1999 【8】屈维德等:《机械振动手册》机械工业出版社,1900-01-01 【9】G. Genta. Vibration of Structures and Machines: Practical Aspects (3rd ed.). Springer-Verlag, 1999 【10】闻邦椿:《机械振动理论与应用》高等教育出版社,2009-5-1 【11】W J Palm. Mechanical Vibration, John Wiley &Sons, 2006 【12】韩清凯,于晓光:《基于振动分析的现代机械故障诊断原理及应用》科学出版社,2010-5-1 【13】J. H. Ginsberg. Mechanical and Structural Vibration: Theory and Applications. John Wiley & Sons, 2001 【14】王孚懋,任勇生,韩宝坤《机械振动与噪声分析基础》,国防工业出版社,2009-1 【15】师汉民,黄其柏《机械振动系统:分析建模测试分析》华中科技大学出版社,2013-1-1

二自由度振动系统的简单主动控制[设计+开题+综述]

开题报告 机械设计制造及其自动化 二自由度振动系统的简单主动控制 一、选题的背景与意义 振动控制是振动工程领域内的一个重要分支,可分为被动控制与主动控制两类。被动控制由于不需外界能源,装置结构简单,许多场合下减振效果与可靠性较好,已经获得广泛应用。但随着科学技术的发展,以及人们对振动环境、产品与结构振动特性越来越高的要求,被动控制已难以满足要求。 本文将通过对车辆的振动特性进行分析,建立二自由度分析模型,选取适当的简单的控制方法,对其进行控制,使之平顺性更好。 二、研究的基本内容与拟解决的主要问题 2.1研究的基本内容 (1)了解车辆平顺性和控制理论的相关背景知识; (2)建立二自由度系统,能够进行仿真分析; (3)在模型中建立作动器,对模型进行改进; (4)对分析结果进行总结,分析控制前后模型的加速度均方根值的变化; 2.2拟解决的主要问题 对二自由度振动系统进行仿真模拟并对其动态特性进行研究,并加入控制系统,根据振动控制系统仿真结果,控制能达到良好的隔振效果。 三、研究的方法与技术路线 本课题的技术路线主要是通过分别建立1/4车辆振动系统的被动和主动悬架,并进行相应的仿真,最后通过对比来说明主动悬架和被动悬架对于车辆的减震效果的差异。课题的技术路线如下:

图3-1 技术路线图 四、研究的总体安排与进度 (1)了解车辆平顺性和控制理论的相关背景知识(1周); (2)建立二自由度系统,能够进行仿真分析;(3周); (3)在模型中建立作动器,对模型进行改进;(4周) (4)对分析结果进行总结,分析控制前后模型的加速度均方根值的变化(2周); (5)整理、撰写毕业论文(2周)。 参考文献 [1] 冯崇毅.汽车电子控制技术[M],北京:人民交通出版社,2005. [2] 蔡兴旺.汽车构造与原理下册[M],北京:机械工业出版社,2004. [3] 王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述[J],机械强度,2001,23 (2):156-160. [4] 蔺玉辉,靳晓雄,肖勇.振动主动控制技术的研究进展[J],上海汽车,2006,7:29-31. [5] 耿瑞.基于MATLAB的自适应模糊PID控制系统计算机仿真[J],信息技术,2007

