当前位置:文档之家› 广州地铁五号线车辆蓄电池欠压保护电路分析及改进方案

广州地铁五号线车辆蓄电池欠压保护电路分析及改进方案

广州地铁五号线车辆蓄电池欠压保护电路分析及改进方案
广州地铁五号线车辆蓄电池欠压保护电路分析及改进方案

广州地铁车辆空气压缩机控制原理总结及比较,推荐文档

广州地铁车辆空气压缩机控制原理 总结及比较 广州地铁四条线车辆都是采用了克诺尔VV120空气压缩机,每列车上都配备了两台空 压机,且都是由三相AC380V供电。但是由于使用控制系统不同,各条线车辆空压机控制与监测有所不一样,以下具体结合电路图及控制逻辑图分析空气压缩机控制及检测原理。 一、一号线车辆空压机控制原理 1.空压机控制 一号线车辆空压机控制全部由硬线110V回路实现的,并且两台空压机通过同一回路控 制起停,只要列车主风气压低于7.5bar,压力开关动作,两台空压机同时起动;直到气压大 于9bar后,两台空压机同时停止工作。 正常工作时,当列车主风压力低于7.5bar时,压力开关A13动作,3B01触点1-2闭合,3111线得电,空压机使能接触器3K19得电,三相回路触点01-02, 03-04 , 05-06闭合。同 时43-44闭合,空压机使能继电器3K17得电,继电器触点43-44闭合,空压机使能时间继 电器3K18得电,延时2秒后触点15-18闭合,31211线得电,空压机起动限制继电器3K15得电,触点15-18闭合(延时2秒后断开),起动接触器3K22得电,空压机三相回路接通,电流通过3R01后接通空压机,空压机保护起动。此时3K22触点13-14闭合,起动时间继 电器3K16得电,延时1.5秒后闭合15-18触头,3K23得电,触头21-22断开,此时3K22 接触器被断开,3K23三相回路触点闭合,直接接通空压机,空压机正常工作。电路图见图 (1 )和(2),空压机正常的起动控制流程如下: 3B01得电---- ? 3K19得电 --- ? 3K17得电 --- ? 3K18得电-----? 3K15得电一?3K22得电——3K16得电——K23得电——?3M01 (空压机)得电 在110V控制回路中,空压机实现冗余控制,配备了两个空压机使能控制接触器,3K19和3K20 ,当B车DC/AC供电故障时,3K19失电,3K20得电代替3K19,使得空压机能够正常起动。

广州地铁五号线能耗装置运行分析

龙源期刊网 https://www.doczj.com/doc/8e3299219.html, 广州地铁五号线能耗装置运行分析 作者:黄德晖方刚 来源:《科技创新与应用》2013年第20期 摘要:文章根据在广州地铁5号线车辆在调试中出现列车制动不平稳的情况,分析了该 地铁车辆制动系统的作用原理,对能耗制动作了较为详尽的分析。同时多次进行不同速度下紧急制动测试,通过吸收参数优化,明显改善了VVVF网压过高的问题,确保列车安全稳定运行。 关键词:直流;牵引;热过负荷 1 前言 五号线全线共设13座牵引降压混合变电所。每个牵引所设置制动能量消耗装置一套,当处于再生制动状况的列车回馈出去的电流不能完全被其他车辆和本车的用电设备所吸收时,能量消耗装置立即投入工作,吸收掉多余的回馈电流,使车辆再生电流持续稳定,最大限度的 发挥电制动功能。 制动能量消耗装置的投入和撤出采用电压相对判断和电流判断方式,电压判断采用交流侧电压与直流侧电压进行比较判断,电网电压DC1670V以下,车辆进行再生电制动时,吸收设备不进行判断,外部具备吸收能力时,由外部吸收;如果外部没有吸收能力,则电网电压将抬高,抬高到电网电压大于DC1670V时,吸收设备投入工作,根据吸收电流的大小,进行恒压控制使电压保持在1800v左右。 五号线列车VVVF工作情况如下:VVVF箱内有两个VVVF逆变器,每个VVVF逆变器驱动2个直线电机。当VVVF接受到牵引手柄给出的牵引指令后,充电接触器CHB闭合,滤波电容器充电,当滤波电容电压达到一定值时,线路接触器LB闭合,接着CHB分离,逆变 器的门极开始工作。逆变器由IGBT模块组成,能够实现变频变压控制,将1500V直流电压转换为驱动三相直线感应电机所需的三相交流电压。如果DCPT12,22(滤波电容电压传感器)检测到的电压高于1980V,门极将停止工作,同时LB分离,OVCR F1,2(过压保护晶闸管)导通,通过OVCR FR1,2(过压保护电阻)放电。 另外利用车辆VVVF监测软件检测到的部分数据样本分析可得以下一些参数:牵引工况时,DCPT11检测到的网压大于滤波电容电压30~100V左右,电制动工况时,滤波电容电压大于DCPT11检测到的网压0~100V左右。 2 发现问题 2009年9月份车辆调试以来,列车常出现制动不平稳,电制动消失。检查列车故障记 录,发现故障为VVVF滤波电容过电压。

