当前位置:文档之家› 电容电流试报告

电容电流试报告

电容电流试报告
电容电流试报告

试验报告

峰峰集团公司小屯矿35KV系统

电容电流测试

峰峰集团监测检验中心

2004.11

报告名称:

试验时间:

项目负责人:项目参加人员:参加项目单位:编写时间:

编制:

校阅:

审核:

批准:

1、测试目的

为检验小屯矿35KV站供电系统中性点电压平衡状态,以及电容电流的情况。本测试方法为单相金属接地法,对小屯矿35KV站供电系统电容电流进行了测试。

2、依据

DL/T620-1997《交流电气装置的过电压保护和绝缘配合》。

3、测试方法及内容

(1)、35KV系统中性点不平衡电压测量;

将38#、39#(消弧线圈)停电,用绝缘杆在35KV1#主变接入静电电压表,取数值即为不平衡电压。

(2)、不投入消弧线圈的单相金属接地法测试35KV系统接地电容电流;35KV站负荷全部供电,将将38#、39#(消弧线圈)停电,在任一开关刀闸间分别将A、B、C三相人为接地,测得电流即为三相容性电流。用相似的方法也可测得阻性电流。

当全输出运行时分别测得电容电流,并记录。

4、运行方式

35KV系统实现正常运行方式,站内出线全部运行,电缆线路1200m。5、测试结果

(1)、三相不平衡电压为(三次):

826V,813V,821V;取平均值820V。

计算不平衡电压率:

U 不平衡电压/U 额定=2.34%,即电压不平衡度为2.34%。 (2)、测试结果数据

35KV 站系统电容电流测试数据

A 相19.0A ,

B 相19.3A ,

C 相19.0A 相;平均值为19.1A , 观察电压指示为36.5KV ,测得频率为50.3Hz 。

将测量值折算到额定电压和额定频率下的数值,即

Ice =Ic*

Uav

U e *

f

fe

式中:Ic ―系统电容电流(A ); fe ―额定频率(Hz ) f ―测试频率(Hz ) Ue ―额定电压(KV )

Uav -三相线电压的平均值(KV )

将有关数据带入上式,额定电压及额定频率下系统电容电流值: Ice =Ic*Uav

U C *

f

fe =19.1*

5

.3635*

02

.5050=18.3A

结论:

综上所述,小屯矿35KV 系统不平衡电压较大为820V ,比一般规定值(0.5-1.5%)相比偏差较大。

配电网电容电流计算

配电网电容电流计算 一、概述 随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。 目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。显然,电网电容电流的

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

测量电感及电容上电流和电压的相位差

测量电感及电容上电流和电压的相位差&测量电容上电流和电压 的相位差 上海中学高二(9)王晓欣、徐烨婷 指导教师杨新毅 实验目的:运用TI-83对电容电路进行实验,测量电容电路中电压与电流之间的相位差,了 解电容电感的性质。 实验原理 对于电阻R1,电流与电压成正比。电压v=Vsinωt,则i= Vsinωt /R。由于电阻R1mR1m1与电容串联,因此两者的电流相等。i= i= Vsinωt /R,电容的电流波形图与电阻的电压L1R1m1波形图的周期、初相位都相同,只在幅值上有所不同。因为只需观察电容的电流电压波形图 周期与初相位的关系,因此可以将电阻的电流波形图与电容的电压波形图进行对比,得出电 容的电压与电流的关系。 实验过程 1. 开机方法: ?用专用接线连接TI—83Plus和CBL。 ?按ON键打开TI—83Plus电源。

?按应用功能键APPS,进入Applications界面(见图1)。 图1 按数字键4选择Physics功能(见图2)。 图2 按ENTER回车键,进入主菜单(见图3)。 图3 2. 探头设定: ?将两个电压探头分别插入CH1,CH2两个插口中,打开CBL电源。 ?在Main Menu下按1选择SET UP PROBES,进入探头设定 菜单(见图4)。在NUMBER OF PROBES菜单中按2选择 图4 TWO。 在SELECT PROBE中按7选择MORE(见图5),再按3(见图6)将第一个探头选择为VOLTAGE。按ENTER 重复以上操作,将第二个探头也设为VOLTAGE。回到主菜 图5 单(见图7)。

图6 图7 3. 参数设定 在Main Menu下按2选择2:COLLECT DATA。在DATA COLLECTION中按2选择2:TIME GRAPH(见图8)。 图8 在ENTER TIME BETWEEN SAMPLES IN SECONDS:后输入时间间隔0.0005。在ENTER NUMBER OF SAMPLES:后输入取样个数100(见图9)。 图9 按ENTER对实验设置进行确认(见图10)。 图10 在CONTINUE中按1选择USE TIME SETUP,用以上设置图11 进行实验(见图11)。 4. 连接电路

