当前位置:文档之家› 基于dsp的语音识别与合成技术

基于dsp的语音识别与合成技术

基于dsp的语音识别与合成技术
基于dsp的语音识别与合成技术

基于DSP的语音识别与

合成技术

学号:201116022106

班级:电信111

姓名:王红伟

2014年6月13日

摘要............................................................... II Abstract.......................................................... III 一.概述 (1)

1.语音识别 (1)

2.语音合成 (1)

3.国内研究历史及现状 (1)

4.语音识别的流程 (1)

5.语音信号分析方法分类时域特征 (1)

6.基于Mel频率的倒谱MFCC (2)

6.1 音框化(Frame blocking) (2)

6.2 汉明窗(Hamming window) (2)

6.3 快速傅利叶转换(FFT) (2)

6.4 三角带通滤波器组(Triangular Bandpass Filters) (2)

二.芯片概况介绍 (3)

三.系统总体设计 (5)

3.1 语音识别系统结构示意图 (5)

系统结构示意图 (5)

3.2 内部系统构成 (5)

3.2.1 DSP (6)

3.2.2 MCU (6)

3.2.3 数据FLASH存储器 (6)

3.3 系统内主要芯片的互联互控 (6)

3.3.1 MCU与DSP (6)

3.3.2 DSP与数据FLASH锁存器 (7)

3.3.3 DSP与数据FLASH存储器 (7)

四.结论 (7)

参考文献: (8)

六.课程总结: (8)

第一章:离散时间信号与系统 (8)

第二章离散傅里叶变换(DFT) (8)

第三章快速傅里叶变换 (9)

第四章 (9)

第六、七章 IIR 、FIR数字滤波器的设计 (9)

第八章硬件 (9)

在如今信息社会,随着微电子的迅速发展,DSP芯片性能不断提高,用数字化的方法可以让语音的传送、储存识别、合成、增强成为整个数字化通信网中最重要、最基本的组成部分之一,随着信息科学技术的飞速发展,语音信号处理的研究也日益显示出它的要性,并取得了重大进展。大体上说,语音信号处理技术可以分为以下四个面:即语音编码,语音合成、说话人识别和语音识别等。

以DSP芯片TMS320C5410为核心,制作了一个能实现语音识别的功能。本设计主要包括DSP(TMS320C5410)、MCU(Intel 8031)模块、FLASH Intel 8031模块、液晶显示屏模块、蜂鸣器报警模块和供电模块等,系统由MCU实现总线控制,接收外界键盘输入,并在显示屏上显示信息。

随着现代数字通讯、多媒体系统、信息高速公路等技术的应用和发展己经越来越深入地影响并改变着我们每个人地生活和工作方式,这同时也对音信号处理的研究工作提出了更高的要求,它在各方面的进展也令人瞩目。所以用DSP开发语音识别与合成技术是很有优势的。

关键词

数字信号处理语音识别快速傅利叶转换文语转换技术TMS320C5410 隐式马尔可夫链

Abstract

In today's information society, with the rapid development of microelectronics, DSP chip to constantly improve the performance, the use of digital methods can make the transmission of voice recognition, synthesis, storage, enhancement has become one of the most important parts of the whole, the most basic digital communication network, along with the rapid development of information technology, research on speech signal processing is becoming more and more show it to, and made significant progress. Generally speaking, speech signal processing technology can be divided into the following four aspects: namely, speech coding, speech synthesis, speech recognition and speech recognition.

Using DSP chip TMS320C5410 as the core, made a speech recognition function. This design mainly includes the DSP (TMS320C5410), MCU (Intel 8031) module, FLASH Intel 8031 module, LCD module, buzzer alarm module and power supply module, the system is realized by MCU bus control, receiving external keyboard input, and display the information on the display screen.

With the application and development of modern digital communication, multimedia system has, highways and other information technology is more and more deeply affected and changed our each person's way of living and working, it also research on audio signal processing and put forward higher requirements, it is in all aspects of the progress is also attract people's attention. So with the development of DSP speech recognition and synthesis technology is very advantageous.

Keywords:DSPTMS320C5410Speech recognitionFFTTTSHMM

一.概述

1.语音识别

语音识别是试图使机器能“听懂”人类语音的技术。语音识别的作用是将语音转换成等价的书面信息,也就是让计算机听懂人说话。作为一门交叉学科,语音识别又是以语音为研究对象,是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到计算机、信号处理、生理学、语言学、神经心理学、人工智能等诸多领域,还涉及到人的体态语言,其最终目标是实现人与机器进行自然语言通信。

2.语音合成

语音合成是通过机械的、电子的方法产生人造语音的技术。TTS技术(又称文语转换技术)隶属于语音合成,它是将计算机自己产生的、或外部输入的文字信息转变为可以听得懂的、流利的汉语口语输出的技术。

3.国内研究历史及现状

我国在语音识别研究上也投入了很大的精力,国内中科院的自动化所、声学所以及清华大学等科研机构和高校都在从事语音识别领域的研究和开发。国家863智能计算机专家组为语音识别技术研究专门立项,我国语音识别技术的研究水平已经基本上与国外同步。

4.语音识别的流程

根据对输出观测值概率的不同描述,HMM(隐式马尔可夫链)可分为离散HMM(DHMM)和连续HMM(CHMM),在基于DHMM的非特定人语音识别过程中语音信号先被分成若干音框(帧),每个音框用一个特征向量参数表示,然后将语音特征参数向量的时间序列矢量化,此时每一个音框的语音信号变成VQ 码本,用码本训练HMM,最后测试识别率。

5.语音信号分析方法分类时域特征

频域及倒谱域特征由时域信号进行频谱变换得到,反映语音信号的频域特性包括傅里叶频谱、倒谱以及利用了语音信号的时序信息的时频谱。听觉特征指不直接对声道模型进行研究,而是从人类听觉系统对语音的感知特性来刻画语音信号的特征。

6.基于Mel 频率的倒谱MFCC

在语音识别(Speech Recognition )和语者辨识(Speaker Recognition )方面,最常用到的语音特征就是[梅尔倒频谱系数](Mel-scale Frequency Cepstral Coefficients ,简称MFCC ),此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音识别。

6.1 音框化(Frame blocking )

先将N 个取样点集合成一个观测单位,称为音框(Frame ),通常N 的值256或512,涵盖的时间约为20~30ms 左右。为了避免相邻两音框的变化过大,所以我们会让两相邻因框之间有一段重迭区域,此重迭区域包含了M 个取样点,通常M 的值约是 N 的一半或 1/3。通常语音识别所用的音频的取样频率为8 KHz 或16 KHz ,8KHz 来说,若音框长度为256 个取样点,则对应的时间长度是 256/8000*1000 = 32 ms 。

6.2 汉明窗(Hamming window )