笔记本电池保护电路知识

笔记本电池保护电路知识 现在的笔记本电池都是所谓智能(smart battery)的了,她能告诉电脑:我现在还剩余多少容量,现在的电压是多少,电流是多少,按现在的放电速率我还能用多长时间,我是否该充电了,充电应该用多大的电流、电压,充电是否充过头了,放电是否放过头了,温度是否过高,等等。电池要提供这些所谓的智能信息,就要在电池中增加一个电路。这个电路通常都使用现成的专用芯片,如最流行的BQ系列芯片:BQ2060A,BQ2083,BQ2085,BQ2040等,这些芯片检测流入和流出电芯的电流,算出上面所谓的智能信息。 这个电路还要增加一个功能:保护功能。上面说了电路能检测出充电是否充过头了,放电是否放过头了。既然知道充过头了,就要使充电电源充不到电芯上去;放电放过头了,就要切断电芯对外放电。温度过高了,就要是电池停下来。这就是所谓的保护功能。 最后一个功能就是通讯,电池准备了这些信息,总要发送出去吧。所以通讯少不了。 按上所说,通常的电池其实主要是检测部分,能检测出来信息,保护功能实现自然简单,无非是开关而已。 当然有的电池将充电部分做到电池里面去了,如COMPAQ 笔记本电脑的不少电池都是如此。 先不必看BQ2060是如何检测那些智能信息的,先看BQ2060都检测出了哪些信息?这些检测出来的信息存放在什么地方了?在BQ2060的DATASHEET 中,有个Table 3. bq2060 Register functions,这里存放了BQ2060检测出来智能信息的。这些信息就是所谓的Smart Battery Data(智能电池数据),它们都被定义成标准了(见Smart Battery Data Specfication)。 BQ2050中检测出来的信息没有这么丰富,它不符合这个标准。BQ2040,BQ2083,BQ2085都符合这个标准,检测出来的信息也是这些。 下面解释一下BQ2060检测出来信息的意思。 1. 静态信息:静态信息不是检测出来的,而是生产厂家自己写进去的,它一般写在24C01中,BQ2060从24C01中读到它自己里面去。ManufactureDate, ManufactureName, DeviceName, Devicechemistry, SpecificationInfo, DesignVoltage, DesignCapacity,RemainingCapacityAlarm, RemainingTimeAlarm, BatteryMode。这些信息不言自明。 2.动态信息:动态信息中有些是检测出来的,有些是纯粹计算出来的,目的就是免去用户自己计算了。检测的:Voltage, Current, Temperature, AverageCurrent, RemainingCapacity, FullChargeCapacity, BatteryStatus。计算的:RelativeStateOfCharge, AbsoluteStateOfCharge, RunTimeToEmpty, AverageTimeToEmpty, AverageTimeToFull, CycleCount.。信息ChargingVoltage, ChargingCurrent 告诉充电器应该用多大的充电电流给它充电,在多大的电压处应该变成恒压充电。AtRate, AtRateTimeToFull, AtRateTimeToEmpty, AtRateOK 纯粹是帮用户计算信息用的。 3.每个厂家的特定信息:标准Smart Battery Data Specfication之外的一些信息。这些信息只有5项,不同厂家不一样,对于BQ2060就是VCELL1-4和PackConfigureation。对于BQ2085,PackConfigureation的意义就和BQ2060不大一样。

