当前位置:文档之家› 光电材料的应用

光电材料的应用

光电材料的应用
光电材料的应用

项目编号:

理学院教学、科研

项目立项申请书(讨论稿)

学科门类:工学

项目名称:光电材料的应用

申请者:王茜娜

承担单位:烟台南山学院理学院

协助单位:

填表日期:2009年11月30

理学院编制

2008.11.18

填表说明及填写要求:

一、本申请书各项内容要实事求是,逐条认真填写。表达要明确、严谨,字迹要清晰易辨。外语要同时用原文和中文表达。第一次出现的缩写词,须注出全称。

二、封面“项目编号”一栏由学院秘书填写。

三、院内项目申请书一式三份(电子版),申请人存根一份,申请人所在教研室一份,学院留存一份。

四、部分栏目填写要求:

1、学科门类:分理学、工学、农学、医学、哲学、经济学、法学、教育学、文学、历史学、管理学共11类。

2、项目名称:应确切反映项目内容,不超过25个汉字(含标点符号)。

3、项目内容性质:以下第“五”中所列“项目内容性质”仅供填表时参考。

4、所属学科领域:申请课题所需的基础学科。如涉及多学科可填写两个,先填为主学科。

5、项目组成员:指在项目组内对学术思想、技术路线的制定与理论分析及对项目的完成起主要作用的人员。

五、“项目内容、性质”简介

1、专业建设方面

1.1专业建设调研报告;

1.2专业建设方案;

1.3专业群方向模块课程设计;

1.4岗位群针对性课程设计;

1.5专项技能模块课程设计;

1.6专业招生与就业;

1.7实验实训方案的设计与可行性分析;

1.8校企合作的初步探索;

1.9产学研办学模式的创新设想初探;等等.

2、课程建设方面

2.1课程年鉴自查报告;

2.2教材建设(教材,讲义,学习指导书,复习资料等);

2.3选修课的选题与申报;

2.4根据烟台南山学院的培养目标,对同一课程、不同教材版本的分析对比研究;

2.5“数学建模”的开课、组队、辅导与参赛;

2.6课程网络媒体资源建设;

2.7精品课程建设;

3、师资队伍建设方面

3.1师资队伍结构梯队建设(职称结构、年龄结构、知识结构);

3.2传帮带的经验总结和创新实践;

3.3教育、教学研究团队建设;

3.4科学研究团队建设;

3.5学术报告;

3.6专题讲座;

3.7学校、理学院两级优秀教师的评选条件及评选结果的利用;

4、教学研究与教学改革方面

4.1职业教育研究动态的跟踪、整理报道;

4.2第三届民办教育南山论坛“论文写作”;

4.3创新教育理念和教学模式研究;

4.4教学内容的改革与实践;

4.5教学手段改革初探;

4.6教学方法改革研究;

5、科学研究方面

5.1基础研究:指以认识自然现象、探索自然规律为目的,不直接考虑应用目标的研究活动。

5.2应用基础研究:指有广泛应用前景,但以获取新知识、新原理、新方法为主要目的的研究。

5.3应用研究:为了确定基础性研究成果或知识的可能的用途,或是为达到某一具体目的、预定的实际目的确定新的方法(原理性)或途径的研究。

5.4试验发展:指利用从科学研究和实际经验中所获得的现有知识、生产新材料、新产品、新装置、新流程和新方法,或对现有的材料、产品、装置、流程、方法进行本质性的改进而进行的系统性工作。

6、理学院的管理改革与创新方面

6.1课堂教学质量的监控、考核与评价及考核结果的利用;

6.2年终考核的改革与创新以及考核结果的使用;

6.3优秀教师的评选程序研究;

6.4教研室工作的考核与评价及其考核结果的使用;

6.5理学院工会的职责及其考核;

6.6大学物理实验室规范管理初步设想;

6.7面向双证理工专科物理实验项目的开发及大学物理实验室仪器的充分利用;

6.7理学院报刊文档的收取与管理;

6.8理学院网站的维护与管理;

6.9理学院创新管理理念研究;

6.10教学、科研立项项目的评审、鉴定与评价及鉴定结果的使用;