将每一个音框乘上汉明窗,以增加音框左端和右端的连续性(请见下一个步骤的说明)。假设音框化的讯号为S(n),n = 0,…N -1。那么乘上汉明窗后为S'(n) = S(n)*W(n),此W(n) 形式如下

6.3 快速傅利叶转换(FFT )

由于讯号在时域(Time domain )上的变化通常很难看出讯号的特性,所以通常将它转换成频域(Frequency domain )上的能量分布来观察,不同的能量分布,就能代表不同语音的特性。所以在乘上汉明窗后,每个音框还必需再经过 FFT 以得到在频谱上的能量分布。

6.4 三角带通滤波器组(Triangular Bandpass Filters )

将能量频谱能量乘以一组 20个三角带通滤波器,求得每一个滤波器输出的对数能量(Log Energy )。必须注意的是:这20个三角带通滤波器在梅尔频率(Mel Frequency )上是平均分布的,而梅尔频率和一般频率 f 的关系式如下:

Mel (F )= 2595 * log )700

1(10F 梅尔频率代表一般人耳对于频率的感受度,由此也可以看出人耳对于频率 f 的感受是呈对数变化的: 在低频部分,人耳感受是比较敏锐 。在高频部分,人耳的感受就会越来越粗糙 。

二. 芯片概况介绍

TMS320C54XX 系列简介

TMS320C54X 芯片采用先进的修正哈佛结构和8条4组总线结构使处理器

的性能有极大的提高。它的独立的程序和数据总线允许同时访问程序存储器和数据存储器,实现高度并行操作,例如可以在一条指令中,同时执行3次读操作和1次写操作。还可以在数据总线和程序总线之间相互传送数据,从而使处理器具有在单个周期内同时执行算术运算、逻辑运算、移位操作、乘法累加运算以及访问程序和数据存储器的强大功能。采用模块化设计现金的集成电路设计以及先进的集成电路技术,芯片的功耗小,成本低的强大好处。

C54XX 功能结构框图

TMS320C54X DSP内部硬件组成框图

三.系统总体设计

3.1 语音识别系统结构示意图

语音输入方式省去了大量的输入时间,降低了信息检索的复杂度,该芯片可存放数百张语音名片,每张名片包含四条信息:姓名、电话号码、工作单位、备注;声控查找语音名片信息,用户只需口述所要查找人的姓名,即可获得电话号码、工作单位、备注等信息,同时电话号码显示在液晶屏上]4[。

系统结构示意图

3.2 内部系统构成

用于“录音”功能的ACELP算法是该码率下性能优异的解码算法,虽然算法复杂度较高,但共重建语音素质的平均主观评测分数(MOS分)达到如图1所示,系统由MCU实现总线控制,接收外部键盘输入,并在液晶屏上显示信息。在本系统中,语音充当大部分人机界面的角色,尽管省去复杂的键盘操作,而且用语音提示或语音操作回放代替一部分液晶文字提示。由于语音要经过DSP处理,所以MCU需要与DSP经常交换信息,一边实现友好的操作界面。系统由MCU实现总线控制,接收外部键盘输入,并在液晶屏上显示信息。本系统中,语音充当大部分人机界面的角色,尽量减去复杂的键盘操作,而且用语音提示或语音回放代替一部分的液晶文字提示。由于语音要经过DSP处理,所以MCU需要与DSP经常交换信息,以便实现又友好的操作界面]5[。

3.2.1 DSP

DSP(TMS320C5410)是整个硬件系统的信号处理中心,完成语音识别、训练、编解码,进行片内RAM及外部FLASH存储芯片的数据管理与调度,并向主控芯片MCU 提供简洁的命令与反馈信息。TMS32054XX系列的产品。其主要性能指标如下:

1 16位定点的DSP,采用改进的哈佛结构,供电呀3.3V;

2 提供了64Kbyte的片内ROM;

3 由一个时分复用串口TDM和2个带缓冲区的标准串口BSP;

4 具有HPI是实现DSP与MCU接口的应用;

5 指令周期为10ns, 即运算速度高达100M IPS;

6 具有管理中断、循环运算和功能调用的控制结构。

3.2.2 MCU

MCU是Intel生产的性价比较高的一种HMOS类型的8位单片机,可以一次性编程,适于小批量生产,被广泛地应用于家用电器的控制,他具有强大的I/O 功能。其主要指标如下:

1 片内RAM为128*8bit;片外为64K*8bit片外EPROM64K*8bit;

2 40个引脚,其中由32个I/O口,5个中断源,2个16位定时器/计数器;

3 需求电压为5V

这些性能保证了系统主控能力,而且能够提供灵活的外部接口,适于做进一步的改进能力和改进。计算器等附加功能可以直接由MCU完成。

3.2.3 数据FLASH存储器

数据FLASH存储器KM29U64000是SAMSUNG公司的产品,它可在3V电压下低功耗工作,存贮量大、价位低、速度快、存储数据掉电后可保持而不会丢失。

3.3 系统内主要芯片的互联互控

3.3.1 MCU与DSP

MCU与DSP采用串行口相连,通过HPI实现MCU与DSP的传送互联MCU对DSP的命令字与DSP对MCU的反锁字。DSP串口1用于语音输入和输出,串口2用于与MCU相连。由于DSP的串口收发方式和MCU的串口不一致,所以MCU用I/O口模拟串口与DSP相连。为了保证数据传送的稳定性,MCU采用中断方式接收。每次

数据传送一般不止一个人字节,所以采用打包方式传送。

3.3.2 DSP与数据FLASH锁存器

DSP的数据总线中的8位练到FLASH存储器的总线上,用DSP的读写控制线WR和RD控制FLASH控制的CE端,以保证DSP在进行其他总线操作时不会对该FLASH芯片的“闲/忙”信号线上,监视其股票那工作状态;分别把两个地址线A8和A9连到FLASH芯片的两个锁存控制CLE和ALE上,以便控制总线的状态。

3.3.3 DSP与数据FLASH存储器

TMS320C5410的Byte存储区就是一个8位宽的外部双向存储空间,可用于存储程序与数据。整个Byte存储空间由256个16K*8的页面组成,Byte存储区只能通过BDMA进行访问。在使用BDMA方式工作时用A0-A13作为低端地址,用D16-D18作为扩展的高端地址,联合使用实现4Mbyte的外部寻址能力。D8-D15作为数据总线,BMS、RD、WR分别用于控制存储的片选以及读写操作信号。

四.结论

基于DSP的语音识别与合成技术的实验,是未来SPDA语音个人数字助理的前型。它集成了语音识别、语音压缩编码、语音信号处理器DSP和大容量FLASH 在存储的数据管理等技术、该系统所应用的技术可应用于语音八号电话+语音录音电话机、电话机伴侣、PDA、随身听、语音玩具、语音门户。

经过这次数字信号处理基于DSP的语音识别与合成系统的研究,我知道了利用DSP处理信号是很有优势的,处理方法多种多样,适合不同的信号,我了解了一般电子语音处理的方法,怎么样识别,并对识别到的语音信号合成,达到人机交流的目的,这样对研究机器人或是其他跟语音有关的东西,都可以采用DSP 的处理方法,经过这次学习,我感到受益匪浅。

参考文献:

[1]王华奎编,《数字信号处理与运用》,高等教育出版社,2013.

