当前位置:文档之家› 光谱仪重要参数

光谱仪重要参数

光谱仪重要参数
光谱仪重要参数

光谱仪重要参数定义

◆CCD

电荷耦合器件(Charger Coupled Device,缩写为CCD ),硅基光敏元件的响应范围在短波近红外区域。

◆PDA

二极管阵列(Photodiode Array,缩写为PDA).光电二极管阵列是由多个二极管单元(象素)组成的阵列,单元数可

以是102,256或1024。当信号光照射到光电二极管上时,光信号就会转换成电信号。大部分光电二极管阵列都包括读

出/积分放大器一体式的集成化信号处理电路。光电二极管的优点是在近红外灵敏度高,响应速度快;缺点是象元数较少、在紫外波段没有响应。

◆薄型背照式

薄型背照式电荷耦合器件(BT—CCD,Back Thinned Charge Coupled Device),采用了特殊的制造工艺和特殊的锁

相技术。首先,与一般CCD相比,硅层厚度从数百微米减薄到20μm以下;其次,它采用背照射结构,因此紫外光不

必再穿越钝化层。因此,不仅具有固体摄像器件的一般优点,而且具有噪声低,灵敏度高、动态范围大的优点。

BTCCD有很高的紫外光灵敏度,它在紫外波段的量子效率可以看到,在紫外波段,量子效率超过40%,可见光部

分超过80%,甚至可以达到90%左右。可见,BTCCD不仅可工作于紫外光,也可工作于可见光,是一种很优秀的宽

波段检测器件。

◆狭缝

光源入口。狭缝面积影响通过的光强度。狭缝宽度影响光学分辨率。

◆暗电流

未打开光谱仪激发光源时,感光器件接收到的光电信号。主要影响因素有温度,电子辐射等。

◆分辨率

光学分辨率定义为光谱仪可以分开的最小波长差。要把两个光谱线分开至少要把它们成象到探测器的两个相临象元上。分辨率依赖于光栅的分辨本领、系统的有效焦长、设定的狭缝宽度、系统的光学像差以及其它参数。光栅决定了波长在探测器上可分开的程度(色散),这对于分辨率来说是一个非常重要的变量。另一个重要参数是进入到光谱仪的光束

宽度,它基本上取决于光谱仪上安装的固定入射狭缝或入射光纤芯径(当没有安装狭缝时)。狭缝的尺寸有:10,25

或50μm×1000μm(高)或100,200或500μm×2000μm(高)。在指定波长处,狭缝成象到探测器阵列上时会覆

盖几个象元。而如果要分开两条光谱线,就必须把它们色散到这个象尺寸加上一个象元。当入射光纤的芯径大于狭缝的宽度时,分辨率就要由狭缝的宽度(有效宽度)来决定。

光谱仪分辨率可近似如下度量: R∝ M·F/W

其中M为光栅线数 ,F为谱仪焦距, W为狭缝宽度。

◆色散

光谱仪的色散决定其分开波长的能力。光谱仪的倒线色散可计算得到:沿光谱仪的焦平面改变距离χ引起波长λ的变化,即:Δλ/Δχ=dcosβ/mF

这里d、β、F分别是光栅刻槽的间距、衍射角和系统的有效焦距,m为衍射级次。由方程可见,倒线色散不是常数,它随波长变化。在所用波长范围内,变化可能超过2倍。

◆光栅和闪耀波长

光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。

光栅主要参数:

1. 闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm。

2. 光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择。

3. 光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。

闪耀光栅

非闪耀光栅其能量分布与单缝衍射相似,大部分能量集中在没有被色散的“零级光谱”中,小部分能量分散在其它各级光谱。零级光谱不起分光作用,不能用于光谱分析。而色散越来越大的一级、二级光谱,强度却越来越小。

为了降低零级光谱的强度,将辐射能集中于所要求的波长范围,近代的光栅采用定向闪耀的办法。即将光栅刻痕刻成一定的形状,使每一刻痕的小反射面与光栅平面成一定的角度,使衍射光强主最大从原来与不分光的零级主最大重合的方向,转移至由刻痕形状决定的反射方向。结果使反射光方向光谱变强,这种现象称为闪耀。辐射能量最大的波长称为闪耀波长。光栅刻痕反射面与光栅平面的夹角,称为闪耀角。每一个小反射面与光栅平面的夹角b保持一定,以控制每一小反射面对光的反射方向,使光能集中在所需要的一级光谱上,这种光栅称为闪耀光栅。

◆带宽

带宽是不考虑光学像差、衍射、狭缝高度、扫描方法、检测器像素宽度等因素,在给定波长从光谱仪输出的波长宽度。它是倒线色散和狭缝宽度的乘积。

◆波长精度、重复性和准确度

波长精度是光谱仪确定波长的刻度等级,单位为nm。通常,波长精度随波长变化。

波长重复性是光谱仪返回原波长的能力。这体现了波长驱动机械和整个仪器的稳定性。

波长准确度是光谱仪设定波长与实际波长的差值。

◆F/#

F/#定义为光谱仪准直凹面反射镜的直径与焦距的比值。光通过效率与F/#的平方成反比,F/#愈小,光通过率愈高。

光谱仪各项性能指标

光谱学测量的基础是测量光辐射与波长的对应关系。一般来说,光谱学测量的直接结果是由很多个离散的

点构成曲线,每个点的横坐标(X轴)是波长,纵坐标(Y轴)是在这个波长处的强度。因此,一个光谱仪的性能,可以粗略地分为下面几个大类:

1. 波长范围(在X轴上的可以测量的范围);

2. 波长分辨率(在X轴上可以分辨到什么程度的信号变化);

3. 噪声等效功率和动态范围(在Y轴上可以测量的范围);

4. 灵敏度与信噪比(在Y轴上可以分辨到什么程度的信号变化);

5. 杂散光与稳定性(信号的测量是否可靠?是否可重现);

6. 采样速度和时序精度(一秒钟可以采集多少个完整的光谱?采集光谱的时刻是否精确?)