(完整版)光电材料

目录 目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2 2.1光电材料的分类 --------------------------------------------------------------------- 2 2.2有机光电材料的应用 ---------------------------------------------------------------- 3 2.2.1有机太阳能电池材料--------------------------------------------------------- 3 2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4 2.2.3有机生物化学传感器--------------------------------------------------------- 4 2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4 2.2.5有机非线性光学材料--------------------------------------------------------- 5 2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5 2.2.7聚合物光纤------------------------------------------------------------------- 6 2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6 2.2.9 有机光电导材料 ------------------------------------------------------------- 6 2.2.10 能量转换材料 -------------------------------------------------------------- 7 2.2.11 染料激光器----------------------------------------------------------------- 7 2.2.12 纳米光电材料 -------------------------------------------------------------- 7 3 光电转化性能原理 ------------------------------------------------------------------------- 7 4 光电材料制备方法 ------------------------------------------------------------------------- 8 4.1 激光加热蒸发法 ------------------------------------------------------------------- 8 4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8 4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9 4.4 激光气相合成法 ------------------------------------------------------------------ 9 5 光电材料的发展前景---------------------------------------------------------------------- 10

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

光电功能材料知识点剖析

知识点补遗 1,光电功能材料按物质分类 答:根据材料的物质性进行分类:金属功能材料;无机非金属功能材料;有机功能材料;复合功能材料。 2,晶体的主要特征有哪些? 答:晶体在宏观上的基本特性:自范性、均一性、对称性、异向性、稳定性。自范性:是指晶体具有自发地形成封闭的几何多面体外形,并以此为其占有空间范围的性质。 均一性:晶体在它的各个不同部分上表现出相同性质的特性,是晶体内部粒子规则排列的反映。 异向性:晶体内部粒子沿不同方向有不同的排列情况,从而导致在不同方向上表现出不同的宏观性质。 对称性:晶体的性质在某一方向上有规律地周期的出现 稳定性: 3,介电晶体的效应有哪些?分别有多少个点群? 答: (1)压电效应:压电模量,三阶张量,非中心对称晶体。 (2)电致伸缩效应:电致伸缩稀疏,四阶张量, 所有晶体。 (3)热释电效应:热释电稀疏,一介张量,极性 晶体,可自发计划。 (4)铁电晶体:自发极化能随外加电场改变的晶 体。 各种介电晶体(数字表示此类性质的晶类数): 压电效应: 晶体在受到机械应力的作用时,在其表面上会出现电荷,成为正压电效应。应力是二阶对称张量,其两个下标可以对调,压电模量是三阶张量,从而导致压 电模量中的后两个下标可以对调,此时压电效应可以写成: 逆压电效应:当电场加到具有压电效应的晶体上时,晶体将发生应变。 电致伸缩效应 当作用在晶体上的电场很强时,晶体的应变与电场不是线性关系,必须考虑

平方项,引起应变中的平方项称为电致伸缩效应。, iljk V 成 为电致伸缩系数。 热释电效应 晶体在温度发生变化时,产生极化现象,或其极化强度发生变化,称为热释电效应。当温度较小时,晶体极化强度变化与温度为线性关系。 电热效应:热释电效应的逆效应,即将某种热释电晶体置于电场中,会观察到温度变化。热释电材料主要用于红外探测。 晶体的铁电性质 在外场的作用下,自发极化的方向可以逆转或可以重新取向的热释电晶体。 铁电晶体的分类: (1)无序-有序型铁电晶体(软铁电体) (2)位移型铁电体(硬铁电体):含有氧八面体构造基元者,也称钙铁矿型铁电体,如铌酸锂、钛酸钡等。 铁电体的宏观特性: (1)电滞回线:铁电体和非铁电体的判据。 非铁电晶体:P-E 关系为线性的。 铁电晶体:P-E 存在电滞回线。 (2)居里温度:晶体的铁电性质在一定的温度范围内存在,如钛酸钡晶体,温度低于120摄氏度是铁电项,高于120摄氏度铁电性消失。实际上是一个相变过程。 部分铁电晶体没有居里温度点,因为未达到相变温度时晶体已经溶解。 4,光率体的表达式和特征,三个轴与椭球截距的意义,折射率面,不沿主轴方向,通过晶体后引起的光程差的判定。 答:上册P-31 5,晶体的非线性光学——香味匹配条件以及实现相位匹配的途径(一种) 答:当激光的光强较强时,其通过物质时,物质内部极化率的非线性响应会对光波产生反作用,可能产生入射光波在和频和差频处的谐波,这种与强光有关不同于非线性光学现象的效应称为非线性效应。 混频效应:和频、差频 当作用于晶体的光场包含两种不同的频率ω1和ω2时,就会产生第三种频率ω 3的光, ω3 =ω1 +ω2相加的称为和频,ω3 =ω1 ?ω2相减的称为差频。 位相匹配: 在二级非线性极化的倍频过程中,入射光波在它经过的各个地方产生二次极化波,各个位置的二次极化波都发射出二次谐波,这些二次谐波在晶体中传播并相互于涉,相互干涉的结果,就是在 实验中观察到的二次谐波强度.这个强度与这些二次谐波的位相差有关.如果位相差为零,即各个二次谐波的位相一致,则相干加强,我们就能观察到产生的二次谐波.反之,则相干相消,我们就观察不到二次谐波。只有当入射光波的传播

