当前位置:文档之家› 同步发电机自动励磁调节器中同步电压的处理

同步发电机自动励磁调节器中同步电压的处理

同步发电机自动励磁调节器中同步电压的处理
同步发电机自动励磁调节器中同步电压的处理

同步发电机自动励磁调节器中同步电压的处理

The Formation of Synchronou s Voltages in Automatic Excitation Regulator

刘 微

(南京工程学院,江苏南京210013)

摘 要:在同步发电机自动励磁调节装置中,可控硅触发技术是一项关键技术,而其中的同步电压的处理环节又是关键。因此,对半导体励磁系统和微机励磁系统中同步电压的处理进行分析,并比较。关键词:自动励磁调节器;可控硅整流;同步电压;触发脉冲中图分类号:T M 31

文献标识码:C

文章编号:1009-0665(2002)06-0026-03

收稿日期:2002-07-27;修回日期:2002-11-10

同步发电机的自动励磁调节装置(AER)是电力系统中一个重要的自动装置[1],其中的移相触发单元的任务是产生可以改变相位的脉冲,用来触发整流桥中的可控硅,使其控制角随着发电机端电压的变化而改变,从而达到自动调节励磁的目的。移相触发单元是由同步、移相、脉冲形成、脉冲放大等环

节构成[2]

。若其中的同步电压处理不好,将影响移相触发脉冲的准确性,从而影响发电机的励磁。在半导体励磁系统中同步电压的产生很麻烦,随着微型计算机的应用,为同步电压的处理提供了很大的方便。

1 同步电压的作用

根据在可控硅整流电路中对可控硅进行导通控制的要求,可控硅元件上所加的电压和控制极上所加的触发脉冲在相位上必须配合合理,否则可控硅将无法正常工作,这种配合称为同步。因此,在可控

硅励磁系统中,必须引人同步电压来保证可控硅触发脉冲与主电路的同步[2]。

2 同步电压的产生

同步电压的取法和可控整流电路接线型式有关[2]。

三相半控硅整流电路中,由于共阳极组的整流元件不可控,在自然换流点换流,共阴极组的可控硅应承受的阳极电压为正时一段区间内触发导通,三相触发脉冲应按+A 、+B 、+C 相序依次相隔120 发出。

三相全控硅整流电路中,共阴极组的可控硅只有在其阳极电位最高的一段区间内才有可能导通,供阴极组的出发脉冲应在这一期间内发出,三相触发脉冲应按+A 、+B 、+C 相序依次相隔120 发出。共阳极组的可控硅只有在其阴极电位最低的一段区间内才有可能导通,共阳极组的触发脉冲应在这一段区间内发出。三相触发脉冲应按-C 、-A 、-B 相序依次相隔120 发出。这样六相触发脉冲应按+A -C +B -A +C -B 相序依次相隔60 发出。

因此,移相触发单元必须接受与主电路电压有一定相位关系的电压信号,才能保证触发脉冲按要求发出。同步电压可经同步变压器获得,同步电压采用适当的接法,将主电路电压变换成具有触发电路所要求的幅值、相位及相数的同步电压,作为移相触发单元的同步信号。

3 同步电压的处理

3.1 半导体励磁调节器中同步电压的处理

在半导体励磁调节器中,同步电压的原方绕组接主电路的电源,副方绕组在三相半控桥中接成三相Y 形,在三相全控桥中采用六相双Y 形接法。根据全控硅整流桥的工作特点:控制角0 < <90 时,全控硅整流桥工作在整流状态;当 >90 时,全控硅整流桥工作在逆变状态,仅简单的引入上述同步电压( U tb )还不够,必须对同步电压进行处理,才能满足触发脉冲的要求。