如果用户对这些性能指标有任何问题,请咨询Avantes公司的产品工程师。

1. 波长范围

波长范围是光谱仪所能测量的波长区间。最常见的光纤光谱仪的波长范围是200-1100nm,也就是可

以探测紫外光、可见光和短波近红外光,可以扩展至200-2500nm,覆盖整个紫外-可见-近红外波段。光栅

及探测器的类型会影响波长范围。一般来说,宽的波长范围意味着低的光谱分辨率,所以用户需要在波长

范围和光谱分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多

个光谱仪通道(多通道光谱仪)。

2. 光谱分辨率

顾名思义,光谱分辨率描述了光谱仪能够分辨波长的能力,最常用的光谱仪的波长分辨率大约为1nm (FWHM值),即可以区分间隔1nm的两条谱线。Avantes公司可以提供的最高光谱分辨率为0.04nm。

光谱分辨率与光谱采样间隔(数据在x坐标上的间隔)是两个不同概念。一般来说,高的光谱分辨率意味

着窄的波长范围,所以用户需要在波长范围和光谱分辨率两个参数间做权衡。如果同时需要宽的波长范围

和高的光谱分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。

3. 噪声等效功率和动态范围

当信号的强度值与噪声的强度值相当时,从噪声中分辨信号就会非常困难。一般用与噪声相当的信号的

值(光谱辐照度或光谱辐亮度)来表征能一个光谱仪所能够测量的最弱的光强(Y轴的最小值)。噪声等效功

率越小,光谱仪就可以测量更弱的信号。狭缝的宽度、光栅的类型、探测器的类型等参数都会影响噪声等

效功率。因为这些参数也会影响波长范围和波长分辨率,用户需要在这些指标间做出取舍。对探测器制冷(Avantes公司的制冷型光谱仪)有助于减小探测器的热噪声,提高探测器检测弱光的能力。

动态范围描述一个光谱仪所能够测量到的最强的信号与最弱的信号的比值。最强的信号为光谱仪在信号

不饱和情况下,测量到的最大值;最弱的信号用上述的噪声等效功率衡量。动态范围主要受制于探测器。

动态范围是影响测量方便性的一个比较关键的指标。目前,光纤光谱仪都是通过调整积分时间的方式等效

地扩大动态范围,因此,动态范围一般不会对用户的测量带来困扰。

4. 灵敏度与信噪比(S/N)

灵敏度描述了光谱仪把光信号转换为电信号的能力,高的灵敏度有助于减小电路自身的噪声对结果的影响。狭缝的宽度、光栅的类型、探测器的类型以及电路板的性能都会影响灵敏度。衍射效率高的光栅和量

子效率高的探测器都有利于提高光谱仪的灵敏度。人为地调高前置放大电路的放大倍数(也称增益)也会

提高名义上的灵敏度,但同时也放大了噪声的影响,并不一定有助于实际的测量。宽的狭缝会改善灵敏度,但也会降低分辨率,因此,需要用户综合考虑和权衡。

光谱仪的信噪比定义为:光谱仪在强光照射下,接近饱和时的信号的平均值与信号偏离平均值的抖动(以标准偏差横向)的比。需要注意的是,因为定义中没有对光源做任何限制,使用这个定义所测量到的

信噪比并不能等同于用户在实际实验中所能实现的信噪比。光谱仪的信噪比主要受制于探测器。此外,通

过增加测量的平均次数,也可以提高信噪比,它们之间是开方的关系,如平均100次,信噪比提高10倍。

5. 干扰与稳定性

实际光谱仪与理想光谱仪的重要区别之一是其内部存在杂散光等干扰。杂散光会影响信号的准确性,并

对测量弱信号带来麻烦。超低杂散光平台(ULS)能够降低光路中的杂散光3-5倍。

光谱仪的光路和探测器都不可避免地随着环境而变化,例如,环境温度的变化会导致光谱仪波长(X轴)的漂移。对光路和探测器做特殊处理能够增强光谱仪的长期稳定性。然而,这些特殊处理会增加光谱仪的

硬件成本。

6. 采样速度和时序精度

Avantes公司的标准光谱仪可以在一秒钟内采集约900幅完整的光谱。当需要研究在更短时间内的光谱

变化时,更快速的光谱仪可以在一秒钟内采集高达8000幅光谱。然而,这些光谱仪往往在光谱分辨率等指

标上不能与标准光谱仪媲美,用户也需综合考虑各项指标。

光谱仪必须具备好的时序性能方能捕捉到很短的脉冲信号。不同类型的光谱仪的时序精度差别很大,性

能好的可以到纳秒量级的时间精度,而性能差的只能到毫秒量级的时间精度。

光谱仪的性能指标

光谱学测量的基础是测量光辐射与波长的对应关系。一般来说,光谱学测量的直接结果是由很多个离散的点构成曲线,每个点的横坐标(X轴)是波长,纵坐标(Y轴)是在这个波长处的强度。因此,一个光谱仪的性能,可以粗略地分为下面几个大类: 1. 波长范围(在X轴上的可以测量的范围); 2. 波长分辨率(在X轴上可以分辨到什么程度的信号变化); 3. 噪声等效功率和动态范围(在Y轴上可以测量的范围); 4. 灵敏度与信噪比(在Y轴上可以分辨到什么程度的信号变化); 5. 杂散光与稳定性(信号的测量是否可靠?是否可重现); 6. 采样速度和时序精度(一秒钟可以采集多少个完整的光谱?采集光谱的时刻是否精确?)1. 波长范围 波长范围是光谱仪所能测量的波长区间。最常见的光纤光谱仪的波长范围是400nm-1100nm,也就是可以探测可见光和一部分近红外的光。使用新型探测器可以使这个范围拓展至 200nm-2500nm,即覆盖紫外、可见和近红外波段。光栅的类型以及探测器的类型会影响波长范围。一般来说,宽的波长范围意味着低的波长分辨率,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 2. 波长分辨率 顾名思义,波长分辨率描述了光谱仪能够分辨波长的能力,最常用的光谱仪的波长分辨率大约为1nm,即可以区分间隔1nm的两条谱线。Avantes公司可以提供的最高的波长分辨率为 0.025nm。波长分辨率与波长的取样间隔(数据的x坐标的间隔)是两个不同概念。一般来说,高的波长分辨率意味着窄额度波长范围,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 3. 噪声等效功率和动态范围 当信号的值与噪声的值相当时,从噪声中分辨信号就会非常困难。一般用与噪声相当的信号的值(光谱辐照度或光谱辐亮度)来表征能一个光谱仪所能够测量的最弱的光强(Y轴的最小值)。噪声等效功率越小,光谱仪就可以测量更弱的信号。狭缝的宽度、光栅的类型、探测器的类型等等参数都会影响噪声等效功率。因为这些参数也会影响波长范围和波长分辨率,用户需要在这些指标间做出取舍。对探测器制冷(Avantes公司的制冷型光谱仪)有助于减小探测器的热噪音,优化探测器检测弱光的能力。 动态范围描述一个光谱仪所能够测量到的最强的信号与最弱的信号的比值。最强的信号为光谱仪在信号不饱和情况下,所能测量的最大信号值,最弱的信号用上述的噪声等效功率衡量。动态范围主要受制于探测器的类型。传统上,动态范围是影响测量方便性的一个很关键的指标,但目前大部分光纤光谱仪都可以通过调整积分时间的方式等效地扩大动态范围,因此,动态范围一般不会对用户的测量带来困扰。 4. 灵敏度与信噪比 灵敏度描述了光谱仪把光信号变成电子学信号的能力,高的灵敏度有助于减小电路本身的噪声对结果影响。狭缝的宽度、光栅的类型、探测器的类型以及电路的参数都会影响灵敏度。衍射效率高的光栅和量子效率高的探测器都有利于提高光谱仪的灵敏度。人为地调高前置放大电路的放大倍数也会提高名义上的灵敏度,但并不一定有助于实际的测量。宽的狭缝会改善灵敏度,但也会降低分辨率,因此,需要用户综合考虑和权衡。