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

振动检测

3.水泵振动监测及研究 3.1振动测量简介 振动测量时对振动量和系统振动特性进行的测量。振动量包括振动幅值、振动频率和相位;振动特性指系统的刚度、阻尼系数、固有系数、固有频率、振型和动态响应等。 泵的振动测量,通常只测量振动幅值及振动频率,并由此给出烈度级,需要时还可进行频谱分析。对泵的振动特性常用振动位移幅值、振动峰值、振动频率和振动烈度级作出评价。 振动测量的方法:按力学原理分为相对式测量法和惯性式测量法;按振动信号转换方式分为电测法、光测法和机械测振法。对泵通常采用电测法。 振动的电测法 3.1.1振动电测法的基本测试系统,其各部分仪器种类繁多,性能也有差别,应根据不同的测试要求合理选择配套。 3.1.2工程常用测振仪简介 工程常用测振仪由振动传感器、测振仪和记录分析仪器组成。 a)振动传感器又称拾振器,工程商常用的有位移传感器、惯性式速度型传感 器和惯性式加速度型传感器。速度型传感器除直接测量振动速度外,在把其输出电压经过积分线路与微积分线路后,还可以测量振动位移和加速度。此外,拾振器和用于噪声测量的声级计可以配套使用,测量振动。 b)测振仪也称放大器,具有显示和输出两种功能。 c)记录分析仪器常用的记录分析仪器有光线示波器、磁带记录仪、电平记录 仪和X-Y记录仪等。 3.1.3参数测量 参数测量包括振动基本参数测量和振动特性参数测量。前者测量的参数为振动频率、振动幅值和相位;后者测量的参数为固有频率、阻尼系数和振型等。泵主要测量基本参数。 (1)振动频率的测量有以下几种方法: a、用数字式频率计直接测读频率。这种方法简便,精确度高,稳定性也较好,还可以对简谐波型以外的振动进行测量。 b、用录波比较法测频率。它是把振动波形的时程曲线记录在记录纸上,同时记录时标信号,如果时标信号为1s(即两条时标线的时间间隔为1s),则两条时标线间的完整波个数为振动频率。波形的时程曲线常用光线示波器记录。 c、用声级计和光线示波器联合测量频率,并进行频谱分析。 (2)振动幅值的测量振动幅值指位移幅值、速度值和加速度值。通常也把位移幅值称为振幅。 a、位移幅值测量:以下三种情况都要测量位移幅值。振动幅值较低,速度和加速度值大,不便使用速度和加速度传感器时,则用位移传感器测量位移幅值;某些设备或结构物需限定其振幅不超过允许值,此时就要直接测量位移幅值;需要通过测量位移进行应力计算时,则必须测量位移幅值,如水工闸门的振动问题就是如此。 b、速度值测量:如果振动频率处于中频段,且位移较小时,可用速度传感器测

舰船管路振动噪声控制措施综述

舰船管路振动噪声控制措施综述 摘要:每一个大型舰船内部的管路布置都是十分复杂的,就其功能来说,包括 传递动量流和质量流以及能量流,进而实现其作用的发挥。另外由于管道的存在,也让噪声可以传播了。首先很多机械设备通过管路直接连结整个舰船的结构,这 就给噪声的传播带来了便利。另一方面来说,很多泵系统工作都存在着一些间歇性,在所以液体压力流量脉动以及结构振动都难免产生噪声。 关键词:噪声控制;振动控制;管路振动 对于舰船来说,管路的振动是舰船产生噪声的重要原因,这些结构噪声的存 在可以通过管路传递到舰船的各个位置上,而管路导致的振动也往往会造成很多 负面影响,例如军舰会失去其隐蔽性,而民用传播也会因为噪声而给舒适性带来 影响,所以从这个件角度来看,其影响是很大的,应该重视起来,采取相应的手 段加以解决。 一、关于控制振动噪声的方式 (一)针对振动源以及噪声源进行控制 正常来说,管道振动和噪声的产生的来源都是舰船上的机械设备,而管路噪 声来源分为两个类别,一方面是管路系统自己产生振动而引起噪声,另一方面是 机械设备引起噪声通过管路传播。前者包括各类风机和压缩机以及泵所产生的振 动情况,由于其进行工作的原理,管路内部的气体和液体的压力并不是均衡的, 所以就会引起结构震动的情况。而间接振动的来源往往是舰船上的机械设备,机 械设备产生的振动通过连接装置传递给管路系统,这种情况下,管路系统直接和 噪声源进行连接,一方面造成了严重的噪声问题,另一方面也给管路系统带来了 很大的影响,所以针对振动源进行控制是最能治标治本的手段。 (二)在中间环节进行隔离 在中间的连接环节采取一些隔离措施,防止噪声和振动转移到其他部位,很 多情况下,由于机械运行条件比较苛刻,所以对于机械的振动以及噪声问题难以 进行彻底解决,此时就可以在传播途径上采取相应的措施来降低噪声,这在工程 中已经被广泛应用,并且行之有效。当前来看,经常用到的措施有采用弹性连接、选用阻尼材料、给管道添加消音器和滤波器等等。 二、管路振动噪声控制措施 (一)管路振动及结构噪声的控制措施 舰船结构中的振动和噪声主要有两个产生原因,一是机械设备的振动与结构噪 声通过与舰船 结构的连接部件传递至舰船结构;二是各种充液管路中的流体压力脉动和管壁的振动与结构噪声通过与舰船结构的连接部件传递至舰船结构。因此为了提高军 用舰艇的隐身性能和民用船舶的安静性与舒适性,必须同时隔离机械设备和管路两 者的振动和结构噪声向舰船结构的传递。 隔离机械设备的振动和结构噪声向舰船结构的传递主要就是对舰船主动力装置、辅机进行减振和隔振。这方面内容不再赘述。舰船管路的振动和结构噪声的 产生主要有两方面原因:一是直接与管路系统相连的各类动力机械(如泵、风机等) 的结构振动传到了管壁并由其传播;二是这类动力机械正常工作时管内流体的压力或流量脉动,如果条件合适,管内流体的压力或流量脉动可诱发管壁的结构振动并

