当前位置:文档之家› 基本不等式的向量形式

基本不等式的向量形式

 基本不等式的向量形式
 基本不等式的向量形式

基本不等式的向量形式

[思维扩展]

波利亚有句名言:“类比是伟大的引路人”.这句话言简意赅地阐明了类比在数学发现中的地位.

我们知道,a 2

+b 2

≥2ab (a ,b ∈R)以及

a +b

2

≥ab (a ,b ∈R +)是

两个应用广泛的基本不等式,一种有趣的想法是:这两个不等式可以类比到向量中去吗?

由(a -b )2=|a -b |2≥0不难得到a 2+b 2≥2a ·b ,当且仅当a =b 时等号成立.

但将

a +b

2

≥ab (a ,b ∈R +)简单地类比为

a +b

2

≥a ·b 就不行

了,由于该不等式左边为向量,右边为数量,故其无意义,因此我们需要调整角度,看能否获得有用的结果.

注意到a +b

2≥ab (a ,b ∈R +)??

??

??a +b 22

≥ab (a ,b ∈R +),而不等式?

??

??a +b 22

≥a ·b 左右两边都是数量,因而可以比较大小.事实上,由(a +b )2=(a -b )2+4a ·b =|a -b |2

+4a ·b ≥4a ·b

可得? ??

??a +b 22

≥a ·b ,当且仅当a =b 时等号成立.

这样,我们就得到如下两个结论:

定理1 设a ,b 是两个向量,则a 2+b 2≥2a ·b ,当且仅当a =b 时等号成立.

定理2 设a ,b 是两个向量,则? ??

??a +b 22

≥a ·b ,当且仅当a =b

时等号成立.

例1 若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值是________. 答案 -98

解析 方法一 由定理1得 32≥|2a -b |2=(2a -b )2 =(-2a )2+b 2-4a ·b

≥2·(-2a ·b )-4a ·b =-8a ·b ,

所以a ·b ≥-9

8,当且仅当b =-2a 时等号成立,

故a ·b 的最小值是-9

8.

方法二 由定理2得

2a ·(-b )≤? ??

??2a -b 22=|2a -b |24≤9

4, 则a ·b ≥-9

8,当且仅当b =-2a 时等号成立.

故a ·b 的最小值是-9

8

.

说明 本题可推广至一般形式:若平面向量a ,b 满足:|λa +b |≤

m (m >0),则当λ>0时,a ·b 的最大值为m 2

4λ;当λ<0时,a ·b 的最

小值为m 2

.

例2 已知a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的最小值为________.

分析 此题有一定难度.普通学生难以想到.事实上,利用定理1此题极易作答,过程如下.

答案

12

解析 引入正参数λ,

由(a +b )·(a -2b )=0得a 2-a ·b -2b 2=0,又|a |=1,则1-2b 2=a ·b ,

1-2b 2

=a ·b ≤12?

????λa 2

+1λb 2

=12(λ+1λb 2

), 当且仅当λa 2

1

λ

b 2,即b 2=λ2时等号成立.

所以1-2λ2=a ·b ≤12?

????λa 2

+1λb 2

=12? ??

??λ+1λ·λ2

解得λ=|b |≥1

2,

故|b |的最小值为1

2

.

例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值. 解 由(a -c )·(b -c )=0得c 2=c ·(a +b ), 由定理1及已知条件得 c 2

=c ·(a +b )≤12

[c 2

+(a +b )2]

=12(c 2+a 2+b 2

)=12(c 2+2), 解得|c |2≤2,故|c|的最大值是 2.

拓展1 已知a ,b 是平面内夹角为θ的两个单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是

1cos

θ

2

.

拓展2 已知a ,b 是平面内两个互相垂直的向量,且|a |=m ,|b |=n ,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是m 2+n 2. 例4 平面上三点A ,B ,C 满足AB →·BC →>0,求AC →2+

1

AB →·BC

→的最小值.