同步带轮规格型号大全

同步带轮规格型号大全 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、梯型齿同步带轮规格型号 MXL型同步带轮、 XL型同步带轮、L型同步带轮、 H 型同步带轮、XH型同步带轮、 XXH型同步带轮 梯型齿同步带轮参数含义 例如: 60-XL-075 AF 表示 齿数:60 型号:XL 所使用同步带宽度代号:0.75*25.4=19.1mm 轮型代号:AF (另外轮型有:AS、BS、BF、W) 二、西德T型齿同步带轮规格型号 T2.5型同步带轮、 T5型同步带轮、T10型同步带轮、 T20型同步带轮、AT5型同步带轮、AT10型同步带轮、AT20型同步带轮 西德T型齿同步带轮参数含义 例如:

50 - T10 -32 W 齿数:50 型号:T10 所使用同步带宽度代号:32mm 轮型代号:W (另外轮型有:AS、BS、AF、BF) 三、圆弧齿同步带轮规格型号 HTD 2M型同步带轮、 3M型同步带轮、 5M型同步带轮、 8M型同步带轮、 14M 型同步带轮、20M型同步带轮 STS/STPD S2M型同步带轮、S3M型同步带轮、S4.5型同步带轮、S5M型同步带轮、S8M型同步带轮、S14M型同步带轮 RPP/HPPD RPP2M型同步带轮、RPP3M型同步带轮、RPP5M型同步带轮、RPP8M型同步带轮、RPP14M型同步带轮 圆弧齿同步带轮参数含义 例如: 1)40-5M-20 AS 表示 齿数:40 型号:5M 所使用同步带宽度代号:20mm 轮型代号:AS (另外轮型有:BS、AF、BF、W)

原子吸收光谱仪技术规格

原装进口原子吸收光谱仪技术规格 1. 工作条件 1.1 电源要求:230V (+5%~-10%),50/60 Hz;5000VA。 1.2 环境温度:+15℃~+35℃。 1.3 相对湿度:20~80%。 *2. 系统描述 台式设计原子吸收光谱仪,火焰、石墨炉一体机,全自动软件切换,切换后燃烧头和石墨管位置保持不变。 3. 光学系统和检测器技术指标 3.1 光学系统:实时双光束,1800线/mm,大面积平面光栅分光系统 *3.2波长范围:184-900nm 3.3狭缝:狭缝的宽度自动选择,狭缝的高度自动选择 *3.4检测器:全谱高灵敏度阵列式多象素点CCD固态检测器,含有内置式低噪声CMOS电荷放大器阵列。样品光束和参比光束同时检测,最大限度消除光学和电子噪声影响。 *3.5灯选择:8灯座,内置两种灯电源,可连接空心阴极灯和无极放电灯;通过软件由计算机控制灯的选择和自动准直,可自动识别灯名称和设定灯电流推荐值。 4. 火焰系统技术指标 *4.1火焰系统安全保护:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火,当监测不到火焰或任何锁定功能能激活时,联锁系统会自动关闭燃烧气体,以防万一。突然断电时,仪器会从任何操作方式按预设程序自动关机,确保安全。火焰有八个独立灯座。 4.2燃烧器系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。火焰在光路中的准直,燃烧器的垂直,水平位置的调节完全自动化,并由软件控制自动进行位置最佳化。 4.3点火和熄火: 由计算机软件自动控制点火和熄火. 4.4燃烧系统:可调式通用型雾化器,高强度惰性材料预混室,全钛燃烧头 *4.5排液系统:排液系统前置以利于随时检测。 *4.6火焰AAS的灵敏度,5ppm Cu 吸光度大于0.9。测量方法按照中华人民共和国国家标准GB/T 21187-2007的4.5.2.1试验程序进行。 5. 石墨炉系统技术指标 5.1石墨炉:内、外气流由计算机分别单独控制。管外的保护气流防止石墨管被外部空气氧化。从而延长管子寿命,内部气流则将干燥和灰化步骤气化的基体成份清出管外。石墨炉的开、闭为计算机气动控制以便于石墨管的更换。石墨炉有八个独立灯座。 *5.2电源:石墨炉电源内置,整个仪器为一个整体。 *5.3温度控制:红外探头石墨管温度实时监控,具有电压补偿和石墨管电阻变化补偿功能。 *5.4石墨管:标准配置为一体化平台(STPF)热解涂层石墨管。 *5.5标配石墨炉加氧除碳炉内消解装置:在石墨炉灰化阶段软件可自动控制加氧时间和流量,对环境样品可直接进样。 5.6编程:可设置多达12步分析程序,每步均可按下列参数编程。