[2]吴大正编,《信号与线性系统》,高等教育出版社,2012.

[3]王念旭等,《DSP基础与应用系统设计》,北京航空航天大学出版社.

[4易克初,《语音信号处理》,国防工业出版社.

[5]关华,《Digital Speech Processing》,黄河出版社.

[6]宋知用,《MATLAB在语音信号分析与合成中的应用》,北京航空航天大学出版社; 第1版(2013年11月1日)

六.课程总结:

第一章:离散时间信号与系统

主要介绍了模拟信号数字处理方法,时域离散信号的表示方法和典型信号、线性时不变的因果性和稳定性、系统的输入输出描述法。重点学习了离散时间福利叶变换和Z 变换,在频域中的运用。

通过学习,自己明白了什么是奈奎斯特采样定理,明白了A/D转换和D/A

转换,这是在数字信号处理中不可或缺的关键转换。会根据不同的采样频率用傅里叶变换求采样后的频谱。知道了各种序列,会用Matlab 写程序画出序列图来,会根据程序调用函数,感觉很实用。学了线性系统和时不变系统,因果关系,知道了级联、单位脉冲响应还有系统的差分方程。学了霸气的Z变换,会求简单的收敛域,知道了Z变换的许多性质,Z变换注重零点与极点的分布,利用卷积积分使离散函数分析,求解过程变的简单而方便,最后终于知道了Z变换、傅里叶变换、拉普拉斯变换之间的关系,了解了离散时间LTI系统的线性差分方程,从而具有无限长的单位冲击响应(IIR)、(FIR)系统。总之学了第一章,把之间学的知识都加强巩固了一遍,知道数字信号处理的各种数学模型。

第二章离散傅里叶变换(DFT)

主要讲了信号分析与处理的重要基础理论,傅里叶变换的性质及在频谱中的应用。

总的来说,这一章专业性有点强,学着理论有点吃力,初步了解了离散傅里叶的形式,明白什么是离散傅里叶级数(DFS)和DFS的性质、推导,学了DFT,知道了傅里叶级数到傅里叶变换间的关系,会计算有限长序列的DFT,明白了傅

里叶变换与Z变换及DTFT间的关系,学会用圆周卷积,最后学了DFT进行频谱分析,应合理选择参数,以避免各类误差现象。说实话,这个分析对于我来说是挺纠结的,不怎么会用。

第三章快速傅里叶变换

DFT在数字信号中处于非常重要的地位,这与DFT的快速傅里叶变换(FFT)是离不开的,主要讨论了常见的FFT算法及运用。

FFT是DFT的一种,更难懂,寻求DFT的快速算法、减小DFT的运算量非FFT 不可,也知道了FFT在DFT中的地位,学了怎么用时间抽取FFT算法、频率抽取FFT算法、利用FFT程序求IFFT的方法。学了怎么用Matlab计算信号的DFT和IFFT。也了解了FFT的各种运用,都是以卷积和相关运算的具体计算,掌握FFT 的计算原理。

第四章

第四章主要讲了数字滤波器的结构、流图、网络结构,了解了IIR与FIR的结构形式,主要是用Matlab来设计函数和基本结构把之前学的内容很好的运用起来,这样对之前学的内容更加深入了解,知道了理论结合实际的用途,这样对学习DSP信心十足了,终于知道电信专业是学什么内容了。

第六、七章IIR 、FIR数字滤波器的设计

主要学了怎么利用脉冲响应不变法及双线性变换法设计IIR低通数字滤波器,高通、带通、阻通IIR数字滤波器的设计,知道了设计的思想、总体构架、转换关系及各种设计方法;

主要学了怎么分析线性相位FIR滤波器,介绍了用窗函数加权法和频率法设计FIR数字滤波器。了解线性相位的条件、频率特性、零点分布、窗函数。

第八章硬件

了解了数字信号处理的实现方法与开发运用,用DSP设计实现的方法。知道DSP芯片、芯片软硬结构、技术指标、设计过程、产品简介。

语音识别

语音识别技术 概述 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 历史 早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由A T&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。到1950年代末,伦敦学院(Colledge of London)的Denes已经将语法概率加入语音识别中。1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC),及动态时间弯折Dynamic Time Warp技术。语音识别技术的最重大突破是隐含马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。[1]。此后严格来说语音识别技术并没有脱离HMM框架。尽管多年来研究人员一直尝试将“听写机”推广,语音识别技术在目前还无法支持无限领域,无限说话人的听写机应用。 模型 目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的语音识别系统由以下几个基本模块所构成信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。从数学角度可以更加清楚的了解上述模块之间的关系。首先,统计语音识别的最基本问题是,给定输入

语音识别发展现状与展望

中国中文信息学会第七次全国会员代表大会 暨学会成立30周年学术会议 语音识别发展现状与展望中科院自动化研究所徐波 2011年12月4日

报告提纲 ?语音识别技术现状及态势?语音识别技术的行业应用?语音识别技术研究方向?结论与展望

2010年始语音识别重新成为产业热点?移动互联网的兴起成为ASR最重要的应用环境。在Google引领下,互联网、通信公司纷纷把语音识别作为重要研究方向 –Android系统内嵌语音识别技术,Google语音 翻译等; –iPhone4S 上的Siri软件; –百度、腾讯、盛大、华为等都进军语音识别领 域; –我国语音技术领军企业讯飞2010年推出语音云识别、讯飞口讯 –已有的QQ2011版语音输入等等

成熟度分析-技术成熟度曲线 ?美国市场调查咨询公司Gartner于2011年7月发布《2011新兴技术成熟度曲线》报告:

成熟度分析-新兴技术优先矩阵?Gartner评出了2011年具有变革作用的技术,包括语音识别、语音翻译、自然语言问答等。其中语音翻译和自然语言问答有望在5-10年内获得大幅利用,而语音识别有望在2-5年内获得大幅利用;

三十年语音识别技术发展 ---特征提取与知识方面?MFCC,PLP,CMS,RASTA,VTLN;?HLDA, fMPE,neural net-based features ?前端优化 –融入更多特征信息(MLP、TrapNN、Bottle Neck Features等) ?特征很大特点有些是跟模型的训练算法相匹配?大规模FSN图表示,把各种知识源集中在一起–bigram vs. 4-gram, within word dependencies vs. cross-word