《轨道交通对沿线房地产价格影响的研究——以广州地铁五号线为例》

轨道交通对沿线房地产价格影响的研究——以广州地铁五号线为例 姓名:陈志颖 学号:时景新 导师:时景新 专业:工程管理 学院:工商管理学院

摘要 摘要 近年来,随着城市轨道交通建设的日益加快,沿线房地产价格所受的影响也日渐明显。在土地资源日益稀缺和广州经济快速发展的情况下,进行轨道交通和房地产价格影响方面的研究和探讨,对于保持轨道交通建设的可持续发展、促进轨道交通与房地产开发的协调发展具有十分重要的现实意义。为了分析轨道交通对沿线房地产价格的影响程度及规律,以广州地铁五号线为例,将五号线沿线经过的地区按越秀、荔湾、天河和黄埔划分分为4个的区域,分别收集每个区域内距离地铁站点远近距离的房产价格,然后根据数据建立数学模型,总结出了沿线房地产的价格分布规律。结果表明,在发展水平较高且房屋价格较高的核心区域,该区域内交通基础设施发达,居民的出行快速便捷,轨道交通对房地产价格的影响较弱。而在大多数区域,轨道交通对沿线房地产价格影响较大,房地产越靠近轨道站点其价格越高,并且越远离城市核心区轨道交通对房价的影响也越大。 关键词:轨道交通;房地产价格;影响因素

Abstract Abstract In recent years, with the quickening of the urban rail transit construction, real estate prices along the impact is increasingly obvious. In increasingly scarce land resources under the condition of rapid economic development, Guangzhou rail transit and real estate price the effects of research and discussion, to keep the sustainable development of rail transit construction, promote the coordinated development of rail transit and real estate development has very important practical significance. To analyze the impact of rail transit on real estate prices along the degree and the law of Guangzhou metro line 5, for example, after the regions along the line will be five by Yuexiu, Liwan, Tianhe and Huangpu division is divided into four areas, respectively, collection of subway stations distance distance in the area of each property prices, and then according to the data to establish mathematical model of the real estate prices along the distribution were summarized. Results show that the higher level of development and housing prices higher core area, convenient traffic facilities in the area, the residents' travel fast and convenient, rail transit impact on real estate prices are weaker. In most areas, along the rail transit on real estate prices, real estate near the rail site prices higher and higher, and that the more far away from the urban core of rail transit impact on prices. Keywords:Rail transit, real estate price, influencing factor

简易锂电池保护IC 测试电路的设计

简易锂电池保护IC测试电路的设计 作者:中国地质大学蔡欢欢 由于锂电池的体积密度、能量密 度高,并有高达4.2V的单节电池 电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B 的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS 提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护IC

由于锂电池的体积密度、能量密度高,并有高达4.2V的单节电池电压,因此在手机、PDA 和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