在三相全控硅整流桥电路中,施加触发脉冲的时间应在该相自然换相点之后,如果在该相自然换相点之前施加触发脉冲,则可控硅不但不能在施加

26

2002年12月

江 苏 电 机 工 程

Jiangsu Electrical Engineering

第21卷第6期

触发脉冲导通,而且由于在自然换相点之后的其间内脉冲发生器不可能再次地发出脉冲,所以该相可控硅实际因丢失脉冲而不可能导通。由于触发脉冲发出的时间不可能十分准确,所以应使最早脉冲发出的时间距自然换相点有一定距离。因此,必须引入最小控制角 m i n 的电压 U min 。由于采用了全控硅整流桥,当发电机需要快速减磁时,整流桥要按逆变方式运行,此时触发脉冲应于自然换相点90 后发出,相位越后逆变作用越大。但是,由于和前述情况类似的原因,如果脉冲相位超过180 ,则可控硅不导通而不能实现逆变,所以脉冲相位最迟也应在180 前发出。因此,必须引入最大控制角 man 的电压 U max 。此外,根据触发脉冲有一定的幅值要求,还要引入一充电电压 U 充。

可见,在半导体三相全控硅整流桥中,对于1个可控硅要引入4个同步电压,即: U tb 、 U 充、 U min 、 U max ,对于6个可控硅要引入24个相位不同的同步电压。

此外,在半导体励磁中对于副励机来讲,三相可控整流桥适是一个很大的负载,可控硅的导通与关断将引起阳极电源电压波形畸变较严重,因此引起的同步电压波形畸变的问题也必须予以重视,否则将影响移相触发回路的正常工作。通常对畸变了的同步电压先进行滤波或整形,以消除畸变的影响。

可见,在半导体励磁中,同步电压的产生很麻烦,调试也很困难。

3.2 微机励磁调节器中同步电压的处理3.2.1 同步电压的处理框图原理

同步电压整形的框图见图1

图1 同步电压整形的框图

副励机发出的三相交流电压经同步变压器将电压变小、隔离、移相,此同步变压器采用 /2Y 接法是为了增加与主电源的阻抗,并将输入电压移相后得到超前90 的电压。再将同步变压器输出电压进行二阶有源滤波后得到相位滞后90 的电压,此电压与副励机的电压同相。最后将此电压经电压比较

器得到6个上升沿分别对应于自然换相点的门控信号,将此门控信号接到可编程定时计数器(8253)上形成电源电压状态字。以下对框图的各个部分进行分析。

(1)同步变压器

同步变压器内部接线如图2所示,一次侧接成 形,是为了消除零序的影响,二次侧有6个绕组,c 2与b 2反极性相串得到u j a 、a 2与c 2反极性相串得到u j b 、b 2与a 2反极性相串得到u j c 。画出 U j a 、 U j b 、 U jc 与一次电压 U ab 、 U bc 、

U ca 的相量关系图。如图3所示,可见前者超前后者90

相角。

图2

同步变压器内部接线图

图3 同步变压器电压相量关系

(2)滤波

二阶有源滤波作用是滤去副励机由于全控整流桥负荷所引起的波形畸变,得到相位滞后90 的电压,此电压不受主电源波形畸变的影响,其相位与副励机发出的三相交流电压相位同相。

(3)电压整形

图4为三相同步电压整形电路,同步变压器副方电压经滤波后的电压u a 、u b 、u c 再经电压比较器后,形成宽180 相距120 的3个方波(如图5),其上升沿分别对应自然换流点1、3、5。对于三相全控桥,须增加3个反相器,形成6个宽180 相距60 的方波,其上升沿分别对应自然换相点1、2、3、4、5、6,再将6个同步电压门控信号送入8253。

同步电压门控信号的作用[3]:

a.将同步电压门控信号通过8253形成电源电压状态字,用以控制8253中定时/计数器记数时间

27

刘 微:同步发电机自动励磁调节器中同步电压的处理

常数t 的装入。对于最大角及最小角的限制,可将对应的t max 及t min 装入相应的定时/计数器的计数器中,

即可达到最大角及最小角的控制。

图4

三相同步电压整形电路

图5 三相可控阳极电压及自然换流点

b.同步电压门控信号为主机中断器控制器提供外部中断源。

c.同步电压门控信号分别作为8253的门控信号。

(4)可编程定时/计数器

8253是较常用的接口芯片。它具有3个独立的16位计数通道的可编程定时/计数器,使用+5V 单一电源,24引脚双列直插式大规模集成电路芯片。

8253具有方式0至方式5共6种工作方式,用户可以根据电路要求任选,在此电路中选方式1。方式1又称硬件再触发单拍脉冲计数。在此方式下,由外部门控脉冲触发计数器,使输出变低,开始时对时钟脉冲进行倒计数。当时钟脉冲的个数等于计数值时,即计数器减到零,其输出变高,其后保持