能谱仪技术指标

能谱仪技术指标 1、技术指标: 1)*可靠性:可以配合各主流品牌的场发射扫描电镜使用,且在北京的地质行业有配合先 例,提供用户名单和联系方式; 2)探测器:硅漂移晶体,超薄窗口,完全独立真空;晶体有效面积不小于60 mm2,探头 整体有效采集面积不小于50mm2;适合低电压或小束流分析; 3)*探测器制冷和定位:采用三级帕尔贴制冷,最低工作温度可达零下80摄氏度;探头采 用马达控制的自动伸缩设计,可以在软件里实现控制,确保针对不同尺寸样品的定位精度; 4)元素分析范围Be4—U92; 5)免维护性:探头不包含冗余的前置放大电路板,随时可以断电,无需重新校正; 6)分辨率MnKa优于127eV,CKa优于56eV,F Ka优于64eV(20000CPS);在不同计数 率下谱峰稳定,分辨率衰减小于1eV; 7)输出最大计数率:大于500,000CPS谱峰无畸变,可处理最大计数率优于750,000CP S; 8)软件:64位能谱应用软件,操作简便界面清楚,直接读出电镜参数和仪器状态,结果 输出方便,适合于不同层次的用户尽快掌握; 9)谱定性分析:具备点、线、面扫描分析功能,高帽法扣除背景避免人为误差; 10)*谱定量分析:可对抛光表面或粗糙表面进行点、线和面的分析;具有虚拟标样法(间接 标样法)以及有标样法(直接标样法);可以方便的得到归一化和非归一化定量结果; 11)*谱峰稳定性:具备零峰设计,相对峰位稳定,无需铝铜双峰校准,保证数据重现性; 12)图像输出:支持BMP,TIFF, JPEG等流行的图像格式,对视场上任选区域进行能谱分析 和线、面扫描,可得到元素的线分布、常规面分布、快速面分布和定量面分布等,所支持电镜数字图像最大清晰度优于8192*8192,全息X射线成分图最大清晰度(live Spectrum Mapping)优于4096*4096. 13)*高级应用软件:针对地质领域,可以提供多视场自动叠加的数据拼接功能,实现大范 围面扫描和特征元素富集区域的自动分析; 14)图形处理器配置不低于:知名品牌,Intel Core i7-2600 处理器,8G以上内存,1TB硬 盘,DVD/RW 刻录光驱,24”平板液晶显示器,专用实验台等; 2、培训 要求卖方在用户现场进行技术培训,一年以后免费提供深入的技术培训课程,终生提供免费的应用咨询以及技术帮助 3、售后服务 3.1 安装:要求卖方到用户现场进行免费安装、调试、试运行。 3.2保修期1年 *3.3 国内有生产厂家独资建立的全套技术中心和演示实验室,探头返修或其它部件更换所无需返回原厂,节省时间和费用; *5.4 国内地质矿物行业近三年内有5台以上相同配置的销售业绩,需提供用户名单和联系方式

同步轮详细参数

同步轮详细参数 同步轮一般由钢,铝合金,铸铁,黄铜,塑料等材料制造。内孔有圆孔,D形孔,锥形孔等形式。表面处理有本色氧化,发黑,镀锌,镀彩锌,高频淬火等处理。精度等级依客户要求而定。产品广泛用于纺织、机床、烟草、通讯电缆、食品包装机械、石油化工、仪表仪器等行业的机械传动中。 斜齿同步带轮与直齿同步带的传动装置包括:斜齿同步带轮、斜齿同步带轮轴、直齿同步带轮、直齿同步带轮轴和同步带,所述斜齿同步带轮轴与直齿同步带轮轴为相错轴,斜齿同步带轮轴轴端装置斜齿同步带轮,直齿同步带轮轴轴端装置直齿同步带轮,且斜齿同步带轮的斜齿角度α与斜齿同步带轮轴与直齿同步带轮轴之间的相错夹角β相同,同步带套置于斜齿同步带轮和直齿同步带轮上。本装置可使其传动平稳,结构简单,安装方便。 同步轮的属性: 1、同步带轮是同步带传动链中的主要零件,它与同步带配套使用,轮齿与带齿啮动力。它是合了皮带传动、链传动和齿轮传动各自优点的新型带传动。 2、根据同步带轮的以上特点,它可以广泛应用于机械制造、纺织、机库、药品、化工、冶金、矿山、印刷、包装、仪器仪表、汽车、农机、石油化工等各类机械传动的传动中。 3、同步轮传动具有效率高,节能效果明显,齿轮与带齿之间无滑差,传动比准确,角速度恒定无需润滑,没有污染,可实现大速比、大中心及多轴传动,齿轮与带齿啮合圆滑,传动平稳,无噪音。 各种型号同步带轮产品: 梯形齿同步带轮 工艺孔(适用于欧洲市场和北美市场) BTL锥孔(适用于欧洲市场和北美市场) QTL锥孔(适用于北美市场) STL锥孔(适用于北美市场) 圆弧齿同步带轮 工艺孔(适用于欧洲市场和北美市场) BTL锥孔(适用于欧洲市场和北美市场) QTL锥孔(适用于北美市场) T型齿同步带轮 文章编辑:东莞永滔同步轮生产厂官方网:https://www.doczj.com/doc/8d9128094.html, huangkaijun

光谱仪原理

光纤光谱仪的原理及基础知识 2014-05-25 光谱学是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。 上海辰昶仪器设备有限公司是国内领先的光纤光谱仪的生产厂商,以“光谱引领生活”为理念,致力于为国内广大用户提供符合国情的一揽子光谱系统解决方案! 光谱仪器一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到单象元探测器上。单色仪中的入射和出射狭缝往往位置固定而宽度可调,可以通过旋转光栅来对整个光谱进行扫描。 在九十年代,微电子领域中的多象元光学探测器迅猛发展,如CCD 阵列、光电二极管(PD )阵列等,使生产低成本扫描仪和CCD 相机成为可能。光纤光谱仪使用了同样的CCD 和光电二极管阵列(PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。 由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。 光纤光谱仪的优点在于系统的模块化和灵活性。上海辰昶仪器的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。 ?光学平台设计 上海辰昶仪器的光谱仪采用Czerny-Turner 光学平台设计(如图1 所示)。 图1 EQ2000光学平台设计图

高效液相色谱仪技术参数

高效液相色谱仪技术参数 二、技术要求: 1 四元溶剂管理体系 *全套液相设备为原装进口设备;泵,进样器,检测器,柱温箱等均为国外制造。*1.1工作模式:相互独立、电子控制的双柱塞直线驱动装置,双压力传感器反馈回路,无需混合器和阻尼器(必须提供彩页证明) 1.2溶剂数:四元 1.3流速范围:0.001-10ml/min 1.4流速精度:≤0.075%RSD,不随反压变化 1.5流速准确度:±1.0%,不随反压变化 1.6延迟体积:<650μL,不随反压变化 1.7最大耐受压力:345bar(5000psi) 1.8梯度范围:设定范围0-100% 1.9梯度准确度:± 0.5% ,不随反压变化 1.10梯度精度:±0.15%RSD ,不随反压变化 *1.11梯度曲线:11种,包括线性、步进(2)、凸线(4)和凹线(4) 1.12脱气装置:具备4通道在线真空脱气机 1.13 带有自动柱塞清洗装置 *1.14具有操作面板,可以独立设定工作参数、显示运行状态(必须提供彩页证