51单片机做电容测量仪解析

第十三届“长通杯”大学生电子设计竞赛 电容测量仪(A题) 2016年5月14日

摘要 电容测量仪装置是一种精度高、测试范围宽、操作简便、功能完善的电容测量仪。随着科技的不断发展,电容在电路中有着越来越多的应用,其容量大小直接决定着电路的稳定性和准确性。因此,电容值的的测量在日常使用中不可避免。 为了深入了解和学习52单片机的功能,本设计采用STC89C52和555振荡器为主要元件对电容进行测量。先将555设计为多谐振荡器产生输入脉冲信号,然后利用单片机对脉冲进行中断计数,再使用公式计算出电容值。在多谐振荡器终端加一个HD74LS08(二输入与门)稳定输出波形,从而使测量中更精确。多谐振荡器会因为连接电阻值的不同而产生的方波的频率不同,从而可以变换档位测量容量差距较大的电容。如果在工程问题中想寻找出符合要求的电容,便可通过矩阵键盘输入相应的电容值的范围,以方便筛选。当电容测定完以后,其数值通过LCD1602显示出来,以便阅读。 关键词:STC89C52单片机;电容测量;555定时器;LCD1602;

目录 1系统方案...................................................................................................... 错误!未定义书签。 1.1 电容测量仪的论证与选择.............................................................. 错误!未定义书签。 1.2 控制系统的论证与选择.................................................................. 错误!未定义书签。2系统理论分析与计算.................................................................................. 错误!未定义书签。 2.1 设计方案的分析............................................................................ 错误!未定义书签。 2.1.1利用电容器放电测电容实验原理................................ 错误!未定义书签。 2.1.2利用放电时间比率来测电容......................................... 错误!未定义书签。 2.1.3利用单片机测脉冲来测时间常数RC再计算电容.错误!未定义书签。 2.2 电容的计算...................................................................................... 错误!未定义书签。 2.2.1 计算振荡周期....................................................................... 错误!未定义书签。 2.2.2 计算频率............................................................................... 错误!未定义书签。 2.2.3 计算Cx ................................................................................. 错误!未定义书签。3电路与程序设计.......................................................................................... 错误!未定义书签。 3.1电路的设计....................................................................................... 错误!未定义书签。 3.1.1系统总体框图........................................................................ 错误!未定义书签。 3.1.2系统框图................................................................................ 错误!未定义书签。 3.1.3总程序框图............................................................................ 错误!未定义书签。 3.1.4电源........................................................................................ 错误!未定义书签。 3.2程序的设计....................................................................................... 错误!未定义书签。 3.2.1程序功能描述与设计思路.................................................... 错误!未定义书签。 3.2.2程序流程图............................................................................ 错误!未定义书签。4测试方案与测试结果.................................................................................. 错误!未定义书签。 4.1测试方案........................................................................................... 错误!未定义书签。 4.2 测试条件与仪器.............................................................................. 错误!未定义书签。 4.3 测试结果及分析.............................................................................. 错误!未定义书签。 4.3.1测试结果(数据) ..................................................................... 错误!未定义书签。 4.3.2测试分析与结论.................................................................... 错误!未定义书签。附录1:电路原理图...................................................................................... 错误!未定义书签。

电解电容测试指导书

1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于IQC对电解电容器来料的检验。 3准备设备、工具: 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。 4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引岀端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况; 且其标识清晰牢固、正确完整。 4.5检查其引岀端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引岀端子无扭曲、变形和影响插拔的机械损伤。 4.6检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%勺误差范围),其损耗角 正切值tan 9 (即D值)大小是否符合国家标准(电解电容器tan 9 0.25 )。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按POWE!键开启测试仪的工作电压; 按LCR键选择测试类型(L:电感,C:电容,R:电阻)。 5.3按UP'与DOWN!选择测试量程(疗、nF、pF),按FREQ键选择测试频率(100HZ 120HZ 1KHZ,可根据厂商提供的技术参数来选择所需的测试频率,本试验选择100HZ'。