高电平直至下一个门控脉冲到来。计数器输出从0变高的正跳沿,可以用单稳态电路检出得到一个宽度一定的脉冲。方式1还有其他一些特点:

a.计数值写入计数器后,并不开始计数,直到外部触发脉冲(同步电压门控信号)正跳沿到来时才开始减法计数。若不重新写入计数值,计数器仍按原计数值进行计数。

b.计数器计数过程中不会被外部门控脉冲打断,以保证完整的计数过程。

c.CPU 通过数据线改变计数值,其计数值在下一个门控脉冲触发后才生效。

为了满足全控整流桥对触发脉冲的要求,采用2片8253,共有6个计数器,分别对6个可控硅进行触发。8253的门控脉冲由门控信号回路供给。计数时钟脉冲由主机的时钟电路供给,数据线直接连接到主机总线的C 口低8位上。通过软件对发电机电压与参考电压之差进行PID 运算,得到一个控制量去改变控制角,这个控制量是一个数字量,直接由CPU 写入8253中,8253根据写入数的大小及同步电压信号产生相应控制角为 的触发脉冲。可见,微机励磁调节器中同步电压的处理比较简单,即只要产生一与主电源同步的门控信号即可。

4 结论

(1)在半导体励磁调节器中,对于1个可控硅要引入4个相位不同的同步电压 U tb 、 U 充、 U m i n 、 U max ,对于6个可控硅要引入24个相位不同的同步电压,很麻烦。若其中有一个量出了问题将影响触发脉冲的形成,调试较困难,装置的可靠性差。(2)在微机励磁调节器中,只需产生一个与主电源同步的门控信号,即6个同步电压门控信号的上升沿对应于自然换相点,最大角与最小角的限制由软件实现,从而简化了同步电压的处理,为调试带来了方便,并提高了装置的可靠性。参考文献

[1] 周双喜,李丹.同步发电机数字式励磁调节器[M ].北京:中国

电力出版社,1998.

[2] 樊俊.同步发电机半导体励磁原理及应用[M ].北京:水利电力

出版社,1991.

[3] 丁尔谋.同步发电机励磁调节器[M ].北京:中国电力出版社.

欢迎订阅、欢迎投稿、欢迎刊登广告

28

江 苏 电 机 工 程

发电机励磁原理及构造

发电机原理及构造——发电机的励磁系统 众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二节管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路图。由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK 移相进行相位补偿。 二、三次谐波原理 左图为三次谐波原理图,对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE中进行励磁。 三、可控硅直接励磁原理 由左图可以看出,可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(A VR),控制可控硅的导通角来调节励磁电流大小而维持发电机端电压的稳定。 四、无刷励磁原理 无刷励磁主要用于西门子、斯坦福、利莱等无刷发电机。它是利用交流励磁机,其定子上的剩磁或永久磁铁(带永磁机)建立电压,该交流电压经旋转整流起整流后,送入主发电机的励磁绕组,使发电机建压。自动电压调节器(A VR)能根据输出电压的微小偏差迅速地减小或增加励磁电流,维持发电机的所设定电压近似不变。 中小型三相同步发电机的技术发展概况 一.概述 中小型同步发电机是中小型电机的主要产品之一,广泛应用于小型水电站、船舶电站、移动电站、固定电站、应急备用电站、正弦波试验电源、变频电源、计算机电源及新能源――风力发电、地热发电、潮汐发电、余热发电等。它对边(疆)老(区)贫(穷)地区实现电气化,提高该地区经济发展水平和人民的生活水平有着重要的作用,中小型发电机在船舶、现代电气化火车内燃机车等运输设备中也是一个关键设备。移动电站对国防设施、工程建设、海上石油平台、陆上电驱动石油钻机、野外勘探等也是不可缺少的关键装备之一。应急备用电站在突发事件中的防灾、救护保障人民的生命和财产的安全有着不可替代的作用。开发绿色能源、可再生能源、减少大气二氧化碳的含量,小水电、风力发电、地热发电和余热发电是重要的组成部分。 我国小型同步发电机的第一代产品是1956年电工局在上海组织的统一设计并于1957年完成的TSN、TSWN系列农用水轮发电机。第二代产品是在进行了大量试验研究和调查研究的基础上于1965年开始的T2系列小型三相同步发电机统一设计,该水平达到六十年代国际先进水平,为B级绝缘的有刷三相同步发电机。在这段时间还开发了ST系列有刷单相同