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

浅谈建筑结构振动控制

浅谈建筑结构振动控制 摘要:文章从不同角度对结构振动控制进行了分类,介绍了其发展与现状,并对近年来控制理论在结构控制方而的新进展给以综述,最后对有待进一步研究的问题进行了探讨,以促进结构振动控制的研究。 关键词:结构振动控制;自主控制;上木工程结构 abstract: this article from a different perspective on the structural vibration control classification, its development and status, and give summarized in the the structure controlling party and the new advances in control theory in recent years, last discussed the issue needs further study .to promote the study of the structural vibration control.key words: structural vibration control; self-control; engineering structures on wood 中图分类号:c935 文献标识码:a 文章编号:2095-2104(2012)结构振动控制是一个应用领域广泛的工程问题。所谓结构振动控制(以下称为结构控制)是指采用某种措施使结构在动力载荷作 用下的响应不超过某一限量,以满足工程要求。 结构控制问题是一种多学科交叉的理论与工程问题,其结构类型繁多、控制目标不同、实现手段多样。目前,国内外控制界对这类问题的研究十分重视,有大量的学术论文发表,其中不少新结果得到了实际工程应用。本文旨在对当前结构控制的一此新进展加以

振动污染及其控制技术

振动污染及其控制技术 1402032026孙小飞环境工程(2)班 摘要:现如今随着社会的发展,物理性污染愈发严重。其中振动污染也是其中的一部分,本文着重介绍了振动污染及其控制技术的内容。 关键词:振动污染;控制技术。 一、概述 振动定义:(1)任何一个可以用时间的周期函数来描述的物理量,都称之为振动(2)当一个物体处于周期性往复运动的状态,即可说物体在振动。 1.振动现象 物理现象:声、光、热等物理现象都包含振动;生命和生活:心脏搏动、耳膜和声带的振动是人体的基本功能。 工程技术领域: 桥梁和建筑物在阵风或地震激励下的振动 飞机和船舶在航行中的振动, 机床和刀具在加工时的振动, 各种动力机械的振动, 控制系统中的自激振动等。 2.振动污染: 振动超过一定的界限,从而对人体的健康和设施产生损害,对人的生活和工作环境形成干扰,或使机器、设备和仪表不能正常工作。 振动污染源有自然源和人工源 自然源:地震、火山爆发等自然现象。 自然振动带来的灾害难以避免,只能加强预报减少损失。 人工源:工业振动源:旋转机械、往复机械、传动轴系、管道振动等,如锻压、铸造、切削、风动、破碎、球磨以及动力等机械和各种输气、液、粉的管道。特征参数:常见工厂振源附近面上加速度级:80~140dB;振级:60~100dB;峰值频率:10~125Hz。 工程振动源:工程施工现场的振动源主要是打桩机、打夯机、水泥搅拌机、辗压

