当前位置:文档之家› 简易电子琴电路的设计仿真与实现学习资料

简易电子琴电路的设计仿真与实现学习资料

简易电子琴电路的设计仿真与实现学习资料
简易电子琴电路的设计仿真与实现学习资料

简易电子琴电路的设计仿真与实现

目录

1.1设计背景 0

1.2 设计目的及意义 (1)

二.Proteus软件简介 (1)

三.简易电子琴基本原理 (2)

3.1 音乐产生原理 (2)

3.2 设计原理 (3)

3.3 方案设计 (7)

四.Proteus原理图绘制 (11)

4.1选取元件 (11)

4.2放置元件及排版 (12)

4.3模拟及仿真 (13)

五.Proteus电路仿真 (14)

六仿真结果分析 (18)

6.1 频率及放大倍数测量 (18)

6.2 理论比较 (18)

6.3 误差分析 (18)

七心得体会 (19)

八. 参考文献 (20)

九.元器件清单 (21)

十.本科生课程设计成绩评定表 (23)

一.模电课设概述

1.1设计背景

电子琴是一种键盘乐器,采用半导体集成电路,对乐音信号进行放大,通过扬声器产生音响。

现在的电子琴一般使用PCM或AWM采样音源所谓采样就是录制乐器的声音,将其数字化后存入ROM里,然后按下键时CPU回放该音。甚至有一些高级编曲键盘可以使

用外置采样(比如Tyros 3的硬盘音色)。现代电子琴并非“模仿”乐器音色。它使用的就是真实乐器音色。当然,现在力度触感在电子琴里是必备的。而且现代电子琴还加上了老式电子琴的滤波器,振荡器,包络线控制来制造和编辑音色。甚至也带上了老式电子琴的FM合成机构。

本次课程设计主要是通过对电子琴主体部分的电路进行模仿设计,按下不同琴键改变RC值,发出C调的八个基本音阶,采用运算放大器构成振荡电路,用集成功放电路输出音调,从而达到电子琴固有的基本功能。

1.2 设计目的及意义

(1)培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的创新精神。

(2)锻炼学生自学软件的能力及分析问题、解决问题的能力。

(3)通过课程设计,使学生在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范

(4)巩固、深化和扩展学生的理论知识与初步的专业技能。

(6)为今后从事电子技术领域的工程设计打好基础基本要求。

二.Proteus软件简介

Proteus软件是由英国LabCenter Electronics公司开发的EDA工具软件,由ISIS和ARES两个软件构成,其中ISIS是一款便捷的电子系统仿真平台软件,ARES是一款高级的布线编辑器,它集成了高级原理布线图、混合模式SPICE电路仿真、PCB设计以及自动布线来实现一个完整的电子设计。它是目前最好的仿真单片机及外围器件的工具。虽

然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

Proteus是世界上著名的EDA工具(仿真),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

Proteus软件的模拟仿真直接兼容厂商的SPICE模型,采用了扩充的SPICE3F5电路仿真模型,能够记录基于图表的频率特性、直流电的传输特性、参数的扫描、噪声的分析、傅里叶分析等,具有超过8000种的电路仿真模型。

Proteus软件支持许多通用的微控制器,如PIC、AVR、HC11以及8051;包含强大的调试工具,可对寄存器、存储器实时监测;具有断点调试功能及单步调试功能;具有对显示器、按钮、键盘等外设进行交互可视化仿真的功能。此外,Proteus可对IAR C-SPY、KEIL等开发工具的源程序进行调试。

此外,在Proteus中配置了各种虚拟仪器,如示波器、逻辑分析仪、频率计,便于测量和记录仿真的波形、数据。

三.简易电子琴基本原理

3.1 音乐产生原理

由于一首音乐是许多不同的音阶组成的,而每个音阶对应着不同的频率,这样我

们就可以利用不同的频率的组合,即可构成我们所想要的音乐了。

音调主要由声音的频率决定,乐音(复音)的音调更复杂些,一般可认为主要由基音的频率来决定,也即一定频率的声音对应特定的乐音。在以C调为基准音的八度音阶中,所对应的频率如表1所示。如果能够通过某种电路结构产生特定频率的波形信号,再通过

扬声器转换为声音信号,就能制作出简易的乐音发生器,再结合电子琴的一般结构,就可实现电子琴的制作了。

3.2 设计原理

3.2.1振荡电路原理

由于RC振荡电路,一般用来产生1HZ~1MHZ范围内的低频信号;而LC振荡电路一般用来产生1MHZ以上的高频信号,由上表我们可以知道选择RC振荡电路。其基本电路为RC文氏电桥振荡电路。