地铁车辆车门结构

广州地铁车辆车门结构,控制原理及改进意见1综述 地铁客室车门因其数量多(每列车有60个客室车门)、操作频繁(运营中平均每2 min就须开关门1次)而成为广州地铁一号线电动车组(以下简称车辆)至关重要的部件。车门的结构和控制若在设计上不够安全可靠,将会影响运营,损害地 铁公司的形象,有的甚至直接危害乘客的人身安全。世界各国的地铁公司在购买车辆时,都十分重视车辆客室车门在安全性,可靠性方面的设计。 2客室车门的设计思想 广州地铁一号线运营的设计能力为单向最大截面客流量为76 800人/h,行车间隔为2 min,列车全程平均运行速度为35 km/h。为此,地铁车辆车门在设计时要尽可能提高乘客上下车的速度,缩短列车的停站时间;列车上可能十分拥挤,必须保证列车进站后不能开错门;为了提高车门操作的准确性和安全性,需要对车门和列车的状态进行监控。另外,作为一种后备的紧急情况下开门的措施,每个车门还应设有一个独立的纯机械的开门装置。概括起来,广州地铁一号线车辆客室车门应具有以下特点: (1)数量多,车门的净开度大。 ⑵正常运行时,车门的控制具有ATP例车自动保护)保护的功能,故障导向 安全。 (3)每个车门均带有独立的纯机械的紧急开门装置。 3客室车门的基本结构"传动方式及控制原理 广州地铁一号线车辆客室车门由两扇内藏式滑动门页组成,以压缩空气为动力驱动单臂气缸,通过钢丝绳、滑轮等组成的机械传动机构完成门的开关动作,每节车每侧5个门,全列车共60个门,有利于乘客迅速上下,缩短车辆停站时间,满足地铁运输方便快捷的要求。 3.1车门的主要技术参数(见表1) 表1车门的主耍技术參数 车门开度」mm1 门离度mm 1 B60 供凤压力丿bar5 供电电tt/V DC110 幵关门时间人3±O*5 开关门时闾调整范圉冬L 5 3.2车门的主要结构特点 车门及其控制系统由门页、车门导轨、传动机构、门机械锁闭机构、紧急解 锁机构、气动控制系统、电气控制系统、门状态信号指示等组成。2扇门页由连续成环形的特种钢丝绳连接,钢丝绳安装在支承导轨上的滑轮内,左侧门页与驱动

锂离子电池保护电路基本知识

锂离子电池保护电路 1.什么是锂离子电池保护ic? 答:在锂离子电池使用过程中,过充电、过放电对锂电池的电性能都会造成一定的影响,为避免使用中出现这种现象,专门设计了一套电路,并用微电子技术把它小型化,成为一个芯片,该芯片俗称锂电池保护ic。 2.保护ic外形是什么样的? 答:保护ic外形常用的有两种: 一种称为SOT-23-5封装。 另一种较薄,称TSSOP-8封装。

3.Ic内部有些什么电路,能大概介绍一下吗?答:ic内部的简化的逻辑图如下: 其各个端口的功能简述如下: V DD:1。IC芯片电源输入端。 2.锂电池电压采样点。 V SS:1。IC芯片测量电路基准参考点。 2.锂电池负极和IC连接点。 D O:IC对放电MOS管的输出控制端 C O:IC对充电MOS管的输出控制端 V M:IC芯片对锂电池工作电流的采样输入端

从简化的逻辑图可见:电池过充电、过放电,放电时电流过大(过电流),外围电路短路,该ic都会检测出来,并驱动相应的电子器件动作。 4.Ic有哪些主要技术指标? 答:1)过充电检测电压:V CU 4.275±25mv (4.25 4.275 4.30)2)过充电恢复电压:V CL 4.175±30mv (4.145 4.175 4.205) 3) 过放电检测电压:V DL 2.3±80mv (2.22 2.3 2.38 ) 4) 过放电恢复电压:V DU 2.4±0.1mv (2.3 2.4 2.5 ) 5) 过电流检测电压:VIOV10.1±30mv (0.07V 0.1 0.13V) VIOV20.5±0.1mv (0.4 0.5 0.6 ) 6) 短路检测电压:VSHORT -1.3V (-1.7 -1.3 -0.6 ) 7) 过充电检测延时:tcu 1s (0.5 1 2 ) 8) 过放电检测延时:tdl 125ms (62.5 125 250 ) 9) 过流延时:TioV1 8ms (4 8 16 ) TioV2 2ms (1 2 4 ) 10)短路延时:Tshort 10us (10 50us) 11)正常功耗:10PE 3uA (1 3 6uA) 12)静电功耗:1PDN 0.1 uA 5.锂电池保护电路的PCB板上,除了保护ic外,还需要哪些元件,才能组成一个完整的保护PCB? 答:还需要作为开关功能用的两只场效应管、若干电阻、电容。 6.场效应管是什么样子? 答:场效应管也称MOS FET,在锂电池保护PCB上,都是成对使用,因此制造商把两只独