语音识别方法及发展趋势分析

语音识别改进方法及难点分析 ——《模式识别》结课小论文 学院:化工与环境学院 学号:2120151177 姓名:杜妮

摘要:随着计算机技术的不断发展,人工智能程度也越来越高,作为人工智能的一部分——模式识别也在模型和算法上愈发成熟。本文根据近105年文献,分析最新声音识别的方法和应用。 关键字:模式识别声音识别方法应用 随着人工智能的迅速发展,语音识别的技术越来越成为国内外研究机构的焦点。人们致力于能使机器能够听懂人类的话语指令,并希望通过语音实现对机器的控制。语音识别的研究发展将在不远的将来极大地方便人们的生活。 语音识别大致的流程包括:特征提取、声学模型训练、语音模型训练以及识别搜索算法。作为一项人机交互的关键技术,语音识别在过去的几十年里取得了飞速的发展,人们在研究和探索过程中针对语音识别的各部流程进行了各种各样的尝试和改造,以期发现更好的方法来完成语音识别流程中的各步骤,以此来促进在不同环境下语音识别的效率和准确率。本文通过查阅近10年国内外文献,分析目前语音识别流程中的技术进展和趋势,并在文章最后给出几项语音识别在日常生活中的应用案例,从而分析语音识别之后的市场走势和实际利用价值。 一、语音识别的改进方法 (一)特征提取模块改进 特征提取就是从语音信号中提取出语音的特征序列。提取的语音特征应该能完全、准确地表达语音信号,特征提取的目的是提取语音信号中能代表语音特征的信息,减少语音识别时所要处理的数据量。语音信号的特征分析是语音信号处理的前提和基础,只有分析出可以代表语音信号本质特征的参数,才能对这些参数进行高效的语音通信,语音合成,和语音识别等处理,并且语音合成的好坏,语音识别率的高低,也都取决于语音特征提取的准确性和鲁棒性。目前,针对特定应用的中小词汇量、特定人的语音识别技术发展已较为成熟,已经能够满足通常应用的要求,并逐步投入了实用。而非特定人、大词汇量、连续语音识别仍是

语音识别技术

目前主流的语音识别技术是基于统计模式识别的基本理论。一个完整的语音识别系统可大致分为三部分: (1)语音特征提取: (2)声学模型与模式匹配(识别算法) (3)语义理解:计算机对识别结果进行语法、语义分析。 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR), 语音识别的发展简史 1952年AT& T Bell实验室实现了一个单一发音人孤立发音的十个英文数字的语音识别系统,到现在的人机语音交互。语音识别研究从二十世纪50年代开始到现在历半个多世纪的蓬勃发展,在这期间获得了巨大的进展。 现代语音识别技术研究重点包括即兴口语的识别和理解,自然口语对话,以及多语种的语音同声翻译。 语音识别应用的特点 1.语音识别系统必须覆盖的功能包括: (1)语音识别系统要对用户有益(希望它是能检测到的)。例如提高生产率,容易使用,更好的人机界面,或更自然的信息交流模式。 (2)语音识别系统要对用户“友好”。这种“友好”的含义是:用户在和系统进行语音对话时感到舒适;系统的语音提示既有帮助,又很亲近。 (3)语音识别系统必须有足够的精度 (4)语音识别系统要有实时处理能力;例如系统对用户询问的响应时间要很短。 2. 语音识别错误的处理 有以下四种方式可以处理这个问题。 (1)错误弱化法。这种处理仅仅花费用户很少一点时间,对用户几乎没什么其它不利影响。 (2)错误自检纠正法 系统利用已知任务的限制自动地检测并纠正错误。 (3)确认或多层次判定

(4)拒绝/转向人工座席。系统对其中通常较易导致系统识别错误的极少部分语音指令拒绝做出识别决定,而是将其转给人工座席。 在很多情况下,语音识别技术可以充分发挥出RFID的潜能: 1.积压产品、脱销产品 2.被废弃、被召回或已过期产品 3.回收的商品 4.促销产品 RFID系统在利用原有语音导向投资的情况下可以大大增加收益 语音识别技术在邮件分拣中的应用 现代化分拣设备在邮政上的应用大大提高了邮件处理的效率。但是,并不是所有的邮件都能上分拣机处理,那些需要人工处理的邮件成了邮政企业实现自动化的瓶颈。邮政使用人工标码技术以及先进的计算机软件 系统来处理不能上机的邮件,仍需要大量的劳动力。 由MailCode公司开发并准备申请专利的Spell-ItTM软件技术通过提高系统数据库能力的方式对语音识别自动化设备进行了革命性的变革。这种技术提供了无限的数据库能力,并且保证分拣速度不会因数据库的增大而减小。由各大语音引擎公司开发的系统还支持世界上的各种主要语言,这样,语音技术就成为世界性的产品。 以英语语音识别系统为例,系统建立了36个可识别字符26个字母加上0~9的10个数字,同时还建立了一套关键词。Spell-It软件使用这些字符来识别成千上万的口语词汇和无数的词语组合。 对于大公司的邮件收发中心来说,使用MailCode公司的Spell-It软件技术,分拣员实际上只需发出几个字符的音来找到和数据库中相对应的词。例如:碰到了寄给Joseph Schneider的邮件,操作员只需发出“J”、“S”、“C”和“H”几个音就可以得到准确的分拣信息。 姓名和邮箱编码:Jennifer Schroeder, 软件工程部;Joseph Schneider, 技术操作部;Josh Schriver, 技术操作部,因为这三个姓名全都符合(J,S,C,H)的发音标准。邮件中心的操作员知道邮件实际上是寄给Joseph Schneider的,就可以把邮件投入Joseph Schneide的信箱了。 邮局要把邮件按投递路线分发,分拣员必须熟悉长长的投递段列表以及各种各样的国际邮件投递信息。Spell-It技术把地址、投递路线等信息都存入了系统,这样就大大方便了分拣工作。 例如,有一件寄往Stonehollow 路2036号的邮件。使用语音识别技术,分拣员仅仅需要发出“2”、“0”、“S”、“T”和“O”几个音,如表2所示,数据库就会给出所有可能和这几