用示波器测电容实验报告

用示波器测电容 摘要:电容在交流电路中电压发生了变化,相位也发生了变化,而通过示波器可以清楚的观察到这些变化,本实验利用示波器和电容的交流特性,通过实验得出谐振频率的特殊值进而通过公式计算,得出电容器的电容值大小。 关键词:电容RLC谐振频率阻抗相位差电流峰值 一、引言 电容是电容器的参数之一,对于解决生活及实验中的实际问题,有着很重要的作用,不同电容的电容器因所需不同而被应用在不同的地方,在实验中测电容器的电容,已成为大学物理实验中很重要的一个环节,在此实验中,我们用示波器测量电容的容量,该方法操作简单,且能加深我们对电容和电容性质的理解,巩固我们所学的知识。 二、实验任务利用示波器测量电容器的电容量C。 三、实验仪器 200欧姆电阻一个,10mH电感一个,信号发生器一台, 双踪示波器一台,面包板一个, 电容一个,导线若干。 四、实验原理 测RLC谐振频率 RLC串联电路如图1所示: 所加交流电压U(有效值)的角频率为w,则电路的的复阻抗 为: 复阻抗模为: 复阻抗的幅角: 即该电路电流滞后于总电压的位差值。回路中的电流I(有效值)为 上面三式中Z﹑﹑I均为频率f(或角频率,)的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a)(b)(c)分别为RLC串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b)图-f曲线称为相频特性曲线;(c)图i-f曲线称为幅频特性曲线。由曲线图 可以看出,存在一个特殊的频率特点为 (1)当f<时,<0,电流相位超前于电压,整个电路 呈电容性。 (2)当f>时,>0,电流相位滞后于电压,整个电路 呈电感性。 (3)当时,即或 时,=0,表明电路中电流I和电压 U同相位,整个电路呈纯电阻性。 这就是串联电路谐振现象,此时电路总阻抗的模最小,电流达到极大值,易知只要调节f﹑L﹑C中任意一个量,电路就能达到谐振。 根据LC谐振回路的谐振频率或可求得。 五、实验内容(或步骤) 1.电路连接如图1,其中L=10mH,R=,U=2V。 2.用万用电表测出待测电容。 3.调节信号发生器的频率同时观察两端电压变化,当调至某一频率时,电压最大,测得这个最大值及信号的周期(或频率)。 4.由这个最大值的周期(或频率)计算出电容的值。 六、数据处理和分析 测RLC谐振频率数据记录表 5.9 6.9 7.9 8.910.911.912.913.914.915.916.917.9 f (KHZ) 331362393412434442431421402390381372 (mv)

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

为什么国家电力规程要求做电容电流测试

为什么国家电力规程要求做电容电流测试? 为什么国家电力规程要求做配电网电容电流测试? 作者:山凡,时间:2014年8月27日 部分电力测试10年经验的人士,对配电网电容电流测试也不能正确理解此试验的重要性。 在中国,66kV及以下电力系统配电网的中性点都是非直接接地系统,当发生线路系统单相接地时,流过故障点的电流实际是线路对地电容产生的电容电流,并不立即对设备造成损坏,不会造成断路器掉闸。但是,单相接地一定要设法找到故障点并加以消除,否则,它会给电气设备的安全构成威胁,极易发展成为其他事故,这些威胁包括: 1.单相接地电流通过铁心(如调相机、变压器的铁心)会使铁心烧坏。 2.在单相接地的故障点附近,人身有遭到跨步电压的危险。当导线一相碰地时,电流已触地一点为圆心向外扩散,在20m以内的地面上画许多同心圆,则这些圆周均有不同的电位。 人体两脚接触地面两点,该两点之间的电压称为跨步电压。人身遭受跨步电压的作用当然是有一定危险的。 3.易发展成两相短路。因单相接地时,非故障对地电压升高为原来的几倍。若是弧光接地,非故障相甚至还会出现2.5~3倍的电压,尤其弧光还会使导线周围的气体发生游离,这两种情况碰在一起,很容易造成相间短路。这对设备和系统来说,都是破坏性的故障。 4.接地点的存在还会使故障设备外皮(如电缆外皮)或遮拦带电,易造成人身触电事故。 我国电力规程规定当10kV电容电流分别大于30A,或35kV系统电容电流分别大于10A 时,应装设消弧线圈以补偿电容电流,这就要求对配电网电容电流测试以决定是否安装消弧线圈。 配电网的对地电容和PT的参数配合会产生PT铁磁谐振过压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值,这样解释大家一定理解了配电网电容电流测试在电力测试行业的重要性了。 配电网电容电流测试,在2009年以前,常规测试方法是开口三角异频信号注入法测量,测量电容电流要求系统必须平衡,而现场95%的系统都不平衡,所以此方法的适用场合很窄; 武汉某电气试验仪器制造企业经过2年多的设计研发,成功推出中性点外加电容法,实现配电网电容电流测试, 中性点外加电容法对系统平衡与否几乎没有要求,故适用场合很宽,特别适用于煤矿、钢铁等复杂线路,测量过程一下子从复杂变得简单,且测试结果无干扰因素更准确。 关于如何寻找中性点,及中性点外加电容法做配电网电容电流测试的操作方法,目前网上已经有电容电流试验视频和详细的操作说明,有兴趣的朋友可以搜一下。 1 / 1

