当前位置:文档之家› 光电效应讲义

光电效应讲义

光电效应讲义
光电效应讲义

实验三 光电效应

【实验目的】

1. 加深对光的量子性的认识。

2. 验证爱因斯坦方程,测定普朗克常数。

3. 测定光电管的伏安特性曲线。 【实验原理】

当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应.所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。他认为光是一种微粒 — 光子;频率为ν 的光子具有能量h ν,h 为普朗克常数,目前国际公认值为h =(6.6260755±0.0000040)×10-34

J ·s 。当金属中的电子吸收一个频率为ν 的光子时,便获得这光子的全部能量h ν,如果这能量大于电子摆脱金属表面的约束所需要的逸出功W ,电子就会从金属中逸出.按照能量守恒原理有:

W v m h m +=

2

2

1ν (3.1) 上式称为爱因斯坦方程,其中m 和v m 是光电子的质量和最大速度,2

2

1m v m 是光电子逸出表面后所具有的最大动能.它说明光子能量h ν小于W 时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率ν0=W /h ,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的逸出功,因而ν0也是不同的。

用光电管进行光电效应实验,测量普朗克常数的实验原理如图3.1所示。图中K 为

图3.1光电效应实验原理图

光电管的阴极,A 为阳极,微安表用于测量微小的光电流,电压表用于测量光电管两极间的电压,E 为电源,R 提供的分压可以改变光电管两极间的电势差。当单色光入射到光电管的阴极K 上时,如有光电子逸出,则当阳极A 加正电势,K 加负电势时,光电子就被加速;而当K 加正电势,A 加负电势时,光电子就被减速。当A 、K 之间所加电压U 足够大时,光电流达到

饱和值I m ,当U ≤-U 0,并满足方程

eU 0 =2

2

1

m v m (3.2)

时,光电流将为零,此时的U 0称为截止电压。式中e 为电子电量。

光电管的伏安特性曲线(光电流与所加电压的I — U 关系)如图3.2所示。当用一定强度的光照射在光电管阴极K 上时,光电流I 随两极间的加速电压改变而改变,开始光电流I 随两极间的加速电压增加而增加,当加速电压增加到一定值后,光电流不再增加.这是因为在一定照度下,单位时间

图3.2光电管的伏安特性曲线 图3.3截止电压U 0 是入射光频率ν 的线性关系图线

内所产生的光电子数目一定,而且这些电子在电场的作用下已全都跑向阳极A ,从而达到饱和。我们称此时的电流为饱和电流I m 。由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电势差为零时,仍有光电流I 存在。若在两极间施加一反向电压,光电流随之减小;当反向电压达到截止电压U 0时,光电流为零。将式(3.2)代人式(3.1)可得

eU 0 = h ν - W

U 0 =()0ννν-=-

e

h

e W e h (3.3) 上式表明,截止电压U 0 是入射光频率ν 的线性函数,其直线的斜率等于h /e 。可见,只要用实验方法,测量不同频率光的截止电压,作出U 0 — ν 图线,如图3.3所示。从图中求得直线的斜率

e

h

,即可求出普朗克常数h 。另外,从直线和横坐标的交点还可求出极限频率ν0。 因此,由光电效应测定普朗克常数h 的关键是正确地测定截止电压U 0 。需要指出的是,实际的光电管由于制作工艺等原因,给测定截止电压带来一些困难。对测量产生影响的主要因素如下:

(1)暗电流和本底电流

光电管在没有受到光照时,也会产生电流,称为暗电流。它是由阴极在常温下的热电子发射形成的热电流和封闭在暗盒里的光电管在外加电压下因管子阴极和阳极间绝缘电阻漏电而产生的漏电流两部分组成。本底电流是周围杂散光射入光电管所致。

(2)反向电流

由于制作光电管时阳极上往往溅有阴极材料,所以当光照到阳极上或杂散光漫射到阳极上时,阳极上也往往有光电子发射;此外,阴极发射的光电子也可能被阳极的表面所反射。当阳极A加负电势,阴极K加正电势时,对阴极K上发射的光电子而言起减速作用,而对阳极A发射或反射的光电子而言却起了加速作用,使阳极A发出的光电子也到达阴极K,形成反向电流。

由于上述种种原因,实测的光电管伏安特性(I—U)曲线与理想曲线是有区别的。

图3.4中实线表示实测曲线,虚线表示理想

曲线即阴极光电流曲线,点划线代表影响较

大的反向电流及暗电流曲线。实测曲线上每

一点的电流值是以上三个电流值的代数和。

显然,实测曲线上光电流I为零的点所对应

的电压值并不是截止电压。从图3.4可看出,

阳极光电流(即反向电流和暗电流)的存在,

使阴极光电流曲线下移,实测曲线的拐点(或

称抬头点)处的电压值与截止电压近似相等,图3.4对光电流曲线的分析

可代替截止电压。因此,光电效应实验是通过找出实验伏安特性曲线的拐点来确定截止电压U0的。

【仪器介绍】

1.GDH—Ⅰ型光电管:阳极为镍圈,阴极为银—氧-钾(Ag-O-K),光谱范围34O.0—700.0nm

光窗口为无铅多硼硅玻璃,最高灵敏波长是410.0±10.0nm,阴极光灵敏度为1 μA/Lm,暗电流为10-12A。为了避免杂散光和外界电磁场对微弱光电流的干扰,光电管安装在可升降的铝质暗盒中,暗盒窗口可以安放光阑孔和滤色片。