-纳米光电材料

纳米光电材料 1.定义:纳米材料是一种粒子尺寸在1到100nm的材料。纳米光电材料是指能够将光能转化为电能或化学能等其它能量的一种纳米材料。其中最重要的一点就是实现光电转化。 其原理如下: 光作用下的电化学过程即分子、离子及固体物质因吸收光使电子处于激发态而产生的电荷传递过程。当一束能量等于或大于半导体带隙( Eg) 的光照射在半导体光电材料上时,电子(e-) 受激发由价带跃迁到导带,并在价带上留下空穴(h + ),电子与孔穴有效分离,便实现了光电转化[1]。 2.分类:纳米光电材料的分类 纳米光电材料按照不同的划分标准有不同的分类,目前主要有以下几种: 1. 按用途分类:光电转换材料:根据光生伏特原理,将太阳能直接转换成电能的一种半导体光电材料。目前,小面积多结GaAs太阳能电池的效率超过40 %[2]。 光电催化材料:在光催化下将吸收的光能直接转变为化学能的半导体光电材料,它使许多通常情况下难以实现或不可能实现的反应在比较温和的条件下能够顺利进行。例如,水的分解反应,该反应的ΔrGm﹥﹥0在光电材料催化下,反应可以在常温常压下进行[3] 2. 按组成分类: 有机光电材料:由有机化合物构成的半导体光电材料。主要包括酞青及其衍生物、卟啉及其衍生物、聚苯胺、噬菌调理素等; 无机光电材料:由无机化合物构成的半导体光电材料。主要包括Si、TiO2、ZnS、LaFeO3、KCuPO4·6H2O、CuInSe2等; 有机与无机光电配合物:由中心金属离子和有机配体形成的光电功能配合物。主要有2,2-联吡啶合钌类配合物等[4]。 3. 按形状分类 纳米材料大致可分为纳米粉末、一维纳米材料、纳米膜等。 纳米粉:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原

有机光电材料研究进展.

有机高分子光电材料 课程编号:5030145 任课教师:李立东 学生姓名:李昊 学生学号:s2******* 时间:2013年10月20日

有机光电材料研究进展 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机晶 体管、有机太阳能电池、有机传感器和有机存储器这些领域的应用,还对有机光电材料的未来发展进行了展望。 关键词:有机光电材料;有机发光二极管;有机晶体管;有机太阳能电池;有机传感器;有机存储器 Abstract:This paper reviewed the research progress in organic optoelectronic materials, and its application in fields of organic light emitting diodes(OLED), organic transistors, organic solar cells, organic sensors and organic memories , but also future development of organic photoelectric materials was introduced. Keywords:organic optoelectronic materials; organic light emitting diodes(OLED); organic transistors;organic solar cells; organic sensors; organic memories 0.前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。近几年来,基于有机高分子光电功能材料的研究一直受到科技界的高度关注,已经成为化学与材料学科研究的热点,该方面的研究已成为21世纪化学、材料领域重要研究方向之一,并且取得了一系列重大进展。 1.有机发光二极管 有机电致发光的研究工作始于20 纪60 年代[1],但直到1987 年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(OLED)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED具有低成本、小体积、超轻、超薄、高分辨、高速率、全彩色、宽视角、主动发光、可弯曲、低功