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

电容电流计算(线路,发电机回路)

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

10KV电网单相接地电容电流1

山西朔州山阴金海洋台东山煤业有限公司 35kv变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。 1 单相接地电流及其分量的测量方法 电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。因此,有必要研究一种更加安全可靠地新方法,即单相经电

阻接地的间接测量方法。 图1 中性点不接地电网绝缘参数测量模型 图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。 我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: R E I U I ?=02 100 (1)

利用Multisim设计电容测量电路

精心整理 一、概述 随着科学技术的不断发展,人类社会进入高科技时代,而以电子元件组成的电器在生活中被运用的越来越广泛,大至航空航天技术,小到手机、电子手表等等。而这些电器都是由一些电容、电阻等元器件组成。特别是电容在这些电路中的作用,因此电容的大小的测量在电容使用过程中必不可少,测量电容的大小的办法也越来越多,并且多样化、高科技化。当然,测量的结果应该保持较高的精确度和稳定性,不仅如此,还应兼顾测量速度快等要求。 目前应用比较普遍的方法有电桥法测电容、容抗法测电容、基于NE555的RC 充放电原理等等,在这个脉(0.2uF —20uF 杂。 路、确的脉冲个数N ,而准确的数值大小为显示稳定后的数值。

由于本方案大多采用的是数字元器件,因此对外界的干扰信号有着很强的抵抗能力,而用容抗法测电容由于采用许多模拟元器件,只要外界存在有一定强度的干扰信号,就会使测量结果发生较 大的改变。不仅 如此,外界的温 度也会对模拟 元器件产生很 大的影响,而在 实际生活中的 多外界环境不 5V直流

首先是测量电路部分,电路图如图3所示,此部分由2片555定时器连成的单稳态触发器和多谐振荡器 定时器为单稳态振荡器。端输出 的单位脉发器2端2C 为待测电器中。由单稳 态触发器电容大小这个信号经存器的时的输出单产生的脉后作为计计数。 图3 单稳号的脉宽 当R 与2C 的 2C 与4 C 出信号、单稳态触发器输出信号、非门输出信号、与门输出信号如图4所示。

图4待测电容为1uF 时各输出信号波形 上图中的波形自上至下分别为单稳态输出信号、非门输出信号、多谐振荡器输出信号、与门 74L S 160N

电解电容纹波的测试,计算及判定_ 应用报告

一、前言: 铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。所以在实际使用中,电解电容Ripple Current 有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。 二、标准测试: 1、一次侧Bulk Cap.纹波电流 说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current) 一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。 图(1) 2、二次侧Filter Cap.纹波电流 说明:二次侧Filer Cap.纹波电流通常由高频电流构成。 R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。 3、温度 机种名称: 机种编号: 机种类别: 电路拓扑: 输出规格: 编写单位: 应用类别: 材料应用 受控日期: 201 年 月 日 应用编号: AR500XbcEedDFf P 应用描述: 电解电容纹波电流的测试,计算及判定

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

电容两端电压和电流相位关系

图文:用双线示波器显示电压与电流的相位关系 图文:用双线示波器显示电压与电流的相位关系 在交流电路中,电动势、电压、电流的大小和方向都随时间作周期性变化, 带来了一系列区别于直流电的特性。 研究元件在电路中的作用,首先是弄清楚元件上电压和电流的关系。一是了解电压和电流的有效值(或峰值)之间的关系。电压有效值和电流有效值之比。叫做元件的阻抗。再是了解电压和电流之间的相位关系,即了解电压和电流的变化步调是否一致,如果不一致,它们之间的相位差等于多少?后面的几张彩图将 对这些问题作出说明。 由于示波器上显示的是电压波形,如果观察通过元件的电流波形,必须将一个电阻与待测元件串联。因为电阻上电压与电流的相位相同,待测元件上的电压与串联电阻上电压的相位关系,反映了待测元件上电压与电流的相位关系。 电路示意图(附图11)中的电源是音频讯号发生器(频率调至1000赫,输出电压调至1伏左右),电容器(C=0.5微法),带铁心线圈(L=45毫亨)及电阻(R=500Ω)。引出线分别接至双线示波器的Ⅰ线、Ⅱ线输入端。接通电源,经过调整后,可在示波器的荧光屏上看到稳定的两条波形曲线。单刀开关接至电容器时,可以看到电流的相位比其两端电压的相位超前π/2;而接至带铁心的线圈时,则通过电感的电流相位比其两端的电压相位落后π/2。彩图所示为电容上电压与电流的相位关系,其中振幅大的为电压波形。 由于示波器各引线的负端在示波器的内部是相连的,因此引线的负端都必须接在a点(见附图11),这样就必然给Ⅰ线Ⅱ线的波形之间引入180°的相位差。为了正确反映波形的相位关系,需要在电阻两端连接一反相器(电路中未画出), 然后接入示波器Ⅰ线输入。