2.光源:高压汞灯,谱线范围在302.3—872.0 nm。

3.NG型滤色片:一组有色玻璃滤色片。滤通的谱线波长分别为365 nm,404 nm,436 nm,

546 nm,577 nm。

4.GP-Ⅱ型微电流测量放大器:电流测量范围为10-6~ 10-13 A,分六档十进变换;工作电

源为-3 ~+3V连续可调,电压量程分0V~±1V~±2V~±3V六段读数,读数精度0.02V。

测量放大器可以连续地工作8小时以上。

图3.5光电效应实验装置示意图

【实验内容】

1.测试前的准备

(1)将光源、光电管暗盒、微电流测量放大器安放在适当位置,连接好光电管暗盒与测量放大器之间的屏蔽电缆、地线和阳极电源线。参见图3.5和图3.6。将微电流测量放大器面板上各开关、旋钮置于下列位置:

“倍率”开关置“ZERO”;“电流极性”置“-”;“工作选择”置“DC”;“扫描平移”任意;“电压极性”置“-”;“电压量程”置“-3”;“电压调节”反时针调到头。

(2)打开微电流测量放大器电源开关让其预热20-30分钟。在光电管暗盒的光窗上装

光阑;并盖上遮光罩,打开光源开关,让汞灯预热。

2.测量光电管的I —U特性

(1)使暗盒离开光源30 ~ 50cm,基本等高,暗盒窗口正对光源出射孔。

(2)取去暗盒窗口上的遮光罩,换上波长λ =365 nm的滤色片。将倍率旋钮置于“10-7”

档,此时光电流大小应在此量程范围内(注意,光电管暗盒正对汞灯时,电流最小)。

(3)选择合适的电流和电压量程,测出-3 ~ 3V时不同电压下的光电流。

测量时,-3 ~ 0V时每0.1V测一个点,0V以上可加大间隔。

3.测量光电管拐点和本底电流。

(1)依次调换不同波长的滤色片,重复上面的测量,只测-3 ~ 0V时的光电流,每0.1V

测一个点。

(2)挡住汞灯出光口,测量0V时光电管的本底电流(每个滤色片都测)。

4.测量光电管的暗电流。

用遮光罩罩住光电管暗盒,测量0V时光电管的暗电流。

5.求普朗克常数h

把不同频率下的截止电压描绘在方格纸上,如果实验结果准确,则U0 =f (ν)关系曲线是一直线,求出直线的斜率,从而可算出普朗克常数h,并将结果与公认值比较,求出百分误差。

【注意事项】

1.在数据表格后加拐点及本底电流数据表(365nm的本底电流记在I—V表中)。

2.微电流测量放大器必须充分预热。

3.为避免强光直射阴极缩短光电管寿命,更换滤色片时以及实验完毕后用遮光罩盖住光电

管暗盒进光窗。

4.保持滤色片表面光洁,小心使用防止损坏。更换滤色片时务必平整套架,以免除不必要

的折光带来实验误差。

5.实验中应减少杂散光的干扰。

6.作图的毫米方格纸大小要合适,以保证测量数据的精度不受损害。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

内外光电效应

光照射到某些物质上,引起物质的电性质发生变化,这类光致电变的现象统称为光电效应。光电效应一般分为外光电效应和内光电效应。内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。 一、外光电效应在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。向外发射的电子叫做光电子。基于外光电效应的光电器件有光电管、光电倍增管等。 光子是具有能量的粒子,每个光子的能量:E=hvh—普朗克常数,6.626×10-34J·s;ν—光的频率(s-1)根据爱因斯坦假设,一个电子只能接受一个光子的能量,所以要使一个电子从物体表面逸出,必须使光子的能量大于该物体的表面逸出功,超过部分的能量表现为逸出电子的动能。外光电效应多发生于金属和金属氧化物,从光开始照射至金属释放电子所需时间不超过10-9s。 根据能量守恒定理 E=hv-W 该方程称为爱因斯坦光电效应方程。 二、内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。 1 光电导效应在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。基于这种效应的光电器件有光敏电阻。 2 光生伏特效应在光作用下能使物体产生一定方向电动势的现象。基于该效应的器件有光电池和光敏二极管、三极管。 ①垒效应(结光电效应)光照射PN结时,若hf≧Eg,使价带中的电子跃迁到导 带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向N区外侧,空穴 偏向P区外侧,使P区带正电,N区带负电,形成光生电动势。 ②侧向光电效应(丹培效应)当半导体光电器件受光照不均匀时,光照部分产生 电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起 载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负 电,从而产生电动势,即为侧向光电效应。 ③光电磁效应半导体受强光照射并在光照垂直方向外加磁场时,垂直于光和磁场 的半导体两端面之间产生电势的现象称为光电磁效应,可视之为光扩散电流的 霍尔效应。④贝克勒耳效应是指液体中的光生伏特效应。当光照射浸在电解液 中的两个同样电极中的一个电极时,在两个电极间产生电势的现象称为贝克勒 耳效应。感光电池的工作原理基于此效应。 三、应用 1制造光电倍增管 光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。算式在以爱因斯坦方式量化分析光电效应时使用以下算式: 光子能量 = 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ +Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s, f是