纳米光电材料

纳米光电材料 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

纳米光电材料 1.定义:纳米材料是一种粒子尺寸在1到100nm的材料。纳米光电材料是指能够将光能转化为电能或化学能等其它能量的一种纳米材料。其中最重要的一点就是实现光电转化。 其原理如下: 光作用下的电化学过程即分子、离子及固体物质因吸收光使电子处于激发态而产生的电荷传递过程。当一束能量等于或大于半导体带隙(Eg)的光照射在半导体光电材料上时,电子(e-)受激发由价带跃迁到导带,并在价带上留下空穴(h+),电子与孔穴有效分离,便实现了光电转化[1]。 2.分类:纳米光电材料的分类 纳米光电材料按照不同的划分标准有不同的分类,目前主要有以下几种:1.按用途分类: 光电转换材料:根据光生伏特原理,将太阳能直接转换成电能的一种半导体光电材料。目前,小面积多结GaAs太阳能电池的效率超过40%[2]。 光电催化材料:在光催化下将吸收的光能直接转变为化学能的半导体光电材料,它使许多通常情况下难以实现或不可能实现的反应在比较温和的条件下能够顺利进行。例如,水的分解反应,该反应的ΔrGm﹥﹥0在光电材料催化下,反应可以在常温常压下进行[3] 2.按组成分类: 有机光电材料:由有机化合物构成的半导体光电材料。主要包括酞青及其衍生物、卟啉及其衍生物、聚苯胺、噬菌调理素等; 无机光电材料:由无机化合物构成的半导体光电材料。主要包括Si、TiO2、ZnS、LaFeO3、KCuPO4·6H2O、CuInSe2等; 有机与无机光电配合物:由中心金属离子和有机配体形成的光电功能配合物。主要有2,2-联吡啶合钌类配合物等[4]。 3.按形状分类 纳米材料大致可分为纳米粉末、一维纳米材料、纳米膜等。 纳米粉:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中问物态的固体颗粒材料。 一维纳米材料:指直径为纳米尺度而长度较大的线状材料。分为纳米线和纳米管。 纳米膜:纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜[5]。 纳米光电材料具有纳米材料的四种特性(量子、.....) 3.纳米光电材料的制备方法 制备纳米材料的方法有很多,根据不同的纳米光电材料及其用途有不同的制备方法。 1.化学沉淀法: 通过在原料溶液中添加适当的沉淀剂,让原料溶液中的阳离子形成相应的沉淀物(沉淀颗粒的大小和形状由反应条件来控制),然后再经过滤、洗涤、干燥、

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述 电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作

工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。

光电材料的发展

光电功能材料 摘要:物质、能量和信息是构成世界的三大要素。信息功能材料和器件作为21世纪信息社会高新技术产业发展的基础,涉及到信息获取、发射、传输、接收、处理、存储和显示等各个方面,下面就光电功能材料硅的发展现状与趋势做简单叙述。 关键词:光电;硅;太阳能; 1 引言 随着经济的发展,人们对新能源有了更高的要求。太阳能电池是一种对光有响应并能将光能转换成电力的器件,其材料有单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等,由其是对硅的研究已经引起学界与产业界极大的关注与参与。本文就硅对太阳能光伏产业的应用及其它太阳能电池进行做简要研究。 2.硅的分类 2.1硅的发展及运用 太阳能电池用硅材料是理想的太阳能光电材料,其理想光电转换效率超过30%。因此,硅材料不仅在电子工广泛应用,而且在太阳电池领域也大量应用。太阳能光电工业是建立在硅材料的基础,最早的硅太阳能电池是1954由美国贝尔实验室的卡平等研制的,其太阳能光电效率为6%,但早期硅太阳电池的成本很高,仅被用于太空卫星和航天器。1958年美国发射的Vanguard号卫星上首次使用硅太阳电池,在20世纪50~80年代,几乎所有的人造卫星等空间飞行器上,都是利用硅太阳电池作为主要的电源。虽然后来GaAs材料也应用在空间太阳电池在,但是硅太阳能空间电池依然占据了半壁江山。到了20世纪的90年代,由于硅太阳电池成本的持续降低,通过建立太阳能电站以及和住宅屋顶结合等形式,硅太阳电池实现了并网发电。从20世纪70年代以来,硅太阳电池的全球平均年增长率达到30%,其中1997以硅太阳电池为主的电池组件全球销售达到122MW,2001的销售突破400MW,2000年和2001的年销售均超过40%,而太阳电池的生产成本则以每年7.5%的平均速度下降,预计今后10年太阳能光电工业还将以20%~30%的速度增加,成为世界上最具有发展前景的朝阳工业之一。