明) 2 自动进样器 *2.1样品瓶数:120位,5个24位独立样品盘(必须提供彩页证明) 2.2进样次数:每个样品1~99次进样 2.3进样精度:≤ 0.5%RSD 2.4进样体积:0.1~100μL;可扩展至2000μL。 2.5进样线性度:> 0.999 2.6进样针清洗:针内外每次进样后通过专用流路自动清洗 2.7样品交叉污染度:≤ 0.005% 3 柱温箱 3.1温度范围:室温5℃至65℃ 3.2具有漏液报警功能 3.3 温控精度0.1℃ 4 紫外/可见光检测器 4.1波长范围:190~700nm 4.2光源:氘灯 4.3光谱带宽:5nm 4.4波长准确度:±1nm 4.5测量范围:0.0001~4.0000AUFS 4.6检测通道:2个 4.7基线噪音:< 5.0×10-6 AU 4.8基线漂移: ≤1.0×10-4AU/hr/℃ 4.9采样频率:80Hz 4.10波长、极性和灯源开关均可时间编程控制 4.11内置硝酸铒滤光片用于波长校准及校正,紫外光、可见光都可以校正。用256.7nm、379.0nm、521.5nm及656.1nm共四个波长校正。开机时校准,随时可以进行校正

同步带及带轮规格尺寸表

3M 型同步带轮尺寸表 单位:(mm) 规格齿数节径 d 外径 do 档边直径 df 档边内径 db 档边厚度 h 15-3M 15 14.32 13.56 18 10 1 16-3M 16 15.28 14.52 18 10 1 17-3M 17 16.23 15.47 22 11 1 18-3M 18 17.19 16.43 22 11 1 19-3M 19 18.14 17.38 22 11 1 20-3M 20 19.10 18.34 22 11 1 21-3M 21 20.05 19.29 22 11 1 22-3M 22 21.01 20.25 25 15 1 23-3M 23 21.96 21.20 25 15 1 24-3M 24 22.92 22.16 26 17 1 25-3M 25 23.87 23.11 26 17 1 26-3M 26 24.83 24.07 29 18 1 27-3M 27 25.78 25.02 29 18 1 28-3M 28 26.74 25.98 129 18 1 30-3M 30 28.65 27.89 32 21 1 32-3M 32 30.56 29.80 34.5 24.5 1 34-3M 34 32.47 31.71 37.8 28 1 36-3M 36 34.38 33.62 40 27 1 38-3M 38 36.29 35.53 40 27 1 40-3M 40 38.20 37.44 44 32 1 42-3M 42 40.11 39.35 44 32 1 44-3M 44 42.02 41.26 48 38 1 46-3M 46 43.93 43.17 48 38 1 48-3M 48 45.84 45.08 48 38 1 50-3M 50 47.75 46.99 51 36 1 60-3M 60 57.30 56.54 61 45 1.5 72-3M 72 68.75 67.99 73 61 1.5

原子吸收光谱仪参数

原子吸收光谱仪配置及参数指标(约66万) 厂家:美国PE公司 型号:900T 1. 系统描述 火焰、石墨炉一体机原子吸收光谱仪,无须切换。 2. 光学系统和检测器 2.1实时双光束系统,全光纤光路;自动选择波长和峰值定位; 2.2波长范围:190-900nm ; 2.3光栅刻线密度:≥1800条/mm ; *2.4双闪耀波长:236nm及597nm;在整个紫外/可见区都有高的光强度; *2.5光栅有效刻线面积:≥60mm×60mm; 2.6光谱带宽:0.2、0.7、2.0nm,软件控制狭缝宽度和高度均可自动选择; 2.7灯架数:≥8灯灯架,无需转动灯,可连接空心阴极灯、无极放电灯,自动选 灯,自动准直,自动识别灯名称和设定灯电流推荐值; *2.8检测器:阵列式多象素点固态检测器,在紫外区和可见区都有最大的灵敏度,样品光束和参比光束同时检测。 3. 火焰系统 3.1气体控制:三路气体控制,全计算机控制和监视燃气、助燃气; 3.2安全保护:燃烧头识别,燃烧头安装,端盖安装,雾化器安装,水封,水位监控,火焰监控,高温监控,突然断电仪器会从任何操作方式按预设程序自动关机; 3.3燃烧器系统:全钛燃烧头,火焰在光路中自动准直,燃烧器的垂直、水平位置自动调节,任意角度转动,自动位置最佳化。 3.4燃烧系统:可调式通用型雾化器,耐腐蚀,带宝石喷嘴,Ryton材料预混室; 3.5点火方式:计算机控制自动点火; 3.6排液系统:排液系统前置以利于随时检测,确保安全。 4. 石墨炉系统 4.1气体控制:内、外气流由计算机单独控制,绝对分开,氩气消耗量<0.7L/min; 4.2电源:石墨炉电源内置,直流电加热。 *4.3温度控制:TTC真实温度控制,实时功率补偿;石墨炉温度准确度≤±10℃; 4.4石墨管:一体化弧型平台石墨管,可50uL大体积进样。

光谱仪基础知识

第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。 定义单位 α - (alpha) 入射角度 β - (beta) 衍射角度 k - 衍射阶数整数

定义单位 n - 刻线密度刻线数每毫米 D V - 分离角度 μ - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ 0 = λ/μ 1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。 长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度围,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。 2 00πd v e K v N f KN mc +∞-∞ ==?