设备、爆破作业以及各种大型运输机车等。特征参数:常见工程振源附近 振级:60~100dB。 铁路振源: 频率:一般在20~80Hz范围内; 离铁轨30m处的振动加速度级范围85~100dB,振动级范围75~90dB内 公路振源: 频率:一般在2~160Hz范围内,其中以5~63Hz的频率成分较为集中; 振级:多在65~90dB范围内。 二、振动的影响 振动的生理影响主要是损伤人的机体,引起循环系统、呼吸系统、消化系统、神经系统、代谢系统、感官的各种病症,损伤脑、肺、心、消化器官、肝、肾、脊髓、关节等人们在感受到振动时,心理上会产生不愉快、烦躁、不可忍受等各种反应。除振动感受器官感受到振动外,有时也会看到电灯摇动或水面晃动,听到门、窗发出的声响,从而判断房屋在振动。人对振动的感受很复杂,往往是包括若干其他感受在内的综合性感受。振动引起人体的生理和心理变化,导致工作效率降低。振动可使视力减退,用眼工作时所花费的时间加长。振动使人反应滞后,妨碍肌肉运动,影响语言交谈,复杂工作的错误率上升等。振动通过地基传递到构筑物,导致构筑物破坏。如,基础和墙壁龟裂、墙皮剥落,地基变形、下沉,门窗翘曲变形,构筑物坍塌,影响程度取决于振动的频率和强度。由于共振的放大作用,其放大倍数可由数倍至数十倍,因此带来了更严重的振动破坏和危害。 三、振动控制技术 振动控制的任务:通过一定手段使受控对象振动水平满足预定要求。 受控对象:各类产品、结构或系统的统称。 实现控制振动的目的需经历的五个环节(1)确定振源特性与振动特征 (2)确定振动控制水平 (3)确定振动控制方法 (4)进行分析与设计 (5)实现振动控制

双光栅测微弱振动综述报告

用双光栅测量微弱振动 综述报告 学院:电气工程学院学号:2180401066 姓名: 一、实验结果 二、设计一个利用本仪器测量微小量变化的实验 利用双光栅测量微小质量变化。 对于双光栅微弱振动测量仪,在调节频率器让音叉谐振以后,改变音叉的附着质量将会对示波器显示的拍频波的个数产生影响,即影响音叉的振幅大小。如此在音叉上附着不同质量的微小物体,可以通过音叉振幅的改变来判断微小物体质量的大小。 可设计带有若干凹槽的音叉替代原有音叉,向凹槽内放置不同数量的微小金属块,通过示波器上显示的拍频波个数计算出各相应情况下的音叉振幅,拟合出音叉振幅大小与音叉附着质量关系曲线。对于质量位于本实验所采用的质量区间内的微小物体,都可以通过双光栅微弱振动实验测量出振幅,再利用所得的关系计算出质量大小。 三、光栅尺(莫尔条纹)在工业中测量控制微小量的原理 光栅尺是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机床固定部件上,光栅读数头在机床活动部件上,指示光栅在光栅读数头中。图2所示的就是光栅尺的结构。

图2 光栅尺结构图 以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹” (如图3所示)。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示。 W=ω /2* sin(θ /2)=ω /θ 图3 莫尔条纹 光栅尺传感器系统多采用电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量。 在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与判向功能。例如,栅线为50线对/mm的光栅尺,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在工业普通测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,通常采用由低漂移运放构成的差分放大器。由4个光敏器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波。然后,通过对方波的相位进行判别比较,就可以得到光栅尺的移动方向。通过对方波脉冲进行计数,可以得到光栅尺的位移和速度。.