解 由定理2得0

???AB →+BC →22=1

4AC →2, 则 AC →2+

1

AB →·BC →≥AC →2+4AC →2

=|AC →|2+4|AC →|2≥2·|AC →|·2|AC →|=4,

故当且仅当AB →=BC →,且|AC →|=2时,AC →2+

1

AB →·BC →取得最小值4.

例5 设a ,b 满足a 2+a ·b +b 2=3,求a 2-a ·b +b 2的取值范围. 解 由定理1得a ·b ≤a 2+b 2

2

所以a ·b ≤

3-a ·b

2

, 解得a ·b ≤1.

又由定理1得(-a )·b ≤a

2

+b 2

2

所以a ·b ≥-

a 2+

b 2

2=-3-a ·b 2

,解得a ·b ≥-3.

所以-3≤a ·b ≤1.

因为a2-a·b+b2=(3-a·b)-a·b=3-2a·b,所以1≤a2-a·b +b2≤9.

以上五道例题从不同角度为我们初步展示了定理1、定理2的魅力,它们微小平凡,对破解难题却极其有效.不过,追求它们更广泛的应用前景固然让人心动,但更有价值的则是获得它们的思维过程.类比是打开发现之门的金钥匙,但如何用好这把钥匙却值得我们长久的思考.

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

高考数学向量与三角不等式等

第19讲:向量与三角、不等式等知识综合应用 一、高考要求 平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之 一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读 考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力. 考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练 1.把曲线y cos x +2y -1=0先沿x 轴向右平移2 π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( C ) (A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=0 2.函数y =sin x 的图象按向量a =(32 π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( D ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +2 3.已知向量 = (1,sin θ),= (1,cos θ),则 | - | 4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2 π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点, M 、N 是图象与x 轴的交点,则PM PN 与的夹角余弦 值为1517

平面向量与基本不等式(练习题)2016-高考-数学

平面向量与基本不等式(练习题)2016-高考-数学

平面向量与基本不等式(备战2016高考) 一:选择题 1.在 OAC ?中,点 B 在线段 AC 上,且 ), ,(2R n m n m mn ∈+=则2 2 4n m +的最小值为() A.8 B.16 C.24 D.32 2.在△ABC 所在平面上有一点P ,满足 =++,则△PBC 与△ABC 面积之比是 ( ) A.3 1 B.2 1 C.3 2 D.4 3 3.已知两个非零向量a =(m -1,n -1),b =(m -3,n -3),且a 与b 的夹角是钝角或直角,则m +n 的取值范围是() A .2,2) B .(2,6) C .2,2] D .[2,6] 4.1,3OA OB ==,0,OA OB =点C 在AOB ∠内,且30AOC ∠=?,设,OC mOA nOB =+(),m n R ∈,则n m 等于( ) A .3 1 B .3 C .3 3 D .3 5.若两个正实数 y x ,满足 141=+y x ,且不等式 m m y x 34 2-<+ 有解,则实数m 的取值范围是( )

A . ) 4,1(- B .),4()1,(+∞--∞ C . ) 1,4(- D .),3()0,(+∞-∞ 6.设P 是双曲线22 14 y x -=上除顶点外的任意一点, 1 F 、2 F 分别是双曲线的左、右焦点,△1 2 PF F 的内切圆与边1 2 F F 相切于点M ,则12 F M MF ?= A .5 B .4 C .2 D .1 7.若直线)0,0(022>>=+-b a by ax 被圆01422 2=+-++y x y x 截 得的弦长为4,则b a 1 1+的最小值是( ) A .12 B .-12 C .-2 D .4 8.已知向量)1,(λ=,)1,2(+=λb a b a -=+λ 的值为 A .2 B .2 - C .1 D .1- 9.已知点P 是边长为1的正方形ABCD 的对角线AC 上的任意一点,PE AB ⊥于E ,PF BC ⊥于F ,则PD EF ?等于 A.1 B.1- C.12 D.0

二维形式的柯西不等式

3.1 二维形式的柯西不等式(一) 教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量α,,)(b a =β),(d c =, α与β之间的夹角为θ,πθ≥≤0。 根据向量内积的定义,我们有:,θβαβαcos = ? 所以,θβαβαcos = ?因为1cos ≤θ,所以,βαβα≤? 222||||c d ac bd +≥+ 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即22222()()()a b c d ac bd ++≥+ ③ 讨论:二维形式的柯西不等式的一些变式? 2 22||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+.