有机光电材料研究进展与发展趋势

8 有机光电材料研究进展与发展趋势 ◆邱勇 (清华大学,北京100084) 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机场效应晶体管、有机太阳电池、有机传感器和有机存储器等领域的应用;介绍了清华大学在有机发光技术方面取得的进展。 关键词:有机光电材料,有机发光二极管,有机场效应晶体管,有机太阳电池 中图分类号:O62; O484 文献标识码:A 0 前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。 有机光电材料与器件的发展也带动了有机光电子学的发展。有机光电子学是跨化学、信息、材料、物理的一门新型的交叉学科。材料化学在有机电子学的发展中扮演着一个至关重要的角色,而有机电子学未来面临的一系列挑战也都有待材料化学研究者们去攻克。 1 有机发光二极管 有机电致发光的研究工作始于20纪60年代[1],但直到1987年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(O LE D)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED 具有驱动电压低、体积小、重量轻、材料种类丰富等优点,而且容易实现大面积制备、湿法制备以及柔性器件的制备。 近年来,OLED 技术飞速发展。2001 年,索尼公司研制成功13英寸全彩OLED 显示器,证明了OLED 可以用于大型平板显示;2002 年,日本三洋公司与美国柯达公司联合推出了采用有源驱动OLED 显示的数码相机,标志着OLED 的产业化又迈出了坚实的一步;2007 年,日本索尼公司推出了11英寸的OLED 彩色电视机,率先实现OLED 在中大尺寸、特别是在电视领域的应用 收稿日期:2010-7-2 修订日期:2010-8-25 作者简介:邱勇(1964-),男,清华大学教授、博士生导师,清华大学党委常委、副校长,“国家杰出青年科学基金”获得者,长江学者特聘教授,有机光电子与分子工程教育部重点实验室主任,国家“十一五”863“新型平板显示技术”重大项目总体专家组组长。长期从事有机光电材料、器件及产业化相关研究工作。

有机光电材料中硼配合物的应用

1. 引言 有机硼化学位移在发光材料上去的巨大进展,是因为强发光性和高的载流子迁移率。硼桥分子的结构是π共轭,而且易修饰,设计出一些不错的分子,并广泛应用在有机光电方面,如有机发光二极管[1-2]、有机场效应晶体管[3-5]、光敏材料[6-12]、成像材料[13]、传感器[14-19]。有机硼分子中,螯合配体的富π电子与硼部分的空p轨道结合,形成电子离域和刚性π共轭结构,这种环状结构不仅含有π共轭结构加强光发射,而且通过降低最低电子未占据轨道LUMO能级,从而改变电子态,增加电子亲和性。配体类型和取代基性质会影响到螯合物间π→π*的电子转移和激发过程时取代基到螯合基团的电子转移,对配体和硼中心的光物理和电学性质都有很大影响。在过去十年里,研究了许多硼配合物,如8-羟基喹啉化合物和2-吡啶苯化合物及其衍生物,它们的荧光效率高且范围宽,从深蓝色到近红色。有些有机硼化合物已经很好的作为有机光电材料的发光材料和电子转移材料。 在这篇综述中,我们主要介绍可用于有机光电材料的有机硼分子设计和性能研究,根据配体的不同将硼配合物分成几部分进行综述,并对该领域的发展前景进行了展望。本文给出有机硼化学物分子设计和有机光电材料应用的最基本观点,有机硼的分子结构和光电性质有待于进一步研究。 2. 有机光电器件 有机光电学领域主要涉及有机材料的电子结构、能量传递、电子转化、光电转化机理及相关器件的制备,是化学、材料和电子学科的高度交叉的研究方向[6-7]。目前,人们基于有机光电学原理制备了多种光电器件,其中有机半导体在有机发光二极管(organic light-emitting diodes, OLEDs)、有机场效应晶体管(organic field-effect transistors, OFET)、有机太阳能电池(organic solar cells,OSCs)等均展现了诱人的应用前景(如图1)。 图1.有机光电器件及应用:(a,b)有机发光二极管(c,d)有机场效应晶体管(e,f)有机太阳能电池 Fig.1 Applications of organic optoelectronic devices: (a,b)OLED(c,d)OFET(e,f)OPVC 1.1 有机场效应晶体管(OFETs) 自上1986年Tsumura, A.等人首次报导聚噻吩具有场效应性能以来[8],OFET 相关的功能材料开发、器件制备工艺优化和多功能应用研究引起了国际知名科研院所的广泛关注。经过几十年的发展,OFET 的性能指标有了很大的突破,初步满足了在电子纸、传感器、射频标签、有源平板显示器的驱动等领域的应用需求[9-21],相关研究逐渐成为学术界和工业界研究的前沿与热点方向,具有光明的前景[22-23]。 有机场效应晶体管是以有机化合物为半导体材料,通过电场来控制材料导电能力的有源器件。OFET的基本结构主要包括有机半导体层( organic