语音识别实验2

关于语音识别的研究 网络工程专业网络C071班贾鸿姗 076040 摘要:语音识别技术的广泛应用 1前言: 语音识别技术也被称为自动语音识别 (ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由AT&T 贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。。到1950年代末,伦敦学院(Colledge of London)的Denes 已经将语法概率加入语音识别中。 1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC),及动态时间弯折Dynamic Time Warp技术。 语音识别技术的最重大突破是隐含马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。。此后严格来说语音识别技术并没有脱离HMM框架。 尽管多年来研究人员一直尝试将“听写机”推广,语音识别技术在目前还无法支持无限领域,无限说话人的听写机应用。 2 正文 2.1应用领域 2.1.1.电话通信的语音拨号 特别是在中、高档移动电话上,现已普遍的具有语音拨号的功能。随着语音识别芯片的价格降低,普通电话上也将具备语音拨号的功能。 2.1.2.汽车的语音控制 由于在汽车的行驶过程中,驾驶员的手必须放在方向盘上,因此在汽车上拨打电话,需要使用具有语音拨号功能的免提电话通信方式。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以由语音来方便的控制。 工业控制及医疗领域。当操作人员的眼或手已经被占用的情况下,在增加控制操作时,最好的办法就是增加人与机器的语音交互界面。由语音对机器发出命令,机器用语音做出应答。 2.1.3数字助理 个人数字助理(Personal Digital Assistant,PDA)的语音交互界面。PDA的体积很小,人机界面一直是其应用和技术的瓶颈之一。由于在PDA上使用键盘非常不便,因此,现多采用手写体识别的方法输入和查询信息。但是,这种方法仍然让用户感到很不方便。现在业界一致认为,PDA的最佳人机交互界面是以语音作为传输介质的交互方法,并且已有少量应用。随着语音识别技术的提高,可以预见,在不久的将来,语音将成为PDA主要的人机交互界面。 智能玩具 通过语音识别技术,我们可以与智能娃娃对话,可以用语音对玩具发出命令,让其完成一些简单的任务,甚至可以制造具有语音锁功能的电子看门狗。智能玩具有很大的市场潜力,而其关键在

语音识别基本知识及单元模块方案设计

语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 1语音识别的基本原理 语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示: 未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。2语音识别的方法 目前具有代表性的语音识别方法主要有动态时间规整技术(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)、人工神经网络(ANN)、支持向量机(SVM)等方法。 动态时间规整算法(Dynamic Time Warping,DTW)是在非特定人语音识别中一种简单有效的方法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题,是语音识别技术中出现较早、较常用的一种算法。在应用DTW算法进行语音识别时,就是将已经预处理和分帧过的语音测试信号和参考语音模板进行比较以获取他们之间的相似度,按照某种距离测度得出两模板间的相似程度并选择最佳路径。 隐马尔可夫模型(HMM)是语音信号处理中的一种统计模型,是由Markov链演变来的,所以它是基于参数模型的统计识别方法。由于其模式库是通过反复训练形成的与训练输出信号吻合概率最大的最佳模型参数而不是预先储存好的模式样本,且其识别过程中运用待识别语音序列与HMM参数之间的似然概率达到最大值所对应的最佳状态序列作为识别输出,因此是较理想的语音识别模型。 矢量量化(Vector Quantization)是一种重要的信号压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是将若干个语音信号波形或特征参数的标量数据组成一个矢量在多维空间进行整体量化。把矢量空间分成若干个小区域,每个小区域寻找一个代表矢量,量化时落入小区域的矢量就用这个代表矢量代替。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量实现最大可能的平均信噪比。在实际的应用过程中,人们还研究了多种降低复杂度的方法,包括无记忆的矢量量化、有记忆的矢量量化和模糊矢量量化方法。 人工神经网络(ANN)是20世纪80年代末期提出的一种新的语音识别方法。其本质上是一

语音识别研究的背景意义及现状

语音识别研究的背景意义及现状研究的背景及意义 自从人类可以制造和使用各种机器以来,人们就有一个理想,那就是让各种机器能听懂人类的语言并能按人的口头命令来行动,从而实现人机的语言交流。随着科学技术的不断发展,语音识别 (Speech Recognition) 技术的出现,使人类的这一理想得以实现。语音识别技术就是让机器通过识别和理解把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术的结合,使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。当今,语音识别产品在人机认交互应用中己经占到越来越大的比例。 音乐就是一种艺术。通常可以解释为一系列对于有声、无声具有时间性的组织,并含有不同音阶的节奏、旋律及和声。音乐与人的生活情趣、审美情趣、言语、行为、人际关系等等,有一定的关联。音乐是人们抒发感情、表现感情、寄托感情的艺术,不论是唱、奏或听,都内涵着关联人们千丝万缕情感的因素。特别对人的心理,会起着不能用言语所能形容的影响作用。 音乐可以通过几种途径来体验,而音乐播放器是现代生活中最便捷 , 最实用的一种。现如今社会在飞速发展,人们的生活节奏也在不断加快,工作压力也在日益增大,致使越来越多的人选择在闲暇时间放松自己。而听音乐就成了人们缓解生活压力的第一选择,医学表明音乐不仅可以对人们紧张的心情带来放松,还能有效的缓解高血压对心血管造成的压力。因此音乐播放器已经成为人们日常生活中至关重要的物品。 然而可惜的是,传统的音乐播放器通常上是通过两种方式实现人们对播放器的控制的:一是按键式控制(其中也包括线控式),通过直接按键改变电平发出指令;二是通过远程控制,通过红外线或者蓝牙等对播放器发布命令。这对于疲劳中的人们或者残障人士来说是不方便的。为了减少手动操作的繁琐,此次设计专门致力于研究一种方案通过语音控制来实现对音乐播放器的控制,使其更加方便、更加人性化,实现音乐播放器的全自动语音控制。这个设计不仅是为了解决人们日常使用传统音乐播放器不方便的烦恼,而且是为了研究语音识别技术在单片机中的应用,特别是在SPCE061中实现语音识别的应用,设计出具有语音控制功能的音乐播放器。 国内外研究现状 语音识别的研究工作可以追溯到 20世纪50年代AT&T贝尔实验室的Audry 系统,它是第一个可以识别十个英文数字的语音识别系统。 但真正取得实质性进展,并将其作为一个重要的课题开展研究则是在 60年代末

语音识别技术的现状与未来

语音识别技术的现状与未来 The Present and Future of Speech Recognition (CSLT-TRP-20160034) 王东(Dong Wang) 2017/01/08 CSLT, RIIT, Tsinghua Univ.