浅谈光的粒子性

一、浅谈光的粒子性 序 人类的认识往往是在曲折中前进的,对光的认识也是如此。最初,人们对光的本质的认识有两种观点,一种认为光是一种波,而另一种观点认为光是一种粒子,即有光的粒子说和波动说两种说法并存。牛顿认为光是一种匀质硬性小球,这种观点能够较好地解释光的反射、折射及光的直线传播现象。但随着光的干涉、衍射现象的发现,使光的波动说又占了上风;而光电效应的发现,使光的粒子说又重新登上了历史的舞台。但麻烦随之而来,因为光的粒子说无法解释干涉、衍射现象,而光的波动说也无法解释光电效应。于是,有聪明人把波动性和粒子性这两种截然不同的特性揉在一起,创造出了所谓的光的波粒二象性,并且自以为对物质的认识又前进了一大步,这还不算,他们又进而推广认为一切物质都有波粒二象性,这恐怕也是没有办法的办法。就在人们为波粒二象性这种新提法而洋洋自得的时候,殊不知,却丧失了一次认识光子内部结构的极好机会。而此后,人们若要揭示光的本性,就要承受更大的压力,排除更多的干扰,做更多不必要的工作。本文将从光的干涉、衍射现象入手,全面揭示光的本性--粒子性…… 1、光的本性――粒子性 光的本性是什么?这个问题似乎无需讨论。物理学家会告诉你,光具有波粒二象性,是一种物质波;实际上一切物体都具有波动性,只不过宏观物质的物质波较短,更多时候其表现出粒子性而已。这样

的回答不禁使人想起一个幽默: 有人问:“地球为什么是圆的?” 答曰:“因为它在转” 又问:“地球为什么在转?” 答曰:“因为它是圆的” 光是什么?━━光是一种物质波。 光为什么是物质波?━━因为它有波粒二象性。 光为什么有波粒二象性呢?━━因为它是一种物质波。 我们痛心地发现,这个简单的近乎无聊的逻辑被人滥用到了令人吃惊的程度,在当今物理学中,似乎不谈物质波、相对论就显得落伍、水平不高什么的。那么,物质波是什么东西呢?恐怕只有极少数的聪明人才知道!我从来就认为光是一种粒子。这种观点可以解释光的直线传播、反射等等现象,但是光子说的确“无法解释光的干涉、衍射现象”。长久以来,我一直在思考如何解释这个问题,而光的干涉现象、衍射现象无疑是建立光子说的最大障碍。所以要想建立光子说,必须首先突破干涉现象、衍射现象的瓶颈。如何认识光的干涉现象、衍射现象呢?我们认为需要从两个方面入手,一方面是光子内部结构问题,另一方面是引力场的问题,这两方面要统筹考虑。。牛顿的光子说仅仅把光子看作一种简单的匀质硬性小球,这实际上是对光子的内部复杂结构认识不足,我们认为,光子并不是“匀质硬性小球”,它有极其复杂的内部结构,而光的干涉现象和衍射现象实际上是我们通过引力场认识光子内部结构的极好机会。

光电管特性的研究讲义

课题光电管特性的研究 1.了解光电效应实验的基本规律和光的量子性; 教学目的 2.测定光电管的伏安特性,研究光电流强度与加在光电管两极间电压的关系; 3.测定光电管的光电特性,研究光电流强度与照在光电管阴极上光通量的关系。重难点 1.光电管的伏安特性和光电特性; 2.最小二乘法处理数据。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光电效应是指在光的作用下,从物体表面释放电子的现象,所逸出的电子称为光 电子。这种现象是1887年赫兹研究电磁波时发现的。在光电效应中,光不仅在被吸 收或发射时以能量h 的微粒出现,而且以微粒形式在空间传播,充分显示了光的粒 子性。 1905年爱因斯坦引入光量子理论,给出了光电效应方程,成功地解释了光电效应 的全部实验规律。1916年密立根用光电效应实验验证了爱因斯坦的光电效应方程,并 测定了普朗克常量。爱因斯坦和密立根都因为光电效应方面的杰出贡献,分别获得 1921年和1923年诺贝尔物理学奖。而今光电效应已经广泛地应用于各科技领域,例 如利用光电效应制成的光电管、光电倍增管等光电转换其间,把光学量转换成电学量 来测量。光电元件已成为石油钻井、传真电报、自动控制等生产和科研中不可缺少的 元件。 二、实验仪器 暗匣(内装光电管及小灯泡及米尺);光电效应实验仪(包括24V稳压电源、12V 可调稳压电源、1 3位数子电压表和电流表,分别指示光电管电压、光源电流和光电 2 流、调节光电管电压的电位器、调小灯电流的可变电阻)。