光电材料的应用

项目编号: 理学院教学、科研 项目立项申请书(讨论稿) 学科门类:工学 项目名称:光电材料的应用 申请者:王茜娜 承担单位:烟台南山学院理学院 协助单位: 填表日期:2009年11月30 理学院编制 2008.11.18

填表说明及填写要求: 一、本申请书各项内容要实事求是,逐条认真填写。表达要明确、严谨,字迹要清晰易辨。外语要同时用原文和中文表达。第一次出现的缩写词,须注出全称。 二、封面“项目编号”一栏由学院秘书填写。 三、院内项目申请书一式三份(电子版),申请人存根一份,申请人所在教研室一份,学院留存一份。 四、部分栏目填写要求: 1、学科门类:分理学、工学、农学、医学、哲学、经济学、法学、教育学、文学、历史学、管理学共11类。 2、项目名称:应确切反映项目内容,不超过25个汉字(含标点符号)。 3、项目内容性质:以下第“五”中所列“项目内容性质”仅供填表时参考。 4、所属学科领域:申请课题所需的基础学科。如涉及多学科可填写两个,先填为主学科。 5、项目组成员:指在项目组内对学术思想、技术路线的制定与理论分析及对项目的完成起主要作用的人员。 五、“项目内容、性质”简介 1、专业建设方面 1.1专业建设调研报告; 1.2专业建设方案; 1.3专业群方向模块课程设计; 1.4岗位群针对性课程设计; 1.5专项技能模块课程设计; 1.6专业招生与就业; 1.7实验实训方案的设计与可行性分析; 1.8校企合作的初步探索; 1.9产学研办学模式的创新设想初探;等等.

2、课程建设方面 2.1课程年鉴自查报告; 2.2教材建设(教材,讲义,学习指导书,复习资料等); 2.3选修课的选题与申报; 2.4根据烟台南山学院的培养目标,对同一课程、不同教材版本的分析对比研究; 2.5“数学建模”的开课、组队、辅导与参赛; 2.6课程网络媒体资源建设; 2.7精品课程建设; 3、师资队伍建设方面 3.1师资队伍结构梯队建设(职称结构、年龄结构、知识结构); 3.2传帮带的经验总结和创新实践; 3.3教育、教学研究团队建设; 3.4科学研究团队建设; 3.5学术报告; 3.6专题讲座; 3.7学校、理学院两级优秀教师的评选条件及评选结果的利用; 4、教学研究与教学改革方面 4.1职业教育研究动态的跟踪、整理报道; 4.2第三届民办教育南山论坛“论文写作”; 4.3创新教育理念和教学模式研究; 4.4教学内容的改革与实践; 4.5教学手段改革初探; 4.6教学方法改革研究; 5、科学研究方面 5.1基础研究:指以认识自然现象、探索自然规律为目的,不直接考虑应用目标的研究活动。 5.2应用基础研究:指有广泛应用前景,但以获取新知识、新原理、新方法为主要目的的研究。 5.3应用研究:为了确定基础性研究成果或知识的可能的用途,或是为达到某一具体目的、预定的实际目的确定新的方法(原理性)或途径的研究。

基于咔唑的有机光电材料的设计、合成及性能刍议

基于咔唑的有机光电材料的设计、合成及性能刍议 基于咔唑的有机光电材料的设计、合成及性能刍议 摘要:有机光电材料具有电子与光子的产生、传输及转换的特点,可以用于有机半导体材料。根据功能可分为太阳能电池材料、有机电致发光材料、光敏材料、光折变材料、能量转换材料等。具有结构多样、材料性能便于调控、存储密度高、速度快、加工方便等优点。所以,在很多领域都得到了广泛应用。 关键词:咔唑有机光电材料设计合成性能 咔唑是一种重要的含氮芳杂环化合物,成本较低,具有特殊的生物特性与光电特性,与有机光电功能材料的性能比较符合。其本身具有较强的分子内电子转移功能,同时其热稳定性也比较突出。近些年,随着有机光电子学的成熟,对有机光电材料的研究与创新也取得了较大的成绩,催生出有机光电子产业的发展,促进了社会的发展和人们生活的改善。 一、卡唑类有机光电材料 有机光电材料通常含有氢、碳元素,再以氮、硫以及金属元素进行修饰的材料,从分子结构来看,具有大共轭体系。因此从结构可分为聚合物与小分子两种类型。和无机材料相比,其优点在于分子结构多样,可通过分子设计对材料的性能进行调控,满足了生活中对材料功能的需求;从材料性质上,光电反应速度快,存储的密度较高,便于加工。因其具有较多的优势,所以有机光电材料在有机场效应管、有机发光二极管、有机存储器及有机太阳能电池等领域有着广泛的应用。而咔唑类有机光电材料的优势更大,具有原料易得、成本较低的特点,在结构上属于刚性稠环,具有特殊的光电性能与生物性能。可以合成多种咔唑衍生物,满足多种功能材料需求的制备。咔唑分子的共轭体系较大,其衍生物及本本都具有较好的光电性质与热稳定性,因此在材料、医药、生物、农药、染料等领域的应用前景非常广阔。尤其是作为有机光电材料的功能性更强。 二、咔唑衍生物的合成及性能研究