语音识别任务及其研究意义 语音识别(Automatic Speech Recognition, ASR)是指利用计算机实现从语音到文字自动转换的任务。在实际应用中,语音识别通常与自然语言理解、自然语言生成和语音合成等技术结合在一起,提供一个基于语音的自然流畅的人机交互方法。 早期的语音识别技术多基于信号处理和模式识别方法。随着技术的进步,机器学习方法越来越多地应用到语音识别研究中,特别是深度学习技术,它给语音识别研究带来了深刻变革。同时,语音识别通常需要集成语法和语义等高层知识来提高识别精度,因此和自然语言处理技术息息相关。另外,随着数据量的增加和机器计算能力的提高,语音识别越来越依赖数据资源和各种数据优化方法,这使得语音识别与大数据、高性能计算等新技术产生广泛结合。综上所述,语音识别是一门综合性应用技术,集成了包括信号处理、模式识别、机器学习、数值分析、自然语言处理、高性能计算等一系列基础学科的优秀成果,是一门跨领域、跨学科的应用型研究。 语音识别研究具有重要的科学价值和社会价值。语音信号是典型的局部稳态时间序列,研究这一信号的建模方法具有普遍意义。事实上,我们日常所见的大量信号都属于这种局部稳态信号,如视频、雷达信号、金融资产价格、经济数据等。这些信号的共同特点是在抽象的时间序列中包括大量不同层次的信息,因而可用相似的模型进行描述。历史上,语音信号的研究成果在若干领域起过重要的启发作用。例如,语音信号处理中的隐马尔可夫模型在金融分析、机械控制等领域都得到了广泛应用。近年来,深度神经网络在语音识别领域的巨大成功直接促进了各种深度学习模型在自然语言处理、图形图象处理、知识推理等众多应用领域的发展,取得了一个又一个令人惊叹的成果。 在实用价值方面,语音交互是未来人机交互的重要方式之一。随着移动电话、穿戴式设备、智能家电等可计算设备的普及,基于键盘、鼠标、触摸屏的传统交互方式变得越来越困难。为了解决这种困难,手势、脑波等一系统新的人机交互方式进入人们的视野。在这些五花八门的新兴交互方式中,语音交互具有自然、便捷、安全和稳定等特性,是最理想的交互方式。在语音交互技术中,语音识别是至关重要的一环:只有能“听懂”用户的输入,系统才能做出合理的反应。今天,语音识别技术已经广泛应用在移动设备、车载设备、机器人等场景,在搜索、操控、导航、休闲娱乐等众多领域发挥了越来越重要的作用。随着技术越来越成熟稳定,我们相信一个以语音作为主要交互方式的人机界面新时代将很快到来。 研究内容和关键科学问题 语音识别研究主要包括如下三方面内容:语音信号的表示,即特征抽取;语音信号和语言知识建模;基于模型的推理,即解码。语音信号的复杂性和多变性使得这三方面的研究都面临相当大的挑战。图1给出一个语音识别系统的典型架构。

语音识别技术原理及应用

语音AgentNet 的整体实现张宇伟

摘要: 本文论述了一个人机对话应用的实现(我命名它为AgentNet)。其应用实例为一种新的整合了语音技术的智能代理网络服务。 服务器端开发使用了微软SQL SERVER 7.0技术,客户端使用了微软Agent ,微软Specch SDK5语音合成,和语音识别技术。网络连接使用了SOCKET 技术,并论述了高层网络协议的实现。 [关键词] 人机对话,MS-AGENT,语音合成,语音识别,网络编程 [Abstract] This paper discuss a new actualization of man-machine conversation application, which is based on a modal of network service. And I name this service with the name of AgentNet. The development of this service used Microsoft SQL SERVER 7.0. And the client used the technology of Microsoft Agent, TTS (Text To Speech),SR(Speech Recognition).Also the client and the server connect with SOCKET. On the SOCKET, the paper discuss the development of High-Level net protocol. [Key Words] Man-Machine Conversation, MS-AGENT, TTS , SR ,Net Work Programming

语音识别研究的背景意义及现状

语音识别研究的背景意义及现状 研究的背景及意义 自从人类可以制造和使用各种机器以来,人们就有一个理想,那就是让各种机器能听懂人类的语言并能按人的口头命令来行动,从而实现人机的语言交流。随着科学技术的不断发展,语音识别(Speech Recognition)技术的出现,使人类的这一理想得以实现。语音识别技术就是让机器通过识别和理解把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术的结合,使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。当今,语音识别产品在人机认交互应用中己经占到越来越大的比例。 音乐就是一种艺术。通常可以解释为一系列对于有声、无声具有时间性的组织,并含有不同音阶的节奏、旋律及和声。音乐与人的生活情趣、审美情趣、言语、行为、人际关系等等,有一定的关联。音乐是人们抒发感情、表现感情、寄托感情的艺术,不论是唱、奏或听,都内涵着关联人们千丝万缕情感的因素。特别对人的心理,会起着不能用言语所能形容的影响作用。 音乐可以通过几种途径来体验,而音乐播放器是现代生活中最便捷,最实用的一种。现如今社会在飞速发展,人们的生活节奏也在不断加快,工作压力也在日益增大,致使越来越多的人选择在闲暇时间放松自己。而听音乐就成了人们缓解生活压力的第一选择,医学表明音乐不仅可以对人们紧张的心情带来放松,还能有效的缓解高血压对心血管造成的压力。因此音乐播放器已经成为人们日常生活中至关重要的物品。 然而可惜的是,传统的音乐播放器通常上是通过两种方式实现人们对播放器的控制的:一是按键式控制(其中也包括线控式),通过直接按键改变电平发出指令;二是通过远程控制,通过红外线或者蓝牙等对播放器发布命令。这对于疲劳中的人们或者残障人士来说是不方便的。为了减少手动操作的繁琐,此次设计专门致力于研究一种方案通过语音控制来实现对音乐播放器的控制,使其更加方便、更加人性化,实现音乐播放器的全自动语音控制。这个设计不仅是为了解决人们日常使用传统音乐播放器不方便的烦恼,而且是为了研究语音识别技术在单片机中的应用,特别是在SPCE061A中实现语音识别的应用,设计出具有语音控制功能的音乐播放器。 国内外研究现状

语音识别技术的发展与未来

语音识别技术的发展与未来-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

语音识别技术的发展与未来 与机器进行语音交流,让它听明白你在说什么。语音识别技术将人类这一曾经的梦想变成了现实。语音识别就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。 在1952年的贝尔研究所,Davis等人研制了世界上第一个能识别10个英文数字发音的实验系统。1960年英国的Denes等人研制了第一个计算机语音识别系统。 大规模的语音识别研究始于上世纪70年代以后,并在小词汇量、孤立词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向大词汇量、非特定人连续语音识别。 同时,语音识别在研究思路上也发生了重大变化,由传统的基于标准模板匹配的技术思路开始转向基于统计模型的技术思路。此外,业内有专家再次提出了将神经网络技术引入语音识别问题的技术思路。 上世纪90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。比如,DARPA是在上世界70年代由美国国防部远景研究计划局资助的一项计划,旨在支持语言理解系统的研究开发工作。进入上世纪90年代,DARPA计划仍在持续进行中,其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。 我国的语音识别研究起始于1958年,由中国科学院声学所利用电子管电路识别10个元音。由于当时条件的限制,中国的语音识别研究工作一直处于缓慢发展的阶段。直至1973年,中国科学院声学所开始了计算机语音识别。 进入上世纪80年代以来,随着计算机应用技术在我国逐渐普及和应用以及数字信号技术的进一步发展,国内许多单位具备了研究语音技术的基本条件。与此同时,国际上语音识别技术在经过了多年的沉寂之后重又成为研究的热点。在这种形式下,国内许多单位纷纷投入到这项研究工作中去。 1986年,语音识别作为智能计算机系统研究的一个重要组成部分而被专门列为研究课题。在“863”计划的支持下,中国开始组织语音识别技术的研究,并决定了每隔两年召开一次语音识别的专题会议。自此,我国语音识别技术进入了一个新的发展阶段。 自2009年以来,借助机器学习领域深度学习研究的发展以及大数据语料的积累,语音识别技术得到突飞猛进的发展。