三、实验原理 金属或金属化合物在光的照射下有电子逸出的现象,称为光电效应,或称为光电发射。产生光电发射的物体表面通常接电源负极,所以又称为光电阴极,光电阴极往往不由纯金属制成,而常用锑钯或银氧钯的复杂化合物制成,因为这些金属化合物阴极的电子逸出功远较纯金属小,这样就能在较小光照下得到较大的光电流。把光电阴极和另一个金属电极-阳极仪器封装在抽成真空的玻璃壳里就成了光电管。光电管在现代科学技术中如自动控制、有声电影、电视、以及光讯号测量等方面都有重要的应用。 1905年爱因斯坦提出“光子”概念,光是由一些能量E h ν=的粒子组成的粒子流。按照光子理论,光电效应是光子与电子碰撞,光子把全部能量(h ν)传给电子,电子获得的能量,一部分用来克服金属表面对它的束缚,另一部分成为该电子(光电子)逸出金属表面后的动能。根据能量守恒有 2 max 12 h mv W ν=+ 该式就是著名的爱因斯坦光电效应方程。由于 一个电子只能吸收一个光子的能量,该式表明光电子的初动能与入射光的频率呈线性关系,与入射光子数无关。 本实验是利用真空光电管来研究这一实验的基本规律,验证爱因斯坦的光电子理论。实验原理图如图5.12-1所示,C 为光电管的阴极,A 为光电管的阳极,调节R ,可在A 、C 两极间获得连续变化的电压。光的强弱决定于光子的多少,当用一定强度的光照射到光电管阴极时,光子(h ν)流 射到C 上打出光电子,阴极释放的电子在电场的作用下向阳极迁移,回路中将形成光电流。光电流的大小与光电管两极间电压及光电管阴极的光通量(光通量与光强成正比)都有关。

光电效应教案

第二节光的粒子性 一、教学目标 1.应该掌握的知识方面. (1)光电效应现象具有哪些规律. (2)人们研究光电效应现象的目的性. (3)爱因斯坦的光子说对光电效应现象的解释. 2.培养学生分析实验现象,推理和判断的能力方面. (1)观察用紫外线灯照射锌板的实验,分析现象产生的原因. (2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论. 3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育. 二、重点、难点分析 1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点. 2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比. 三、教具 锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪. 四、主要教学过程 (一)新课的引入 光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象. (二)教学过程的设计 1.演示实验. 将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板. 边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子. 说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开. 2.进一步研究光电效应. 以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究. 向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C 是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.

(完整版)光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 【解析】选B.弧光灯照射锌板发生光电效应,锌板上有电子逸出,锌板带正电,验电器指针也带正电,故B正确 4.关于光电效应有如下几种叙述,其中叙述正确的是() A.金属的逸出功与入射光的频率成正比 s

浅谈普朗克常数的重大意义

浅淡普朗克常数的重大意义 雷力峰 (雁北师范学院物理系大同 037000) 摘要该文从普朗克常数的提出,它导致量子论建立和发展的过程,它所诱发的物理学领域和许多其它各科领域的发展以及它所带给人们思想影响方面,探讨了它的划时代的重大意义. 关键词普朗克常数量子 分类号 N09 就普朗克常数h的意义,物理学家金斯曾说过这样一段话:“虽然h的数值很小,但是我们应当承认它是关系到保证宇宙的存在的.如果说h严格地等于零,那么宇宙间的物质能量将在十亿万之一秒的时间内全部变为辐射.”普朗克常数引入后,以普朗克常数为根本特征的量子论给我们提供了新的关于自然界的表述方法和思考方法,物理学理论发生了巨大变革,使人类认识由低速宏观领域扩展到高速微观领域.h的提出引出了一系列解释性假说,促进了量子论的建立与推广,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础,并且这些科研成果在化学等有关学科和许多近代技术中也得到了广泛的应用.可以说,h的出现具有划时代的重大意义.本文就此作一简要论述. 1普朗克其人 普朗克(Max Planck 1858-1947),近代伟大的德国物理学家、量子论的奠基人.1854年4月23日生于德国基尔.1874-1877年在慕尼黑大学学习物理和数学.1877-1878年间,到柏林大学,在赫尔姆霍兹和基尔霍夫指导下学习.1879年,以《论热力学的第二定律》的论文获得慕尼黑大学博士学位.1880年,普朗克任慕尼黑大学物理讲师.1885年,任基尔霍夫大学理论物理学特约教授,.1889年,受聘于柏林大学继任基尔霍夫的职位,并兼任新设立的物理研究所所长,在那里一直工作到1926年退休为止.1900年,他在黑体辐射研究中引入能量量子,由于这一发现对物理学的发展作出的贡献,他获得者1918年诺贝尔物理学奖.1947年10月4日在格丁根逝世. 2普朗克常数的提出 普朗克长期从事热力学的研究工作,从1894年起,他的注意力转移到黑体辐射问题上.辐射问题是在1859年到1860年间提出的.当时,基尔霍夫第一个强调指出:“黑体发射率是一个由波长和温度决定的函数—至少与迄今已发现的一样,是一个简单的函数.”1896年,帕邢与维恩合作,以辐射空腔模拟黑体,作了特殊假设之后,得到维恩辐射定律:

光电子技术实验讲义

《光电了技术实验》 实验讲义 光信息教研室

2012年9月

目录 实验一LD/LED 的P-I-V 特性曲线测试............. - 2 -实验二光纤数值孔径测量实验................ - 8 - 实验三光源调制与解调实验 (10) 实验四电光调制实验 (15) 实验五声光调制实验 (19) 实验六、APD特性参数的测量 (25)

实验一 LD/LED 的P-I-V 特性曲线测试 、实验目的 1、通过测试LD/LED 的功率一电流(P-I )特性曲线和电压一电流(V-I )特性曲线,计算阈 值电流(I th ),掌握LED 发光二极管和LD 半导体激光器的工作特性。 、实验内容 1、测试LD/LED 的功率一电流(P-I )特性曲线和电压一电流(V-I )特性曲线。 三、 实验仪器 1、 LD 激光二极管(带尾纤输出, FC 型接口) 1 只 2、 LED 发光二极管 1 只 3、 LD/ LED 电流源 1 台 4、 光功率计 1 台 5、 万用表 1 台 四、 实验原理 激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放 大而产生激光振荡的。激光,其英文 LASER 就是 Light Amplification by Stimulated Emission of Radiatio n (受激辐射的光放大)的缩写。 1、半导体激光器的结构 半导体是由大量原子周期性有序排列构成的共价晶体,由于邻近原子的作用,电子所处的能 态扩展成能级连续分布的能带,如下图( a )所示,能量低的能带称为价带,能量高的能带称为 导带,导带底的能量 Eu 和价带顶的能量E 之间的能量差E u E l E g 称为禁带宽度或带隙, 不同的半导体材料有不同的带隙。本征半导体中导带和价带被电子和空穴占据的几率是相同的, N 型半导体导带被电子占据的几率大, P 型半导体价带被空穴占据的几率大。如下图( b )、 (c ) 所示。 图1半导体激光器的电子和空穴分布 半导体激光器的结构多种多样,基本结构是下图所示的双异质结平面条形结构。这种结构由 三层不同类型半导体材料构成,中间层通常为厚度为 0.1?0.3卩m 的窄带隙P 型半导体,称为有 源层,作为工作介质,两侧分别为具有较宽带隙的 N 型和P 型半导体,称为限制层。具有不同带 隙宽度的两种半导体单晶之间的结构称为异质结。有源层与右侧的 导带 ? 4 * 4 ? ? ? ? ? ? ?* 带常 Eg 1 E L Q Q O 匚|_ O Q O O o O 卒征半导体 N 型半导体 a b N 层之间形成的是 P--N 异质 P 型半导体

(整理)光电效应实验86125

第1章仪器介绍 LB-PH3A光电效应(普朗克常数)实验仪由汞灯及电源、光阑与滤色片、光电管、测试仪(含光电管电源和微电流放大器)构成,实验仪结构如图1所示,测试仪的调节面板如图2所示。 汞灯刻度尺光阑与滤色片光电管 图1 实验仪结构图 图2 测试仪前面板图 LB-PH3A光电效应(普朗克常数)实验仪有以下特点: 1.在微电流测量中采用高精度集成电路构成电流放大器。对测量回路而言,放大器近似于理想电流表,对测量回路无影响。精心设计、精心选择元器件、精心制作,使电流放大器达到高灵敏度、高稳定性,使测量准确度大大提高。 2.采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流水平也很低。 3.设计制作了一组高性能的滤色片。保证了在测量一组谱线时无其余谱线的干扰,避免了谱线相互干扰带来的测量误差。 4.由于仪器的稳定性好且无谱线间的相互干扰,测出的I - U特性曲线平滑、重复性好。