光谱仪基础知识概要

光谱仪基础知识概要 第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见& ). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,0=空气中的波长。 定义单位 α - () 入射角度 β - () 衍射角度 k - 衍射阶数整数 n - 刻线密度刻线数每毫米 - 分离角度

光谱仪基础知识概要 定义单位 μ0 - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ0 = λ/μ0 1 = 10-6 ; 1 = 10-3 ; 1 A = 10-7 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角成为常数,由下式决定, (1-2) 对于一个给定的波长l ,如需求得a和b ,光栅方程(1-1)可改写为: (1-3) 假定值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

HTD-8M同步带轮尺寸表

HTD型同步带轮设计计算

外圆直径d a 齿 形 尺 寸 齿槽弧半径R0.91±0.02 1.56±0.05 2.57±0.08 4.63±0.10 6.84±0.12 齿槽深h g 齿槽角2 ≈14°14°14°14°14°齿顶圆角半径r1 节顶距2a0.762 1.144 1.372 2.790 4.320 圆弧同步带轮齿型尺寸(单位:MM) 型号节距齿高底圆半径齿槽宽齿顶圆半径齿形角 3M 3 1.28 0.91 1.9 0.3 ≈14° 5M 5 2.16 1.56 3.25 0.48 ≈14° 8M 8 3.54 2.57 5.35 0.8 ≈14°

14M 14 6.2 4.65 9.8 1.4 ≈14° HTD-8M同步带轮尺寸表(节距=8.00mm) 规格齿数节径d 外径do 档边直径df档边内径db档边厚度h 22-8M22 56.02 54.65 6145 1.5 23-8M23 58.57 57.2 6448 1.5 24-8M24 61.12 59.75 6852 1.5 25-8M25 63.66 62.29 7555 1.5 26-8M26 66.21 64.84 7555 1.5 27-8M27 68.75 67.38 7555 1.5 28-8M28 71.3 69.93 8060 1.5 30-8M30 76.39 75.02 82 64 1.5 32-8M32 81.49 80.12 90 70 1.5 34-8M34 86.58 85.21 98 78 1.5 36-8M36 91.67 90.3 98 78 1.5 38-8M38 96.77 95.4 106 88 1.5 40-8M40 101.86 100.49 108.5 90 1.5 42-8M42 106.95 105.58 115 95 1.5 44-8M44 112.05 110.68 123 103 1.5 46-8M46 117.14 115.77 123 103 1.5 48-8M48 122.23 120.86 131 111 1.5 50-8M50 127.32 125.95 138 118 1.5 64-8M64 162.97 161.6 72-8M72 183.35 181.98 80-8M80 203.72 202.35 90-8M90 229.18 227.81 112-8M112 285.21 283.84

原子吸收光谱仪技术参数

原子吸收光谱仪技术参数 一、仪器系统 原子吸收光谱分析系统,包括火焰分析系统和石墨炉分析系统,可进行火焰发射、火焰吸收光谱分析和石墨炉原子吸收光谱分析。 二、操作环境 电源:AC 220V +/- 10%, 50/60Hz 环境温度:10-35℃ 环境湿度:20% - 80% 三、光谱仪主机系统 1、主机 ※火焰-塞曼石墨炉一体机,火焰-石墨炉无需机械切换,切换时无需拆卸自动进样器。 2、光学系统 1) ※光路结构:单光束/双光束自动切换,通过软件自动切换; 2) 波长范围:190-900nm; 3) ※光栅刻线密度:≥1800条/mm; 4) 光栅有效刻线面积:≥50×50 mm2; 5) 狭缝:0.2,0.5,0.8,1.2nm可调; 6) 波长设定:全自动检索,自动波长扫描; 7) 焦距:≥350mm; 8) 波长重复性:≤ +/- 0.3nm; 9) 仪器光谱分辨能力:Mn 279.5 –279.8之间峰谷与279.5nm 峰高之比≤30%; 10) 灯座:≥ 6灯座(全自动切换); 11) 灯电流设置:0-30mA,计算机自动设定;有下一灯预热和自动关灯功能; 12) 检测器:宽范围光电倍增管。 3、火焰分析系统 1) 燃烧头:10cm缝长,全钛金属材料,耐高盐耐腐蚀,带识别密码; 2) 燃烧头位置调整:高度自动调整,可旋转; 3) ※雾化器:撞击球外部可调,Pt/Rh中心管,耐腐蚀(可使用氢氟酸); 4) 气体控制:全自动计算机控制,流量自动优化; 5) 撞击球:可在点火状态下进行外部调节和优化最佳位置;

6) 安全系统:有完善的安全连锁系统,包括废液瓶液面传感器控制; 7) 点火方式:自动点火; 8) 代表元素检测指标: Cu:特征浓度≤ 0.035 mg/L 检出限≤ 0.005 mg/L RSD ≤ 0.5%。 4、火焰背景校正 1) ※背景校正方法:氘空心阴极灯,电子调谐; 2) 校正频率:300Hz; 3) 背景校正能力:优于2.5Abs。 5、石墨炉分析系统 1) 可升级为直接固体进样分析系统; 2) 系统配置:必须配备石墨炉自动进样器; 3) ※石墨炉加热方式:横向加热方式; 4) ※石墨炉工作温度:室温至3000℃;最大升温速率:≥2900℃/秒,可调; 5) 加热控温方式:全自动,自动温度校正; 6) 升温方式:阶梯升温、斜坡升温; 7) 石墨管:普通管、热解管、平台管和固体分析专用管多种可选; 8) 测定方式:峰高,峰面积任意选择和互换; 9) 代表元素检测指标: Cd:检出限≤ 0.01 ug/L (2ppb)RSD ≤ 2% 10) 保护气控制:计算机自动控制,内外气流分别单独控制; 11) 操作软件:可自动优化最佳灰化和原子化温度; 全自动仪器及附件控制,数据采集和 分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化石墨炉操作参数,自检和自诊断功能。 6、石墨炉背景校正 1) 石墨炉背景校正方法:两种,交流塞曼效应与氘空心阴极灯背景校正,可切换; 2) ※磁场强度:0.1~1.0T连续可调,步进:0.1T; 3) 校正模式:2-磁场和3-磁场两种模式任意切换。 7、石墨炉自动进样器