视觉及语音识别技术的当下与未来

视觉、语音识别技术 【引言】:在这个信息高速发展的时代下,人们已经不再停留于对于信息的解读与计算,未来信息时代的发展方向是人机互动,更确切的说,是人物互动,通过识别系统来感知外界信息以达到互动,而最直接的便是视觉、语音识别技术的识别,同时我们可以把这个互动看作机器的智能反应,而识别技术便是达成该飞跃的密钥。 【摘要】 1.视觉、语音识别技术的概念,及其发展至今的过程。 2.视觉、语音识别系统的应用。 3.视音融合的未来的展望。 *计算机视觉、语音识别 语音识别技术,也被称为自动语音识别,即Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确定不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。这本身就是富有挑战性的,计算机需要去通过智能技术计算出当事人的身份,以达到识别的目的 而作为人类视觉模拟的计算机视觉是利用计算机从而为图中提取景物的二维或三维的结构和属性的描述,并加以理解。计算机视觉同样是一个重要又富有挑战意义的研究领域。对于计算机视觉系统来说,输入时表示三维景物投影的灰度阵列,可以有若干个输入阵列,这些阵列可提供从不同方面、不同视角、不同时刻得到的信息。 纵观语音识别的历史,早在计算机发明之前,自动语音识别的设想就已经被提上日程,早起的声码器可被视作语音识别的雏形。1960年,人工神经网络被引入了语音识别。这一时代的两大突破时线性预测编码和动态时间弯折技术。而语音识别技术的最重大突破是隐马尔科夫模型的应用。 *视觉识别和语音识别的应用 视觉识别的应用很多,视觉的最大优点是与被测对象无接触,因此对观测者与被观测者都不会产生任何损伤。 而智能视频监控是计算机视觉领域一个新兴的应用方向和备受关注的前沿课题。伴随网络技术和数字视频技术的飞速发展,监控技术正走向智能化、网络化方向不断前进。 它在工业上可应用于对烟叶品质进行图像处理,借助MATLAB图像处理工具箱和神经网络技术,对各种类型的烟叶的数字图像进行计算机视觉分析,包括边缘检测、轮廓提取、用图像工具箱抽取烟叶数字图像特征,最后通过自动识别待测烟叶样本的品质的只能评定。 在商业上,如商业人流统计、防止扒窃等等。其理念是将风险的分析和识别转交给计算机或者芯片,使值班人员从“死盯”监视器的工作中解脱出来,将人为失误的可能性降至最低,在不需要人为干预情况下,利用计算机视觉和视频分析的方法对摄像机拍摄的图像序列进行自动分析,实现对动态场景中目标的定位、识别和跟踪,并在此基础上分析和判断目标的行为,从而既能完成日常管理工作又能在异常情况发生时做出反应。 军事方面,计算机视觉开辟了人工智能的一个全新领域,它模拟并帮助理解人类的视觉系统。就军事领域的应用而言,在执行地空突防飞行和其它空袭任务过程中,采用被动式地形侦查与勘测技术能够提高飞行的隐蔽性,解决易于被敌方探测的需要。 当然不得不提视觉识别技术在公安工作中的应用,例如计算机人脸识别技术是利用计算机对人脸图像进行分析,从中提取有效地识别信息,用来“辨别”身份的一门极速。它涉及到图像处理、模式识别、计算机视觉和神经网络等等。人脸识别技术在商业上和法律上都有

语音识别开题报告

青岛大学 毕业论文(设计)开题报告 题目:孤立词语音识别的并行编程实现 学院:自动化工程学院电子工程系 专业:通信工程 姓名:李洪超 指导教师:庄晓东 2010年3月22日

一、文献综述 语音识别是解决机器“听懂”人类语言的一项技术。作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。如今,随着语音识别技术研究的突破,其对计算机发展和社会生活的重要性日益凸现出来。以语音识别技术开发出的产品应用领域非常广泛,如声控电话交换、信息网络查询、家庭服务、宾馆服务、医疗服务、银行服务、工业控制、语音通信系统等,几乎深入到社会的每个行业和每个方面。 广泛意义上的语音识别按照任务的不同可以分为4个方向:说话人识别、关键词检出、语言辨识和语音识别[1]。说话人识别技术是以话音对说话人进行区别,从而进行身份鉴别和认证的技术。关键词检出技术应用于一些具有特定要求的场合,只关注那些包含特定词的句子。语言辨识技术是通过分析处理一个语音片断以判别其所属语言种类的技术,本质上也是语音识别技术的一个方面。语音识别就是通常人们所说的以说话的内容作为识别对象的技术,它是4个方面中最重要和研究最广泛的一个方向,也是本文讨论的主要内容。 1.1 语音识别技术现状 1.1.1 语音识别获得应用 伴随着语音识别技术的不断发展,诞生了全球首套多语种交谈式语音识别系统E-talk。这是全球惟一拥有中英混合语言的识别系统,能听能讲普通话、广东话和英语,还可以高度适应不同的口音,因而可以广泛适用于不同文化背景的使用者,尤其是中国地区语言差别较大的广大用户。由于E-talk可以大大提高工作效率,降低运营成本,并为用户提供更便捷的增值服务,我们相信它必将成为电信、证券、金融、旅游等重视客户服务的行业争相引用的电子商务应用系统,并成为电子商务发展的新趋势,为整个信息产业带来无限商机。 目前,飞利浦推出的语音识别自然会话平台SpeechPearl和SpeechMania已成功地应用于国内呼叫中心,SpeechPearl中的每个识别引擎可提供高达20万字的超大容量词库,尤其在具有大词汇量、识别准确性和灵活性等要求的各种电信增值服务中有着广泛的应用。 1.1.2 语音合成信息服务被用户接受 语音合成技术把可视的文本信息转化为可听的声音信息,其应用的经济效益和社会效益前景良好。尤其对汉语语音合成技术的应用而言,全球有十几亿人使用中文,其市场需求、应用前景和经济效益等可见一斑。

SAPI_5.1_语音合成_和_语音识别_[C_]