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

向量法证明不等式(完整版)

向量法证明不等式 向量法证明不等式 第一篇: 向量法证明不等式 向量法证明不等式 高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n= 2,3时的情况. 设a,b是欧氏空间的两向量,且a=。 因此,原不等式等价于证明a?b?a?b,其中a?b,向量 a和b不可能同向,不取等号。 二利用a?b?ab证明不等式 2222例2 、已知实数mnx满足m?n?a,x??b (a?b),求mx?n得最大值 ?解析: 构造向量a?0,求证: 4a0矛盾, 故a=0时,4a0, ∴存在m,当-1 第五篇: 不等式的证明.

3.在横线上填写恰当的符号 2x 2若x∈r,且x≠ 1,那么,1?x. 若0<a< 1,那么-a). 1413 若a>0,a≠ 1,那么loga_____loga. 当x≥1时,那么x5+x4+x32+x+ 1. 4.设p=a2b2+ 5,q=2ab-a2-4a,若p>q,则实数a,b满足的条件为________. 5.设a>0,b>0,则下面两式的大小关系为2lg_____lg+lg.提升你的能力!基础巩固题 1.设0<a< 2,下列不等式成立的是 1111?1?a2?1?a2?1?a21?a2?1?ab.1?a1?a a.1?a .1?a2?11111?a2?1?a21?a21?a1?a1?ad.1?a 2.若a<b<0,则下列不等式关系中不能成立的是 11?a.ab 11?b.a?ba .|a|>|b| d.a2>b2

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则22 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab +≤ +≤≤+

6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥

专题4 平面向量与不等式结合

专题4 平面向量与不等式结合 考点动向:向量与不等式的交汇是当今高考命题的一个热点.自从新教材实施以来,在高考中,不时考查平面向量与不等式有关知识的结合。这些题实际上是以向量为载体考查不等式的知识,解题的关键是利用向量的数量积等知识将问题转化为不等式的问题,转化时不要把向量与实数搞混淆,一般来说向量与不等式结合的题目难度不大。 向量与不等式结合,既符合在知识的“交汇处”构题,又加强了对双基的考查。这类题目常常包括向量与不等式的性质、均值不等式、解不等式、求值包括(求最大值、最小值)的交汇等几个方面.可以预测到,明年仍至今后的高考中,还会继续出现向量与不等式结合的题目。 方法范例 例1、(2005年,上海卷)已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B , 22+=(,分别是与y x ,轴正半轴同方向的单位向量) ,函数6)(2--=x x x g 。 (1) 求b k ,的值;(2)当x 满足)()(x g x f >时,求函数) (1)(x f x g +的最小值。 [解析] (1)通过交点坐标求出向量的坐标表示,列方程组,求b k ,的值;(2)先由),()(x g x f > 得 ,42<<-x 再对) (1)(x f x g +进行化简,得5212-+++x x ,然后利用不等式ab b a 2≥+求函数的最值. [答案](1)由已知得},{),,0(),0,(b k b b B k b A =-则,于是 .2 1,22???==∴?????==b k b k b (2)由,62),()(2-->+>x x x x g x f 得 即 ,42,0)4)(2(<<-<-+x x x 得 ,52 1225)(1)(2-+++=+--=+x x x x x x f x g 由于3)(1)(,02-≥+>+x f x g x 则, 其中等号当且仅当x +2=1,即x =-1时成立,∴) (1)(x f x g +时的最小值是-3. 例2、(2005年·黄岗模拟)已知二次函数)(x f 对任意x R ∈,都有)1()1(x f x f +=-成立,设向量)2,(sin x a =,)2 1,sin 2(x b =,)1,2(cos x c =,)2,1(=d ,当x ],0[π∈时,求不等式)()(d c f b a f ?>?的解集. [解析] 二次函数图象开口方向不确定,要分类讨论. 由)1()1(x f x f +=-,知二次函