半主动悬架振动控制方法研究[设计、开题、综述]

BI YE SHE JI (二零届) 半主动悬架振动控制方法研究 所在学院 专业班级测控技术与仪器 学生姓名学号 指导教师职称 完成日期年月

当前人们对车辆乘坐舒适性的要求越来越高,对车辆悬架的控制技术已成为当今控制理论的重要研究课题之一。根据先前的研究,悬架的数学模型有很多种,本次论文应用理论分析,选择和构建了二自由度四分之一半主动悬架的动力学模型,针对汽车悬架系统的动态特征,应用PID控制理论和模糊控制理论,先后设计了半主动悬架PID控制器,半主动悬架模糊控制器,半主动悬架模糊PID 控制器,在matlab/simulink软件中构建了实现这些策略的悬架控制模型。通过仿真结果表明,半主动悬架模糊PID控制的实现是可行的、合理的,与被动悬架控制、单纯的PID控制、模糊控制相比,该控制方式能够有效得减小车身加速度的幅值,减小车身的振动,并使得加速度变化更加平缓,符合汽车对平顺性的要求。 关键词:半主动悬架,模糊PID,仿真

At present people have become increasingly demanding comfort of vehicles,vehicle suspension controltheory has become one of the important research topics. According to previous studies, There are variety of the mathematical model of suspension , this thesis apply theoretical analysis, selected and constructed a quarter of two degrees of freedom dynamic model of semi-active suspension for the dynamic characteristics of vehicle suspension systems, applying PID control theory and fuzzy control theory, has designed a semi-active suspension PID controller, fuzzy controller semi-active suspension, semi-active suspension fuzzy PID controller, building the suspension to achieve these strategies Control model in the matlab / simulink software. he simulation results show that the semi-active suspension Fuzzy PID control implementation is feasible, reasonable, comparing the passive suspension control, a simple PID control, fuzzy control compared to the control method can effectively reduce the body acceleration amplitude ,reduce the vibration of the body,and make changes more gentle acceleration.meet the requirements of cars on the ride comfort. Keywords:Semi-active suspension, fuzzy PID, simulation

浅谈建筑结构振动控制技术

龙源期刊网 https://www.doczj.com/doc/8a3205759.html, 浅谈建筑结构振动控制技术 作者:翟永兵 来源:《智富时代》2018年第03期 【摘要】近年来,随着我国经济的飞速发展,人民生活水平的日益提高,同时也带动了 我国建筑工程的快速发展,而在建筑工程结构振动控制技术中,传统的抗震结构体系是通过加强结构本身的性能从而达到“抗御”地震的目的。土木工程结构振动控制有利于降低结构在地震、流水、海浪、风、车辆等动力作用下结构所造成的损伤,能够有效地将结构抗震防灾能力相对增强。结构控制引起了世界各国地震工程界的广泛重视,是一种新型的结构抗震技术。但这种方法的作用与安全性相对是较低的,所以在这种不确定性的地震作用下,结构的安全性能并不能得到充分的保障,最后产生倒塌或遭到严重破坏,造成人员伤亡与巨大的经济损失。本文就建筑工程结构振动控制技术进行分析,并对其的发展进行讨论。 【关键词】建筑工程;震动控制;发展 一、结构控制的特点、发展与现状 (一)按控制对能量需求来划分 从控制对外部能量需求的角度,结构控制可分为:被动结构控制、主动结构控制、混合结构控制、半主动结构控制。除被动控制外,其他三种控制方式中的控制力全部或部分地根据反馈信号按照某种事先设计的控制律实时产生。主动结构控制效果较好,对环境有较强的适应力,但完全依赖外部能源,闭环稳定性比其他方式差。在被动控制中,控制力不是由反馈产生的。其主要优点是;成本低、不消耗外部能量、不会影响结构的稳定性;缺点是:对环境变化的适应力与控制效果不如其他方案。混合控制是指用主动控制来补充和改善被动控制性能的方案。由于混合了被动控制,因此减小了全主动控制方案中对能量的要求。半主动控制中通常包含某种对能量需求很低的可控设备,如可变节流孔阻尼器等作用时所需的外部能量通常比主动控制小得多。因此初步研究表明混合控制与半主动控制的性能大大优于被动控制,甚至可达到或超过主动控制的性能,并在稳定性与适用性方面要优于后者,因此成为当前研究的一个热点。 (二)按结构特性划分 从被控结构的特性划分,结构控制可分为柔性结构控制与刚性结构控制。其中柔性结构包括大型柔性空间结构、大跨度桥梁等;刚性结构则包括武器系统中稳定平台、车辆悬挂系统、多刚体机器人等。对于两类结构控制所用的主动控制设备也不相同,如在柔性结构控制中传感器与执行器常用的智能材料是分布智能材料,如压电材料;而刚性结构控制中传感器与执行器常用的智能材料是电智能材料,如磁致伸缩材料。