有机光电材料综述

有机光电材料综述 有机小分子电致发光材料在OLED的发展与应用的综述 电致发光(electroluminescenee , EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(orga nic light-emitting device ,OLED逐渐的进入了人们的视野,人们发 现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材

料,即OLED而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、 太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决: 1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低 的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于

光电材料报告

---光电产业在国内外的发展概况 【调研报告】 报告人:孙四五 2013/04/09

1.概述 1.1光电材料 1.2光电器件 1.3光电产业 2.国际发展概状 3.国内发展概状 3.1我国光电产业的开端及兴起 3.2现状 3.2.1产业分布现状及发展 3.2.2光电材料研发能力现状及发展 3.2.3国家和地区政策及规划 3.3存在的问题及发展趋势

1.1光电材料 光电材料是指用于制造各种光电设备(主要包括各种主、被动光电传感器光信息处理和存储装置及光通信等)的材料,主要包括红外材料、激光材料、光纤材料、非线性光学材料等,通过分子束外延,CVD等技术手段可以获得相关用途的材料形式。 举例:GaAs(砷化镓)--迁移率高(0.8m2/V.s),禁带宽度大(1.43eV,在军事领域(雷达、电子战系统、导弹、卫星等)和商用领域(移动电话,微波识别系统等)中具有极其重要的作用,GaAs单晶可以用于制造发光二极管(LED)激光器,光控制点(PD)太阳能电池,微波二极管等。

1.2光电器件 随着光电技术和光电材料的不断发展,应用在生活、军事上的光电器件得到了蓬勃发展。 发光二极管、液晶显示屏、激光器、太阳能电池

由于 解决方案新能源,新材料的开发节电、节材器件的开发传统化石能源枯竭 金属矿物质枯竭 当今世界面临的两大危机 光 电 功 能 材 料 光电器件光电产业的发展 科技的发展及国防军事的需要军事

1.3光电产业 光电产业是以光电技术为核心、并利用光电技术实现产品的生产与制造,构 筑完整的产业链。光电产业涵盖LCD、LED、光伏、光通信、激光等各个领域。 光电技术自20世纪60-70年代开始萌芽,目前已进入技术日新月异、工业化 生产技术日渐成熟的时期,已成为全球电子工业产业技术转型的趋势。 光电产业被认为是21 世纪全球经济发展的“战略性行业”之一, 是一个比较庞大的产业,它涉及到了社会的方方面面。按综合传统习惯和近年来细分产业发展趋势,产业可以具体分为以下几方面: 1、液晶产业液晶产业的市场规模日益增长, TFT2LCD 下游应用设备中液 晶显示屏、笔记本电脑、液晶电视、手机需求都呈现出强劲的增长势头。