5.通过改变实验仪的电压档位的方式,利用光电效应测量普朗克常数、光电管伏—安特性以及验证饱和光电流与入射光强成正比等实验。 6.本仪器可用三种不同方法测量普朗克常数(拐点法、零电流法、补偿法),因此有较好的可比性。 7.采用上述测量方法,不但使得U0测量快速、重复性好,而且据此计算出的h误差不大于3 %。 其技术参数如下: 1.微电流放大器: 电流测量范围:10-7 ~ 10-13 A,分6档,三位半数字显示 零漂:开机20分钟后,30分钟内不大于满读数的± 0. 2 %(10-13 A档) 2.光电管工作电源: 电压调节范围:-2 ~ +2 V,-2 ~ +20 V,分两档,三位半数字显示 不稳定度≤0. 1 % 3.光电管: 光谱响应范围:340 ~ 700 nm 最小阴极灵敏度≥1 μA(-2 V≤U AK≤0 V) 阳极:镍圈 暗电流I ≤5 × 10-12 A(-2 V≤U AK≤0 V) 4.滤光片组: 5组,中心波长为:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 5.汞灯: 可用谱线:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 6.测量误差≤3 % 第2章实验目的与原理 光电效应是,一定频率的光照射在金属表面时,会有电子从金属表面逸出的现象。在光电效应中,光显示出它的粒子性,这种现象对于认识光的本质,具有极其重要的意义。 1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。由于这些规律用经典的电磁理论无法圆满地进行解释,爱因斯坦于1905年应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部规律。十年后,密立根用实验证实了爱因斯坦的光量子理论,精确地测定了普朗克常数。两位物理大师因在光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。利用光电效应制成了许多光电器件,在科学和技术上得到了极其广泛的应用。

光电效应现象

17.2 光电效应现象 班级:姓名: 【教学目标】 1.知道什么是光电效应现象; 2.知道光电效应的实验规律; 3.体会经典电磁理论不能完全解释光电效应现象,会用爱因斯坦光电效应方程解释光电效应现象; 4.会推导光子动量表达式; 【教学重点】 1.光电效应规律及其产生的原因分析; 2.光的粒子性 【预学单】 1、在研究微观粒子能量时,焦耳(J)这个单位太大了,人们常用eV来表示能量的单位。一个带电量等于元电荷e的粒子,经1V电压加速获得的能量即为1eV,试推导1eV等于多少焦耳? 2、光的本质是什么? 【研学单】 主题一:认识光电效应现象; 实验:把一块锌板连接在验电器上,并使锌板带负电,验电器指针张开。用 紫外线灯照射锌板(如图所示),观察验电器指针的变化。 这个现象说明了什么问题? 活动小结: 1、光电效应现象:在光(包括不可见光)的照射下,金属中的从表面逸 出的现象叫做光电效应现象。逸出的叫做。 主题二:光电效应规律; 实验: (1)存在截止频率: 如图所示电路,AK间电场方向由级指向级。 当入射光的颜色(频率)高于某个值时,打开窗口,发现电流表示数, 这表明在光的照射下K级电子溢出(填“有”或“无”)。 当入射光的颜色(频率)低于某个值时,打开窗口,发现电流表示数, 这表明在光的照射下K级电子溢出(填“有”或“无”)。 这个值称为截止频率。 (2)存在饱和电流: 实验表明:对于一定颜色(频率)的光,强度一定时,光电流随所加电压的增大而,当电压增大到一定程度后,光电流趋于一个;入射光越强,饱和电流。

(3)存在遏止电压: 将AK 反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用, 光电子克服电场力作功,当电压达到某一值 U c 时,光电流恰为0, Uc 称遏止电压。 思考:遏止电压与哪些因素有关? 实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电 压都是 ;光的频率变高时,遏止电压 。这表明,光 电子的能量只与入射光的 有关,与入射光的 无 关。 (4)具有瞬时性: 当入射光频率超过截止频率时,无论入射光怎样微弱,几乎在光照射 到K 级的瞬间立刻产生光电流,精确测量表明,时间不超过 s 。 当入射光频率低于截止频率时,无论入射光有多强,照射时间有多长,都不会产生光电流。 主题三:光电效应现象的解释; ①经典物理学解释: 问题一:如图所示,电子绕原子核做圆周运动,思考是什么力提供向心力?若电 子运动速度增大,电子将怎样运动?事实上在金属表面,有无数个原子,不同原 子中的电子绕原子核运动的轨道半径不同,逃离原子核束缚时需克服静电力做功 不同,我们把电子脱离金属表面所做功的最 值叫 。 问题二:经典物理学有哪些观点?与实验所得到的规律一致吗? ②爱因斯坦光子说解释: 光子:光由一个个不可分割的能量子组成的,这个能量子后来称为光子,光在发射、吸收和传播时都是以光子形式一份一份进行的。 若光的频率为γ,则光子能量为E= 。 思考:①光子说如何解释极限频率? 光电效应方程: ②光子说如何解释瞬时性? ③光子说如何解释饱和电流? Uc

光电效应知识题(有答案解析)

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.63×10-34 J·s. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. 二、练习 1、下列可以被电场加速的是( B) A.光子B.光电子C.X射线D.无线电波 2、关于光的本性,下列说法中不正确的是(B ) A.光电效应反映光的粒子性 B.光子的能量由光的强度所决定 C.光子的能量与光的频率成正比 D.光在空间传播时,是不连续的,是一份一份的,每一份叫做一个光子

对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大. (2)通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 3、遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c.