电容电阻测量实验报告

电容、电阻测量实验报告 实验目的:1、掌握电容测量的方案,电容测量的技术指标 2、学会选择正确的模数转换器 3、学会使用常规的开关集成块 4、掌握电阻测量的方案,学会怎样达到电阻测量的技术指标 实验原理: 一、数字电容测试仪的设计 电容是一个间接测量量,要根据测出的其他量来进行换算出来。 1)电容可以和电阻通过555构成振荡电路产生脉冲波,通过测出脉宽的时间来测得电容的值 T=kR C K和R是可知的,根据测得的T值就可以得出电容的值 2)电容也可以和电感构成谐振电路,通过输入一个信号,改变信号的输入频率,使输入信号和LC电路谐振,根据公式W=1/ √LC就可以得到电容的值。 二、多联电位器电阻路间差测试仪的设计 电阻是一个间接测试量,他通过测得电压和电流根据公式R=U/I得出电阻的值 电阻测量分为恒流测压法和恒压测流法两种方法 这两种方法都要考虑到阻抗匹配的问题 1)恒流测压法 输入一个恒流,通过运放电路输出电压值,根据运放电路的虚断原理得出待测电阻两端的电压值,就可以得出待测电阻的阻值。 2)恒压测流法 输入一个恒压,通过运放电路算出电流值,从而得出电阻值 方案论证:数字电容测试仪 用555组成的单稳电路测脉宽 用555构成多谐振荡器产生触发脉冲 多谐振荡器产生一个占空比任意的方波信号作为单稳电路的输入信号。 T1=0.7*(R1+R2)*C T2=0.7*R2*C 当R2〉〉R1时,占空比为50% 单稳电路是由低电平触发,输入的信号的占空比尽量要大 触发脉冲产生电路

电容测试电路 Tw=R*Cx*㏑3

R为7脚和8脚间的电阻和待测电容Cx构成了充放电回路,这个电阻可以用一个拨档开关来选择电容的测试挡位。当待测电容为一大电容时,选择一个小电阻;当电容较小时,选择一个较大的电阻。使输出的脉宽不至于太大或者太小,用以提高测量的精度和速度。 R*C不能取得太小,R*C*㏑3≥T2,如果R*C取得太小,使得充放电时间太小,当来一个低电平时,电路迅速充电完毕,此时输入信号仍然处于低电平状态,输出电压为高电平,此时的脉宽就与RC无关,得到的C值就不是所要测的电容值。 仿真波形: 、 从仿真波形可以看出Tw=1.1058ms 根据公式Tw=1.1*R*C可以得出C=100uf 多联电位器电阻路间差测试仪设计方案 软件设计流程图 主程序流程图:

接地电容电流分析

中性点不接地系统电容电流 中性点不接地的运行方式,电力系统的中性点不与大地相接。我国3~66kV系统,特别是3~10kV系统,一般采用中性点不接地的运行方式。 中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。系统正常运行时,三相电压UA、UB、UC是对称的,三相的对地电容电流Ico.A、Ico.B、Ico.C也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。 当系统出现单相接地故障时(假设C相接地),故障电流Id(在下图中实际就是Ic)没有返回电源的通路,只能通过另外两非故障相(如A、B相)的对地电容返回电源。I=U/Xc=ωCU,而C∝S/d,即与电容极板面积成正比、而与极板距离成反比。所以线路对地电容,特别是架空线路对地电容很小,容抗很大,所以Id很小,按照规范,不得大于20A,同时作为此系统(如10KV系统)负载工作的10KV变电所(10/0.38KV),其保护接地电阻按规范不得大于4Ω(交流电气装置的接地设计技术规范,DL/T 621),所以低压系统对地电位升高有限(一般不超80V,保护接地电阻做重复接地时不超50V)。 此时C相对地电压为0,而A相对地电压 而B相相对地电压,同时U'a、U'b相差60度。 由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3倍,即1.732倍),相位差60度。 C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。由于一般

相关主题
文本预览
相关文档 最新文档