光电信息功能材料复习知识点

光电信息功能材料复习知识点 1.材料分类:物理功能材料,化学功能材料,生物功能材料,功能转换材料 2.功能材料:具有优良的光、电、磁、热、声学、力学、化学和生物学功能及其相互转化 的功能,被用于非结构目的具有特定功能的材料。 3.现在是材料的功能设计时代 4.光电信息材料:指?用于制造各种光电设备(主要包括各种主、被动光电传感器、光电 转换器、光电显?示、光信息处理和存储装置、光通信等)的材料 5.功能材料按照功能的显示过程可以分为一次功能材料和二次功能材料(有能量形式变化) 6.薄膜制备方法:物理气相沉积PVD,化学气相沉积CVD,溶液镀膜法 7.溅射:直流,射频,磁控,离子束 8.离子镀:结合真空蒸镀和溅射的特点 9.新的CVD:?金属有机化合物化学?气相淀积(MOCVD);等离?子增强化学?气相沉 积(PECVD) 10.薄膜的生长模式可以归结为以下三种形式:岛状生长模式;层状生长模式;层岛复合生 长模式(浸润性区别) 11.粉体材料制备方法:(1)机械粉碎法(2)气体蒸发法(3)溶液法(4)激光合成法(5) 等离子体合成法(6)射线辐照合成法(7)溶胶-凝胶法 12.纳米陶瓷的制备:制粉,成型,烧结 13.外光电效应:指物质受光照后而激发的电子逸出物质的表面,在外电场作用下形成真空 中的光电子流。这种效应多发生于金属和金属氧化物 14.内光电效应:指受光照而激发的电子在物质内部参与导电,电子并不逸出光敏物质表面 15.内光电效应之光电导效应:半导体内部价带原子吸收光子的能量跃迁到导带,半导体内 部载流子数目增多,电导率增加的效应 16.内光电效应之光生伏特效应:半导体吸收光子产生电子空穴对,并且在PN结内建电场 的作用下形成光电压 17.GaN是的蓝光半导体激光器材料 18.ZnSe是?一种蓝绿光半导体激光器材料 19.红光半导体激光器材料主要有InGaAlP和InGaP/GaAsP等 20.光电子集成电路OEIC:把光器件和电子器件都集成在同一基片上的集成电路 21.标准测试条件:AM1.5地面太阳光谱辐照度分布光源辐照度:1000W/m2,测试温度: 25±2°C 22.暗电流(ID)是指器件在反偏压条件下,没有入射光时产生的反向直流电流 23.Rsh对光电流的影响较小,而对开路电压的影响较大 24.Rs对开路电压的影响几乎没有,但对短路电流却有很大的影响 25.温度上升,硅电池的开路电压降低,短路电流增大 26.太阳光伏系统:一般我们将光伏系统分为独立系统、并?网系统和混合系统 27.Ge、Si、InP、GaAs的禁带宽度在室温下分别为0.66eV、1.12 eV、1.35eV、1.42 eV 28.硅料制备:改良西门子法;硅烷法——硅烷热分解法;流化床法 29.多晶硅是生产单晶硅的直接原料。被称为“微电子大厦的基石” 30.实现多晶硅定向凝固生长的四种方法:布里曼法?热交换法?电磁铸锭法?浇铸法

光电材料

光电材料简介 徐国正1,杨雨风 1 (哈尔滨工业大学材料与工程学院youwot1@https://www.doczj.com/doc/8e13833910.html,,哈尔滨150001) 摘要:光电材料是指用于制造各种光电设备(主要包括各种主、被动光电传感器光信息处理和存储装置及光通信等)的材料,主要包括红外材料、激光材料、光纤材料、非线性光学材料等。以下列举一些跟生活相关的光电材料,以便能让我们更好的认识光电材料在生活中的应用。 关键词:太阳能电池,PN结,光电效应,光敏电阻。 A. 光电转换材料(photoelectric conversion material ) 一、太阳能电池的工作原理级发电方式 1.工作原理 光电材料的定义:通过光生伏打效应将太阳能转换为电能的材料。主要用于制作太阳能电池。太阳是一个巨大的能源库,地球上一年中接收到的太阳能高达1.8×1018千瓦时。研究和发展光电转换材料的目的是为了利用太阳能。 光电转换材料的工作原理是:将相同的材料或两种不同的半导体材料做成PN结电池结构,当太阳光照射到PN结电池结构材料表面时,形成新的空穴-电子对,在p-n 结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电材料的工作原理。 目前运用最广的是太阳能电池,其发电系统主要由太阳能电池板,太阳能控制器,蓄电池及逆变器组成。 太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 太阳能电池板实图

太阳能电池板应用原理图太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 蓄电池:一般为铅酸电池,一般有12V 和24V这两种,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC变换器,如将24VDC 的电能转换成5VDC的电能。 2. 发电方式 太阳能发电有两种方式:一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样。太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。一座1000MW 的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的。 二、太阳能电池的应用领域 1.用户太阳能电源:(1)小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。 2. 交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、宇翔路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。 3. 通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。 4. 石油、海洋、气象领域:石油管道

相关主题
文本预览
相关文档 最新文档