(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极 限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5 eV的一束光照射阴极 P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表 读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 eV (2)1.9 eV 解析设用光子能量为2.5 eV的光照射时,光电子的最大初动能为E km,阴极材料逸出功为W0 当反向电压达到U0=0.60 V以后,具有最大初动能的光电子达不到阳极,因此eU0=E km 由光电效应方程知E km=hν-W0 由以上二式得E km=0.6 eV,W0=1.9 eV. 2、如图所示是光电管的原理图,已知当有波长为λ0的光照到阴 极K上时,电路中有光电流,则(说明:右侧为正极) ( ) A.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没 有光电流 B.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有 光电流 C.增加电路中电源电压,电路中光电流一定增大

浅析武汉光电子信息产业发展的机遇与挑战

浅析武汉光电子信息产业发展的机遇与挑战 [摘要]在经济全球化、信息化时代背景下,光电子信息产业作为一个新兴的高技术产业,对我国的经济发展和国际竞争力提高起着重要的作用。武汉光电子信息产业在迅速发展的同时,也面临着机遇与挑战。发展武汉光电子信息产业必须要充分运用自身的优势资源,抓住来之不易的机遇,不断迎接新的挑战。 [关键词]武汉;光电子信息产业;机遇与挑战 1武汉光电子信息产业发展历程 自我国首先在武汉东湖高新技术开发区创建武汉·光谷以来,光电子信息产业就作为武汉的四大产业之一开始迅速发展。近几年来,东湖高新技术开发区正对武汉国家光电子信息产业基地的基础设施建设进行全力推进,形成了一批以光纤通信、移动通信为主导,激光、光电显示、消费电子、集成电路等竞相发展的产业格局,而光电子信息产业也逐渐发展为武汉市四大主导产业之一。武汉光电子信息技术及产业水平在国内渐渐占据了领先地位,在全球市场上,武汉·光谷也成为了我国在光电子信息领域中与世界强国相竞争的知名品牌。发展到2010年,武汉的光电子信息产业已成为继武汉汽车产业后,第二个资产规模过千亿的产业。到2011年,武汉光电子信息产业总收入高达1440亿元,在世界产业集群中占到了一个举足轻重的地位。 东湖高新技术开发区在2009年光电子信息企业有800多家,总收入达到8356亿元,净利润高达525亿元,出口创汇约120亿元,从事光电子信息产业的人员近10万人。最近几年,武汉·光谷几乎承担了中国所有的光通信系统的建设和90%以上的国家863光纤通信项目。随着东湖高新技术开发区涌现出一大批拥有自主知识产权的光纤光缆顶尖技术和光电子元件制造技术,光纤通信技术与电视、电话、移动通信和互联网等一同进入了中国家庭。有关数据显示,到目前为止,武汉·光谷共生产光纤1518万芯公里,销售2077万芯公里,产销率高达1368%;共生产光缆722万芯公里,销售1242万芯公里,产销率高达172%。其中,长飞光纤产量仍稳居全球首位,光纤预制棒产量居世界前三位。特别是烽火通信光纤预制棒生产线投产,从此打破了国外对光纤预制棒技术的垄断,使武汉·光谷光纤产业的整条产业链被打通。 在这近十多年来的发展过程中,武汉·光谷的光电子信息产业在全球产业分工中逐渐占有一席之地。其光谷光纤光缆生产规模成为全球第一;光电器件在国内市场的占有率达到60%,国际市场的占有率达到12%;激光产品在国内的市场占有率也一直保持在50%左右。 2武汉光电子信息产业发展的机遇 (1)光纤入户活动的开展。随着时代的发展,信息的传播速度成为一个国家是