原子吸收光谱仪900T作业指导书

一、安全使用注意事项 1、用气安全 1)、乙炔会爆炸,气路一定得检漏,与助燃气应单独存放,做到人走气关,不用气关;2)、打开气瓶时脸部不要正对表头,防止因表头质量问题导致人体的伤害; 3)、重新拆卸燃烧室后一定检查各个密封圈是否良好,尤其是雾化器处的密封圈。检查乙炔气路有否泄露。 2、强磁场 使用石墨炉时,当塞曼启动时,米的范围内有强磁场,因此,带有心脏起搏器的人要远离仪器,会被磁化的物件远离仪器。 二、火焰部分 1、开机 1)、开机前的准备工作 将空压机的插头插上,顺时针关闭空压机的放气钮,检查空气压力是否为350-400KPa(一定得等空气压力到达标准后才可开主机电源)。 2)、打开墙壁上的空气开关,打开电脑电源。 3)、打开主机电源,等主机初始化完毕后(约30秒),双击软件联机。 2、编辑方法(以Cu为例) 1)、点击,2)、点击,3)、元素选中Cu,点击,信号类型一般选择吸收,复杂样品选择吸收-背景。其余默认即可。 4)、点击,修改重复次数。其余参数默认。 5)、点击,一般选线性过原点。 6)、点击,输入空白,标准及浓度。7)、方法中的其余参数按照默认的即可。 8)、方法编辑完后,可以点击、,检查方法是否合适,如果不合适,按照提示修改方法。 9)、保存方法。依次点击,,。在名称处输入方法的名字,点击确定保存方法。 3、点灯 点击,出现图2-4-1(假设Cu灯放在3号位)。开/关:点亮/熄灭灯;灯3:将Cu灯点

亮且将仪器波长设置到处。是将灯扣背景的氘灯打开。国产灯需要手动输入灯元素符号和灯电流。 4、点火 1)、打开排风。 2)、打开乙炔气瓶,检查乙炔压力,保证主表大于(使用后的压力,使用前应比大很多),次级表压力位于90-100KPa。一定得检查乙炔有否漏气。 3)、点击,出现图2-5-1。检查安全互锁装置是否好。好,不好。不好时点击该红色区域将提示互锁原因。可能的原因有:A、燃烧头安装位置是否正确;B、雾化器安装位置是否正确;C、排放系统的水封、水满;D、乙炔压力是否合适;E、空气压力是否合适。 4)、点击点燃火焰(互锁装置好的时候才能点燃火焰)。检查火焰的高度及颜色有否异常。 5、测量数据 1)、分析前准备: A、点击, B、保存数据:点击中,在名称处输入结果的文件名,点击确定保存结 果。 2)、分析标样空白:吸入空白,点击分析空白。 3)、分析标样:吸入标样1,点击分析标样1。依次分析其余标样。标样分析完后,点击可以看标准曲线,标准曲线的相关系数应>才可。 4)、分析试样空白:吸入试样空白,点击分析试样空白,结果在中显示。 5)、分析试样:吸入试样1,点击分析试样1。依次分析其余试样,结果在中显示。

光谱仪重要参数定义

光谱仪重要参数定义 ◆CCD 电荷耦合器件(Charger Coupled Device,缩写为CCD ),硅基光敏元件的响应范围在短波近红外区域。 ◆PDA 二极管阵列(Photodiode Array,缩写为PDA)、光电二极管阵列就是由多个二极管单元(象素)组成的阵列,单元数可以就是102,256或1024。当信号光照射到光电二极管上时,光信号就会转换成电信号。大部分光电二极管阵列都包括读出/积分放大器一体式的集成化信号处理电路。光电二极管的优点就是在近红外灵敏度高,响应速度快;缺点就是象元数较少、在紫外波段没有响应。 ◆薄型背照式 薄型背照式电荷耦合器件(BT—CCD,Back Thinned Charge Coupled Device),采用了特殊的制造工 艺与特殊的锁相技术。首先,与一般CCD相比,硅层厚度从数百微米减薄到20μm以下;其次,它采用背照射结构,因此紫外光不必再穿越钝化层。因此,不仅具有固体摄像器件的一般优点,而且具有噪声低,灵敏度高、动态范围大的优点。 BTCCD有很高的紫外光灵敏度,它在紫外波段的量子效率可以瞧到,在紫外波段,量子效率超过40%,可见光部分超过80%,甚至可以达到90%左右。可见,BTCCD不仅可工作于紫外光,也可工作于可见光,就是一种很优秀的宽波段检测器件。 ◆狭缝 光源入口。狭缝面积影响通过的光强度。狭缝宽度影响光学分辨率。 ◆暗电流 未打开光谱仪激发光源时,感光器件接收到的光电信号。主要影响因素有温度,电子辐射等。 ◆分辨率 光学分辨率定义为光谱仪可以分开的最小波长差。要把两个光谱线分开至少要把它们成象到探测器的两个相临象元上。分辨率依赖于光栅的分辨本领、系统的有效焦长、设定的狭缝宽度、系统的光学像差以及其它参数。光栅决定了波长在探测器上可分开的程度(色散),这对于分辨率来说就是一个非常重要的变量。另一个重要参数就是进入到光谱仪的光束宽度,它基本上取决于光谱仪上安装的固定入射狭缝或入射光纤 芯径(当没有安装狭缝时)。狭缝的尺寸有:10,25或50μm×1000μm(高)或100,200或500μm×2000μm(高)。在指定波长处,狭缝成象到探测器阵列上时会覆盖几个象元。而如果要分开两条光谱线,就必须把它们色散到这个象尺寸加上一个象元。当入射光纤的芯径大于狭缝的宽度时,分辨率就要由狭缝的宽度(有效宽度)来决定。 光谱仪分辨率可近似如下度量:R∝M·F/W 其中M为光栅线数,F为谱仪焦距, W为狭缝宽度。 ◆色散 光谱仪的色散决定其分开波长的能力。光谱仪的倒线色散可计算得到:沿光谱仪的焦平面改变距离χ引起波长λ的变化,即:Δλ/Δχ=dcosβ/mF 这里d、β、F分别就是光栅刻槽的间距、衍射角与系统的有效焦距,m为衍射级次。由方程可见,倒线色散不就是常数,它随波长变化。在所用波长范围内,变化可能超过2倍。 ◆光栅与闪耀波长