(1)RC桥式振荡电路图

(2)RC串并联选频网络

RC桥式振荡电路可以选出特定频率的信号。具体实现过程的关键是RC串并联选频网络,其理论推导如下:

可得选频特性:

即当f0=1/(2πRC)时,输出电压的幅值最大,并且输出电压是输入电压的1/3,同时输出电压与输出电压同相。通过该RC串并联选频网络,可以选出频率稳定的正弦波号,也可通过改变R,C的取值,选出不同频率的信号。

(3) 振荡条件

1.自激振荡条件

图2所示为含外加信号的正弦波振荡电路,其中A,F分别为放大器回路和反馈网络的放大系数。图2中若去掉X i,由于反馈信号的补偿作用,仍有信号输出,如图3所示X f=X i,可得自激振荡电路。自激振荡必须满足以下条件:

图1振幅条件与相位条件

2.起振条件

自激振荡的初始信号一般较小,为了得到较大强度的稳定波形,起振条件需满

|AF|>1。在输出稳定频率的波形前,信号经过了选频和放大两个阶段。具体来说,是对于选定的频率进行不断放大,非选定频率的信号进行不断衰减,结果就是得到特定频率的稳定波形。

3.2.2 音频集成功率放大器原理

LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。

(1)LM386内部电路

LM386内部电路原理图如图4所示。

图4 LM386内部电路原理图

与通用型集成运放相类似,它是一个三级放大电路。

第一级为差分放大电路,V1和V3、V2和V4分别构成复合管,作为差分放大电路的放大管;V5和V6组成镜像电流源作为V1和V2的有源负载;V3和V4信号从管的基极输入,从V2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。

第二级为共射放大电路,V7为放大管,恒流源作有源负载,以增大放大倍数。

第三级中的V8和V9管复合成PNP型管,与NPN型管V10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。

电阻R7从输出端连接到V2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。

(2)LM386的引脚图

LM386的引脚的排列如右图所示。引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。

图5 LM386引脚图

3.3 方案设计

3.3.1 振荡电路

振荡电路图如图6所示

图6 振荡电路图

选择C 1=0.1uF ,R 4=1k Ω,根据公式R R C f f 41021

π==,结合表一,即可计算出八

个音阶对应的电阻值,分别为R 5=9.09KΩ,R 6=10.34 KΩ,R 7=13.08KΩ,R 8=16.15 KΩ,R 9=20.44 KΩ,R 10= 23.26KΩ,R 11=28.72 KΩ,R 12=36.34KΩ。

选定 R 4≠R ,且R 4≤R (8)

由式3推导可得:

F=R R 421+ ≈ 2

1 (9) 则由式(8)及起振条件|A·F|>1,可得:

213

21≥++=R R R A 即 321R R R ≥+ (10)

选择R 1=800Ω,R 2=900Ω,R 3=1500Ω

3.3.2 集成功放电路

集成功放电路图如图7所示

图7 集成功放电路图

如图7所示为LM386外围器件最少的连接方式,其内置电压增益为20倍。

C3取4.7uF为退耦电容,所谓退耦即防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。换言之,退耦电容能够有效地消除电路网络之间的寄生耦合。退耦滤波电容的取值通常为4.7-200uF,退耦压差越大,电容的取值应该越大。

C4为旁路电容,它可将混有高频信号和低频信号的交流信号中的高频成分旁路掉的电容,取10uF。

C6为隔直传交电容,取220uF。

3.3.3 整体电路图

图8 整体电路图

四.Proteus原理图绘制

4.1选取元件

(1)进入Proteus界面后,单击工具栏上的“新建”按钮,新建一个设计文档。单击“保存”按钮,在弹出的对话框中的文件名框中输入“简易电子琴”,再单击“保存”按钮,完成新建设计文件操作,其后缀名自动为.DSN。

(2)单击绘图工具栏中的元件模式中的“P”按钮,弹出如图9所示的选取元器件对话框,在此对话框左上角“keywords(关键词)”一栏中输入元器件名称,如“LM324”,系统在对象库中进行搜索查找,并将与关键词匹配的元器件显示在“Results”中。在“Results”栏中的列表项中,双击“LM324”,则可将其添加至对象选择器窗口。

图9 Proteus元件选择框

(3)按照此方法完成其它元器件的选取,如果忘记关键词的完整写法,可以用“*”代替,如“SWITC*”可以找到开关。被选取的元器件都加入到ISIS对象选择器中。如图10

所示。

相关主题
文本预览
相关文档 最新文档