SAPI 5.1 语音合成和语音识别[C#] 翻译源:Speech Synthesis & Speech Recognition Using SAPI 5.1 By Brian Long (https://www.doczj.com/doc/8a5451041.html,/) 翻译说明:并不全文翻译,只翻译些对本人有用的部分,原版代码为Delphi,译文用C# .NET Framework 2.0 实现,有些有关Delphi的解释略去,另添加一些C#使用SAPI的个人理解注释,不定期更新 [1]语音合成 在简单层面上实现语音合成,只需要创建SpVoiceClass对象并调用其中的Speak方法,最简单的实现如下[读出文本框中的文字] private void button1_Click(object sender, EventArgs e) { SpVoiceClass svc = new SpVoiceClass(); svc.Speak(textBox1.Text,SpeechVoiceSpeakFlags.SVSFDefault); }... [Tachikoma注:此处并未提到编程时添加对SAPI的引用,对COM组件的引用较简单,请自行处理] 对Speak方法的参数作如下说明: 0]对Speak方法的调用默认情况下将会是同步的,也就是说在朗读完指定文字之前不会返回值[同步/异步状态可用第二参数调整] 0]Speak方法返回一个流标号,当存在多个异步声音流时可通过标号识别,标号可作为参数提供给某些函数 1]第一个参数为要阅读的文字 2]第二参数为可调节的一些参数[Flags],可用"或"运算符将其连接同时使用 # SVSFDefault [该方法将同步阅读][具体见说明0]] # SVSFlagAsync [该方法将异步阅读,调用后将立即返回,可通过事件监视朗读结束时间,或调用WaitUntilDone 方法,或通过SpeakCompleteEvent 得到一个事件句柄并提供给WaitForSingleObject] # SVSFPurgeBeforeSpeak 所有朗读中的和待朗读的字符都将被取消 # SVSFNLPSpeakPunc 标点将被阅读出来 # SVSFIsFilename 标明第一个参数为要朗读文本所在的文件名 # SVSFIsXML 标明文本中含有XML标签,用于控制朗读的音量\频率等参数,示例

语音识别技术在手机中的应用

语音识别的应用 语音识别可以应用的领域大致分为大五类:办公室或商务系统。典型的应用包括:填写数据表格、数据库管理和控制、键盘功能增强等等。制造业:在质量控制中,语音识别系统可以为制造过程提供一种“不用手”、“不用眼”的检控(部件检查)。电信:相当广泛的一类应用在拨号电话系统上都是可行 的,包括话务员协助服务的自动化、国 际国内远程电子商务、语音呼叫分配、 语音拨号、分类订货。医疗:这方面的 主要应用是由声音来生成和编辑专业的 医疗报告。其他:包括由语音控制和操 作的游戏和玩具、帮助残疾人的语音识 别系统、车辆行驶中一些非关键功能的 语音控制, 如车载交通路况控制系统、 音响系统。 当语音识别技术应用到计算机桌面 的时候,这看起来似乎是一个好主意。 但是,对于大多数人来说,语音识别还 不能取代键盘和鼠标。现在,语音技术 正用于一个全新的环境:手机。语音识 别技术在手机中的应用将进一步推动这 语音识别是以语音为研究对象, 通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 语音识别技术在手机中的应用

专题报道2011年第7期 种技术向新的方向发展和应用。这是语音识别技术在台式电脑应用中从来没有涉足的方向。 IBM在60年代初期创建了一个名为“Shoebox”的试验性的语音识别系统。这个系统解决了口语算法问题。语音识别技术是在50年代作为一项早期的技术第一次出现的,当时主要是由于好奇。在60年代初,IBM的“Shoebox”设备能够识别出16个口语单词并且能够回答简单的数学问题,如“3 + 4 =?”。 Dragon Systems在80年代初为DOS计算机推出的DragonDictate可能是第一个语音识别应用程序。这个应用程序只能识别单个单词,每次只说一个单词。随着时间的推移,这个应用程序已经发展成为名为“Dragon NaturallySpeaking”(目前是第11个版本,由Nuance通讯公司所有)的产品。这个应用程序能够翻译以正常的会话语音和速度读出的文本。 语音识别技术在台式电脑中的应用有两个制约因素。第一,为了使这个应用程序以更高的准确性工作,这个应用程序必须要进行训练以便识别用户的语音特征。Windows Vista和Windows 7操作系统中的本地语音转换文本技术和Dragon NaturallySpeaking等第三方产品仍然都需要一个用户训练期才能使用。 第二个制约因素是键盘的流行程度。大多数人已经习惯于键盘打字而不是讲话,因此,语音控制面临Dvorak键盘布局同样的应用障碍。当简单的老式QWERTY键盘供货充足并且工作的很好的时候,为什么要学习使用Dvorak键盘呢? 微软TellMe团队是负责为多媒体环境开发语音识别技术的部门。TellMe团队高级产品经理Abhi Rele指出,在台 式电脑环境,用户有方便的人机交流模 式,如键盘和鼠标。因此,语音的使用 主要是针对语音爱好者的。 语音控制的计算更广泛的应用需要 两件事情:更好的方便的应用和主要使 用语音的地方。手机正是很长时间以来 一直在增长的这种地方。 Nuance负责产品管理和营销的副总 裁Matt Revis解释说,台式电脑和移动环 境的区别是这样的:台式电脑是一个固 定的环境,重点完全在于台式电脑的使 用情况。因此,台式电脑的语音技术主 要执行如下任务:支持办公应用程序、 网络浏览、通讯等。在移动方面,语音 更多地用于支持各种生活方式方面:移 动中的专业人员、户外的有趣活动、免 提电话等等。 Gartner分析师Tuong Nguyen赞同这 个观点:语音在移动环境中更有意义。 他说,从使用的角度看,掌上设备的语 音识别功能价值更大。它增加了用户友 好的、方便的输入方式。 Nguyen补充说,如果不用 语音技术说出一个简单的说明语 句,而是翻动许多菜单或者努力 地在小显示屏键盘上进行输入, 语音识别的价值就显现出来了。 随着触摸屏设备(没有物理键 盘)应用的增长,语音识别技术 将用来增强数据输入和输出。语 音识别还支持免提要求或者法律 要求。 在移动设备方面 因为移动设备一般仅支持 台式电脑的一部分存储和处理功 能,语音处理需要一些时间才能 以基本的形式出现在手机中。 语音处理Springer手册解释了手机 在2000年代初的情况。尽管那时还有 一些局限性,但是,手机经过编程之后 能够识别逐个数字的拨号语音,在某种 程度上还能识别人的名字。主要问题是 内存,因此,大多数手机一次只能识别 10个数字或者名字。但是,这些作者指 出的另一个问题是这个功能使用的比较 少,可能是因为手机厂商在这方面的营 销很糟糕。 随着手机的增加内存和增强处理能 力,普通手机的识别能力也增强了。三 星电子在2005年发布的售价99美元的 SCH-p-207型手机增加了语音至文本的 听写功能和语音拨号功能。随着内存达 到数百MB和存储容量达到数GB,目前 这一代智能手机很少受到限制。 另一个关键的进步是网络速度。 速度更快的无线网络浪潮抬高了许多大 船,包括最新一代的语音处理技术。速 度更快的网络能够把语音处理任务从网 络迁移到远程服务器。 谷歌语音搜索产品经理Amir Mane

相关主题
文本预览
相关文档 最新文档