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

向量三角不等式题目提高

1、在ABC 中,已知2AB =,226AC BC -=,则tan C 的最大值为 2、在ABC 中,22b a ac -=,则11tan tan A B -的取值范围为 3、 在ABC ?中,角C B A 、、所对的边分别 c b a 、、,45a C == ,tan 21tan A c B b + =,则边长c 的值是____________. 4、在ABC 中,角A ,B ,C 的对边分别为a b c ,,,它的面积为S ,且21tan 4 S c C =,则tan tan tan tan C A A C += 5、在ABC 中,角A ,B ,C 的对边分别为a b c ,,,且222 a b mc +=(m 为常数),若tan (tan tan )2tan tan C A B A B +=,则实数m 的值为 6、在△ABC 中,(2cos sin )2C m C =- ,,(cos 2sin )2 C n C = ,,且m n ⊥ (1)求C (2)若2222a b c =+,求tan A 的值. 7、在ABC △中,角A B C , ,所对的边分别为a b c ,,,且cos cos 2cos a C c A b A +=. (1)求角A 的值; (2)若2b c a +=,求ABC △的面积S . 8、在△ABC 中,1AB AC BA BC == (1)求证:A B =; (2)求C ; (3)若AB AC += S ABC

如图,在四边形ABCD 中,已知AC 平分DAB ∠,060ABC ∠=,AC=7,AD=6 ,S ADC = AB 的长 B

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

高中数学集合逻辑函数向量数列不等式立体几何综合

高中数学集合、逻辑、函数、向量、数列、不等式、立体 几何 综合测试题 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上. 1. 若非空集合}5,4,3,2,1{?S ,且若S a ∈,则必有S a ∈-6,则所有满足上述条件的集合S 共有 A .6个 B .7个 C .8个 D .9个 2. 命题P :若函数()f x 有反函数,则()f x 为单调函数;命题Q : 111 222 a b c a b c == 是不等式21110a x b x c ++>与2 2220a x b x c ++>(121212a a b b c c ,,,,,均不为零)同解的充要条件,则以下是真命 题的为 A .P ?且Q B .P 且Q C .P ?或Q D .P 或Q 3. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a = A . 42B .22 C .41D .2 1 4. 如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ?是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为 A. B. 32 D. 3 左视图 主视图俯视图 5. 已知函数bx x x f +=2 )(的图象在点))1(,1(f A 处的切线l 与直线0223=+-y x 平行,若数列}) (1 { n f 的前n 项和为n S , 则2012S 的值为 A .20102009 B .20112010 C .20122011 D .2013 2012 6. 若m b a m a f 2)13()(-+-=,当]1,0[∈m 时,1)(≤a f 恒成立,则b a +的最大值为 A . 31 B .32 C .35 D .3 7 7. 已知a 、b 是不共线的向量,()AB AC R λμλμ=+=+∈, ,a b a b ,那么A B C 、、三点共线的充要条件为 A .1λμ= B .1λμ=- C .1=-μλ D .2λμ+= 8. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-?-+AC AB DA DC DB 则ABC ?的形状是

2019年人教版及高中数学平面向量知识点易错点归纳

§5.1 平面向量的概念及线性运算 三角形法则 3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD → 且AB 与CD 不共线,则AB ∥CD ; 若AB →∥BC → ,则A 、B 、C 三点共线.

失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. §5.2 平面向量基本定理及坐标表示 1.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=x 21+y 2 1. (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ?x 1y 2-x 2y 1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法 判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范 1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况. 2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1 y 2 ,因为x 2,y 2有可能等 于0,所以应表示为x 1y 2-x 2y 1=0.

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

相关主题
文本预览
相关文档 最新文档