实验讲义-光电效应-2013.9

实验4.3光电效应和普朗克常数的测量 1887年德国物理学家H.R.赫兹发现电火花间隙受到紫外线照射时会产生更强的电火花。赫兹的论文《紫外光对放电的影响》发表在1887 年《物理学年鉴》上。论文详细描述了他的发现。赫兹的论文发表后,立即引起了广泛的反响,许多物理学家纷纷对此现象进行了研究,用紫外光或波长更短的X 光照射一些金属,都观察到金属表面有电子逸出的现象,称之为光电效应。 对光电效应现象的研究,使人们进一步认识到光的波粒二象性的本质,促进了光量子理论的建立和近代物理学的发展,现在光电效应以及根据光电效应制成的各种光电器件已被广泛地应用于工农业生产、科研和国防等各领域。 【实验目的】 ① 通过实验加深对光的量子性的认识; ② 验证爱因斯坦方程,并测量普朗克常数以及阴极材料的“红限”频率。 【实验原理】 一、光电效应及其实验规律 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应,所产生的电子称为光电子。 研究光电效应的实验装置如图4.3.1所示,入射光照射到阴极K 时,由光电效应产生的光电子以某一初动能飞出,光电子受电场力的作用向阳极A 迁移而构成光电流。一定频率的光照射阴极K 所得到的光电流I 和两极间的电压U 的实验曲线如图4.3.2所示。随着光电管两端电压的增大,光电流趋于一个饱和值m I ,当U ≤S U 时,光电流为零,S U 称为反向遏止电压。 总结所有的实验结果,光电效应的实验规律可归纳为: (1) 对于一种阴极材料,当照射光的频率确定时,饱和光电流m I 的大小与入射光的强度 成正比。 图4.3.1光电效应实验装置示意图 0 U S U 图4.3.2 U ——I 特性曲线

大学物理实验 光电效应测量普朗克常量

实验题目:光电效应测普朗克常量 实验目的: 了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分 则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。 光电效应实验原理如图1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。 当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv 2 2 1 (1) 每一光子的能量为hv ,光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知:A mv hv 2 2 1 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v 时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v 0,ν0称为红限。 由式(1)和(2)可得:A U e hv 0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分 别做光源时,就有:A U e hv 11,A U e hv 22,…………,A U e hv n n ,

高中物理光电效应知识点汇总

一、光电效应和氢原子光谱 知识点一:光电效应现象 1.光电效应的实验规律 (1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应. (2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大. (3)大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比. (4)金属受到光照,光电子的发射一般不超过10-9 _s. 2.光子说 爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光 子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34 J·s. 3.光电效应方程 (1)表达式:hν=E k +W 0或E k =hν-W 0. (2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来 克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12 mv 2 . 知识点二: α粒子散射实验与核式结构模型 1.卢瑟福的α粒子散射实验装置(如图13-2-1所示) 2.实验现象 绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图13-2-2所示. α粒子散射实验的分析图 3.原子的核式结构模型 在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转. 知识点三:氢原子光谱和玻尔理论 1.光谱 (1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律. 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R (122-1 n 2)(n =3,4,5,…), R 是里德伯常量,R =1.10×107 m -1,n 为量子数.

(2)光电效应的基本规律

(2)光电效应的基本规律 2012-4-3 命题人:邓老师 学号________. 姓名________. 第Ⅰ卷(选择题) 一.选择题 (请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共25小题) 1. 已知某单色光的波长为λ,在真空中的传播速度为c,普朗克常量为h,则该电磁波辐射的能量子的值为( ) A.hcλ B. c h λ C. λ h D. λhc 2. 在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K 与入射光的频率ν的关系如图所示,由实验图像可求出( ) A.该金属的逸出功 B.该金属的极限频率 C.单位时间内逸出的光电子数 D.普朗克恒量 3. 某金属在一束绿光的照射下发生了光电效应( ) A.若增加绿光的照射强度,则单位时间内逸出的光电子数不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出的光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 4. 下列说法正确的是( ) A.光的干涉现象说明光具有粒子性,能发生光电效应现象说明光有波动性 B.电磁波谱中波长最长的γ射线,波长最短的是无线电波 C.光子具有波粒二象性,实物粒子只具有粒子性,不具有波动性 D.通常说光波是一种概率波,意思是光子在空间分布的概率是受波动规律支配的 5. 表1给出了各色光在真空中的波长和频率,表2给出了几种金属的极限频率υ0和极限波长λ0,请你判断下列说法正确的是( ) 表1 A.用黄光和绿光照射金属钾表面时都能发生光电效应 B.用绿光照射钾发射出的某光电子P 与用紫光照射钾发射出的某光电子Q 相比,P 的动能一定小于Q 的动 能 C.黄光能使表中的4种金属发生光电效应 D.用蓝光照射铯和钾时,发射出光电子的最大初动能分别为E k 1和E k2,E k 1一定大于E k 2 6. 一束细平行光经过玻璃三棱镜后分解为互相分离的三束光(如图所示),分别照射到相同的金属板a 、b 、c 上,如图所示,已知金属板b 有光电子放出,则可知( ) A.板a 一定不放出光电子 B.板a 一定放出光电子 C.板c 一定不放出光电子 D.板c 一定放出光电子 7. 某单色光从真空射入某介质时( ) A.波长变长,速度变小,光量子能量变小 B.波长变长,速度变大,光量子能量不变 C.波长变短,速度变小,光量子能量不变 D.波长变短,速度变小,光量子能量变大 8. 分别用波长为λ和 34 λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h 表示普朗克 常量,c 表示真空中的光速,则此金属板的逸出功为( ) a c b

相关主题
文本预览
相关文档 最新文档