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

锂电池过充电_过放_短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电

地铁车辆车门结构

广州地铁车辆车门结构,控制原理及改进意见 1 综述 地铁客室车门因其数量多(每列车有60个客室车门)、操作频繁(运营中平均每2 min就须开关门1次)而成为广州地铁一号线电动车组(以下简称车辆)至关重要的部件。车门的结构和控制若在设计上不够安全可靠,将会影响运营,损害地铁公司的形象,有的甚至直接危害乘客的人身安全。世界各国的地铁公司在购买车辆时,都十分重视车辆客室车门在安全性,可靠性方面的设计。 2 客室车门的设计思想 广州地铁一号线运营的设计能力为单向最大截面客流量为76 800人/h,行车间隔为2 min,列车全程平均运行速度为35 km/h。为此,地铁车辆车门在设计时要尽可能提高乘客上下车的速度,缩短列车的停站时间;列车上可能十分拥挤,必须保证列车进站后不能开错门;为了提高车门操作的准确性和安全性,需要对车门和列车的状态进行监控。另外,作为一种后备的紧急情况下开门的措施,每个车门还应设有一个独立的纯机械的开门装置。概括起来,广州地铁一号线车辆客室车门应具有以下特点: (1)数量多,车门的净开度大。 (2)正常运行时,车门的控制具有ATP(列车自动保护)保护的功能,故障导向安全。 (3)每个车门均带有独立的纯机械的紧急开门装置。 3 客室车门的基本结构"传动方式及控制原理 广州地铁一号线车辆客室车门由两扇内藏式滑动门页组成,以压缩空气为动力驱动单臂气缸,通过钢丝绳、滑轮等组成的机械传动机构完成门的开关动作,每节车每侧5个门,全列车共60个门,有利于乘客迅速上下,缩短车辆停站时间,满足地铁运输方便快捷的要求。 车门的主要技术参数(见表1) 车门的主要结构特点 车门及其控制系统由门页、车门导轨、传动机构、门机械锁闭机构、紧急解锁机构、气动控制系统、电气控制系统、门状态信号指示等组成。2扇门页由连续成环形的特种钢丝绳连接,钢丝绳安装在支承导轨上的滑轮内,左侧门页与驱动风缸直接连接,并通过安装在左门页上方钢丝绳夹紧机构与钢丝绳相连,右侧门页与钢丝绳调整装置连接,通过调整装置使钢丝绳保持一定的张紧力,2扇门页上方设有1个锁钩,车门关闭后,锁闭系统动作,锁钩勾住2扇门页上的锁销,使车门安全可靠地锁闭;为了获得车门的状态信息,给维修、行车人员显示车门故障,还装有车门锁闭、车门关闭行程开关S1、S2,车门切除、车门紧急解锁行程开关S3、S4等附加装置,各行程开关均与相应的指示灯相连。如门关时S1、S2到位橙色指示灯灭;车门切除时S3动作,红色指示灯亮;紧急手柄拉下,S4动作,