能谱仪_技术参数

牛津仪器Inca X-act能谱仪详细配置及功能 1.专利的分析型SDD硅漂移探测器 ?SuperATW窗口,10mm2有效面积; ?在MnKα处的分辨率: 优于127eV ?稳定性: 1,000cps—100,000cps 谱峰漂移<1eV,分辨率变化<1eV ? 48小时内谱峰漂移<1eV (Mn Ka) ?峰背比20,000: 1 (Fe 55, Mn Ka) ?分析元素范围:Be4-Pu94 2.INCA 系统 --系统计算机 ?HP DC8000 --系统桌 显微分析处理器(分立式设计) --Inca X-strea mⅡ显微分析处理器 ?探测器高压偏压电源。 ?6个程序可选时间常数和4个能量范围(10, 20, 40, 80KeV)的数字信号处理器 ?计算机控制的数字脉冲处理器,输出最大计数率350,000CPS, 可处理最大计数率850,000CPS, ?活时间校正。三个鉴别器覆盖全范围的反脉冲堆积,直至下限铍。 ?数字零点稳定器。 ?探测器控制系统。 --Inca Mics显微分析处理器 ?带有存储器和辅助电路的高速微控制器,用以收集和处理X射线信号。 ?IEEE1394 数据接口,用以高速传输数据到系统计算机。 ?二个RS232串口或一个RS232串口和一个LASERBUS口。 ?线性电源 ?符合美国和欧洲电磁规定,并执行CE标记。 ?SUPERSCAN – 先进的超级数字扫描系统。 ?包括Kalman噪声限制程序,在快速扫描和限制图像噪声之间兼顾和控制。 ?同步图像收集和数据传输到PC(零等待)。 ?电镜图像接口电缆。 INCA软件导航器 ?真正的32位软件 ?独一无二的导航器界面, 非常友好,全中文操作界面, 引导用户从启动分析项目到打印实验报告的全部显微分析过程。 ?用户可容易地在导航器之间切换,直接面对工作流程和IMS,以便直接看到自动分析过程的进展。

原子吸收参数

原子吸收光谱仪购置技术指标与要求 一、项目的具体参数和要求 1. 基本要求 1.1 能按国家标准分析方法定量测定食品、水、废水、土壤中等(常量、微量 或痕量)金属元素。 1.2火焰-塞曼石墨炉一体机,仪器具有全套安全连锁系统。自动监控燃烧头 类型、喷雾器系统、排液系统、燃烧系统、压力系统、温度系统、电系统,当任意部分出现异常或断电时自动连锁和关火。 2. 主要技术要求 2.1光学系统 2.1.1火焰法是“实时”双光束(同时检测样品和参比光束) 2.1.2波长范围:190 – 900 nm。 2.1.3★光栅密度:1800 条/毫米。 2.1.4★双闪耀波长:236 nm和597 nm。 2.1.5★光栅面积:64 × 72 mm。 2.1.6线性色散倒数:1.6 nm/mm。 2.1.7★光谱通带:0.2-2.0 nm,马达狭缝驱动自动狭缝选择(包括高和低高 度自动选择)。 2.2光源系统 ★2.2.1 8灯系统:全自动8灯灯架,有下一灯预热功能和自动关灯功能。 2.2.2 同时点灯数目:可同时点亮4个灯。 2.2.3 灯电流设置:计算机全自动控制。 2.2.4 灯电流范围:0–40 mA。 2.2.5 灯位置优化:全自动调节。 2.3★检测器:固态检测器 2.4石墨炉原子化器

2.4.1★石墨炉类型:横向加热石墨炉 2.4.2温度范围:室温到2600℃以上,增量10℃。最大升温速率:2600 C/秒,可调。 2.4.3最大气体流量:<0.7升/分。 2.4.4石墨炉打开和关闭:由软件指令气动式操作 2.4.5实际温度控制(TTC):自动功率补偿,原子化温度不受电压和石墨管电阻变化影响,温度保持稳定。 2.4.6★背景校正:使用一个调制的0.8特斯拉磁场的纵向交变塞曼效应背景校正。 2.4.7石墨炉加热电流:直流电,避免交流电周期影响,吸收峰更加平滑。2.4.8自动基线漂移校正(BOC):测量前自动零点校正,长时间测定基线稳定。 2.4.9冷却系统:自启动的循环热交换系统。 2.4.10石墨炉位置优化:由计算机自动控制。 2.4.11升温方式:阶梯升温、斜坡升温。 2.5火焰原子化器 2.5.1 气体控制:全计算机控制的燃气和助燃气监控。燃气和助燃气的全流量控制。 2.5.2 安全功能:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火。 2.5.3 燃烧系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。 2.5.4 预混合室:一个高强度的惰性预混合室,可同时检测水溶液和有机溶液。 2.5.5 雾化器:Pt/Ir 合金毛细管与四氟乙烯喷嘴雾化器或可调节的耐腐蚀雾化器(由PEEK 材料制造)。 2.6 石墨炉自动进样器 2.6.1★样品数目:88 和 148。 2.6.2进样体积:1 到99微升,增量1微升。

同步带轮的型号

同步带轮 同步带轮一般由铝合金, 45#钢, 铜,尼龙等材料加工而成,其中铝合金和45#钢最为常见。广泛用于自动化设备、机床、医疗、激光、纺织、印刷、食品包装等机械带传动中。 下表附同步带轮的基本信息: 同步带轮分为标准同步带轮和非标同步带轮。 标准同步带轮是按照国际统一标准,其齿数、适应皮带宽度、带轮形状、轴孔规格、轴孔径等各参数是固定值。 非标品,是工程师在标准品的基础上改动某些数值,或是完全根据需求做出的新设计.

同步带轮规格型号 同步带轮规格型号众多,按齿形大致可以分为:方型齿同步带轮、圆弧齿同步带轮、梯形齿同步带轮。 一、方型齿同步带轮规格型号 MXL、 XL、L、H、XH、 XXH 方型齿同步带轮是目前市场是运用范围最广的。 二、半圆弧齿同步带轮规格型号 S2M、S3M、S4.5M、S5M、S8M、S14M、8YU 半圆弧齿同步带轮是高扭矩同步还是高精度同步,生产精度要求高。 三、全圆弧齿同步带轮规格型号 HTD3M、 HTD5M、 HTD8M、 HTD14M、 HTD20M 全圆弧齿同步带轮传动精度高,噪音小。 四、精确圆弧齿同步带轮规格型号 1.5GT、 2GT、 3GT、 5GT 该齿型同步带轮一般用于高精传动,一般运用在自动化控制设备上。 五、修正圆弧齿同步带轮规格型号 P2M、P3M、 P5M、 P8M 修正圆弧齿同步带轮齿型为兔牙型,转弯效果好,适合高速传动。一般用于机械手设备。 六、梯形齿同步带轮规格型号 T2.5、T5、T10、T20 T型为全梯型齿,较适合轻载传动。 AT5、AT10、AT20 AT型的齿型跟T型的差别底部为圆弧齿,传动会更精密一点,传动间隙小,当然噪音也会小些。适合重载传动。

相关主题
文本预览
相关文档 最新文档