振动控制技术现状与进展

第28卷第3期 振动与冲击 JOI7RN^f.OFVIBRATIONAND.qHOCK 振动控制技术现状与进展 陈章位,于慧君 (浙江大学流体传动及控制国家重点实验室,杭州310027) 摘要:总结了白20世纪40年代开始振动试验研究以来振动控制技术的发展,论述了在振动控制算法以及振动试验激振设备等方面周内外研究所取得的主要成就。在此基础上提fi{r振动控制技术今后值得父注的研究方向和重点,如实际振动环境复现试验控制、多轴多自由度振动控制等。 关键词:振动控制;振动试验;进展;展望 中图分类号:TB534+.2文献标识码:A 自从在二次世界大战中战斗机等多种军用设备因受振动而造成损坏的现象引起重视后,为了更好地模拟产品的真实振动环境、对产品可靠性进行检验,20世纪40年代开始人们引入了振动试验。随着现代科学技术的进步,振动试验在产品的生产、设计以及可靠性、耐久性试验方面起到了越来越重要的作用。 振动试验系统主要由激振器、控制器、试件以及夹具所组成。在这几十年来的发展中,为了更真实地模拟实际的振动环境,激振器越来越复杂,同时也带来了问题就是如何精确地控制激振器使得激振器产生的振动信号能够与试验要求产生的信号一致,也即需要进一步提高控制器的性能。由此本文从三方面对振动控制技术进行综述,一是当前振动试验激振设备的发展;二是当前振动控制算法的发展以及在当前的振动试验产品中普遍采用的控制算法:三是当前控制器的发展,在此基础上提出了振动控制技术今后的研究方向和重点。 1国内外进展 1.1振动试验激振设备进展 用于振动试验的振动试验激振设备从其激振方式上主要可分为三类:机械式振动台、电液式振动台和电动式振动台¨“1。 1.1.1机械式振动台进展 机械式振动台主要有不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低,但只能在约5Hz一100Hz的频率范围工作,最大位移为6mm峰-峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心 收稿日期:2008-01-03 第一作者陈章位男,教授,1965年生量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低频域内,激振力大时,可以实现很大的位移,如100mm。但这种振动台工作频率仅限于低频,上限频率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 机械式振动台由于其性能的局限,主要应用于要求不高的领域。 1.1.2电动振动台进展 电动式振动台是目前使用较广泛的一种振动试验激振设备。它的工作原理是:根据电磁感应原理设计的,当通电导体处在恒定磁场中将受到力的作用,当导体中通以交变电流时将产生振动。振动台的激励线圈正是处在一个高磁感应强度的空隙中,需要的振动信号从信号发生器或振动控制器产生并经功率放大器放大后通到激励线圈上,使得振动台产生需要的振动波形。 电动式振动台的频率范围宽,小型振动台频率范围为0Hz一10kHz,大型振动台频率范围为0Hz~2kHz;动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波形。因此目前主要应用于高频率范围、推力较小、波形失真要求较高的试验领域。虽然目前电动振动台在推力方面已经做得越来越大,已经可以达到35t的推力,但是当它的推力超过10t以后,前述的电动振动台优势不是很明屁,各种因素的干扰也越来越大,而且成本增加很多。同时由电动式振动台的工作原理所决定,在振动试验的过程中,它的台面上不可避免会产生漏磁现象,这对于某些军用产品的试验是不可行的。因此,在这些情况下需要用电液振动台来进行试验。 1.1.3电液振动台进展 电液式振动台作为振动试验的常用设备之一。它的工作方式是采用电液伺服阀,通过液压控制传动装置产生振动激励。输入的电控信号经放大器放大进入伺服阀,伺服阀把与输入信号成比例的液压油输入液压缸,以驱动活塞并带动台面运动。 万方数据

相关主题
文本预览
相关文档 最新文档