广州地铁五号线盾构隧道工程施工技术

广州地铁五号线盾构隧道工程施工技术 [摘要]受周边环境、地质条件、线路站位及施工工期等因素制约,广州地铁五号线盾构施工面临诸多难题和挑战。在施工过程中成功研究并应用了SEW工法、暗挖导洞群桩基托换法,针对江中超浅埋泥水盾构过江、土压平衡盾构过溶洞群、超小曲线半径重叠隧道盾构等施工难点采取新技术和新工法,并在盾构过砂层时采取TAC高分子聚合物等新材料,有效控制了盾构施工中土体稳定和变形,保证地铁五号线顺利施工。 [关键词]地铁工程;盾构隧道;复合地层;施工技术 1 工程概况 1.1 工程简介 广州市地铁五号线全长约41.6km,共设29座车站,其中12座换乘站。首期工程口至文冲段,工程投资估算约152.97亿元,线路长约31.9km。首期工程线路以高架线方式跨过珠江至大坦沙站,出站后线路转为地下线,下穿珠江至中山八站,随后线路以地下线方式至终点文冲站(见图1)。沿线区间隧道大部分采用盾构法施工,使用23台盾构机掘进总长度27km,占线路总长度84.6%。线路穿越繁华市区,邻近或下穿建(构)筑物、管线等市政设施。 1.2 地质概况 五号线沿线基岩主要为白垩系红层,其间在大坦沙段和越秀山西侧发育石灰岩,在越秀山、蟹山及文园等地发育花岗岩。不同岩性地层工程地质特性差别较大。花岗岩、石灰岩岩质坚硬,石灰岩岩溶较发育。线路沿线发育有广三断裂等多条断裂带。断裂在与线路相交地段发育特征不一,对线路的影响程度也不一样。在口~大坦沙一带,广三断裂在西珠江与线路相交,第四系砂层发育,砂层强透水且与珠江有直接水力联系。在大坦沙~中山八、三溪~鱼珠、车陂南~东圃一带分布较厚的淤泥、淤泥质土层、冲积~洪积粉细砂和中粗砂层。 1.3 盾构施工中难重点 广州地区盾构施工环境,特别是其复合地层的复杂性,由岩溶、断裂、软土、砂层及硬岩等构成了复杂的工程地质条件,对工程的实施带来了很多的困难和风险。此外,五号线线路穿越繁华市区,施工易引起周边建(构)筑物、管线等市政设施破坏。周边环境建(构)筑保护、文明施工要求高。同时,受周边环境及施工工期等制约,不同盾构区间被设计成5m江中超浅埋、200m超小曲线半径同时隧道上下叠置,以及55‰超大坡度等。盾构进出洞、过站及吊出的工况复杂。21台(全线共23台)曾是1次或者多次使用过的旧盾构,经过维修改造重新投入使用到一条线建设,实属罕见。

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

电池保护板工作原来

锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以D W01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使

锂电池保护板工作原理

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

_动车论坛_广州地铁列车简介

广州地铁列车简介(1到5号线) 广州地铁一号线列车简介 一号线车辆为八字形结构,列车以黄色为主色调,车体两边各有一条红色的饰带,象征着广州地下卧着几条巨龙,给广州带来繁荣与昌盛。 一号线列车总长约140m,列车高3.8m,宽3m,每列车有48个座椅,每个座椅最多可座7人。在AW1状态(即座位坐满人)下可坐336

人,AW2(额定载荷)下,可座1860人,AW3状态下(超员载荷)可座2592人。 一号线车门系统采用的是电控气动车门,通过相关的继电器和电磁阀控制车门风缸,车门风缸驱动门页进行开和关。同时,采用了相关的保护措施,当车门夹人或夹物后,列车将无法启动,直到司机重开一次门,让被夹人离开后或将被夹物清除后才能动车,以防止夹人夹物行车,保证乘客安全。 一号线每个单元车设有两个车顶单元式空调机组,整列车共有12个空调机组。空调系统是由独立的控制单元控制运行,具有制冷、通风和紧急通风等功能,客室内的温度设定值是可调节的,调节范围为 19-27℃,一般情况下客室温度设定值为自动。此外在车顶空调单元及客室内都分布有温度传感器,用以实时检测客室内的温度,空调系统将根据室内外温差自动调节客室温度,让乘客始终保持舒适的感觉。 一号线的广播系统包括:司机室对客室广播、运营控制中心对客室内部广播、自动报站和司机室与司机室对讲。当列车从站台出发后经过轨道特定位置,将会自动触发相应的广播,让乘客了解到站信息,以及地铁站周边的建筑设施、旅游景点等。 广州地铁二号线列车简介

二号线列车外型为“鼓形”结构,而非一号线的“八字”型结构,列车以香槟色为主色调,车体两边各有一条黄色的饰带,车体和车头设计为流线型,更加体现了现代列车的造型特点,与一号线列车相比,二号线列车外玻璃窗加宽,使列车的整体美观性进一步增强。在每节车厢的两侧各有4个长座椅,纵向靠墙布置,座椅表面采用压网纹的不锈钢制成。在车厢内还设置了横向拉杆并加装拉环,车厢内墙面与天花板以白色调为主,使列车内显得清爽淡雅。

相关主题
文本预览
相关文档 最新文档