电机的励磁方式

旋转电机中产生磁场的方式。现代电机大都以电磁感应为基础,在电机中都需要有磁场。这个磁场可以由永久磁铁产生,也可以利用电磁铁在线圈中通电流来产生。电机中专门为产生磁场而设置的线圈组称为励磁绕组。由于受永磁材料性能的限制,利用永久磁铁建立的磁场比较弱,它主要用于小容量电机。但是随着新型永磁材料的出现,特别是高磁能积的稀土材料如稀土钴、钕铁硼的出现,容量达百千瓦级的永磁电机已开始研制。 一般的电机多采用电流励磁。励磁的方式分为他励和自励两大类。 他励由独立的电源为电机励磁绕组提供所需的励磁电流。例如用独立的直流电源为直流发电机的励磁绕组供电;由交流电源对异步电机的电枢绕组供电产生旋转磁场等等。前者为直流励磁,后者为交流励磁。同步电机按电网的情况,可以是转子的励磁绕组直流励磁,也可以定子上由电网提供交流励磁,一般以直流励磁为主。如直流励磁不足,则从电网输入滞后的无功电流对电机补充励磁;如直流励磁过强,则电机就向电网输出滞后的无功电流,使电机内部磁场削弱。采用直流励磁时,励磁回路中只有电阻引起的电压降,所需励磁电压较低,励磁电源的容量较小。采用交流励磁时,由于励磁线圈有很大的电感电抗,所需励磁电压要高得多,励磁电源的容量也大得多。 他励式励磁电源,原来常用直流励磁机。随着电力电子技术的发展,已较多地采用交流励磁机经半导体整流后对励磁绕组供电的方式励磁。励磁调节可以通过调节交流励磁机的励磁电流来实现;也可以在交流励磁机输出电压基本保持不变的情况下,利用可控整流调节。后者调节比较快速,还可以方便地利用可控整流桥的逆变工作状态达到快速灭磁和减磁,从而取消常用的灭磁开关。前一种方式,整流元件为二极管,如把它和交流励磁机电枢绕组、同步电机励磁绕组一起都装在转子上,则励磁电流就可以直接由交流励磁机经整流桥输入励磁绕组,不再需要集电环和电刷,可构成无刷励磁系统,为电机的运行、维护带来很多方便。当然整流元件、快速熔断器等器件在运行中均处于高速旋转状态,要承受相当大的离心力,

触点式电压调节器

第五节触点式电压调节器 (助学课件) 一、概述 发电机在汽车上是按固定的传动比由发动机驱动的,因此它的转速完全由发动机的转速决定。汽车在行使中发动机的转速是经常改变的,致使发电机的转速也随之改变。故发电机的电压也必然随着转速的变化而变化。这与用电设备和蓄电池充电要求电压恒定相矛盾。因此,发电机必须具有调节电压的装置,以便当发电机转速变化时,自动调节发电机的电压,使电压保持一定或保持在某一允许范围内,以防发电机电压过高或者过低,烧坏用电设备,使蓄电池过充电或者使蓄电池充电不足。 交流发电机的硅二极管具有单向导电特性,有阻止反向电流作用,它决定了蓄电池不可能向发电机放电而出现逆电流,所以无需设置逆电流截断器;又因为交流发电机具有自身限制输出电流不超过最大值的能力,故也不必配用电流限制器,仅需要一个电压调节器。 二、电压调节器调压的基本原理 由式(2—9)可得 U=1.35UL=2.34UΦ U=CnΦ 式中:U是发电机输出电压;C是电机常数;n是发电机转速;Φ是磁极的磁通量;所以,在发电机转速变化时,要使电压保持一定,只有相应地改变磁极的磁通,即当n增高时减少声使电压保持一定。而磁通声的大小取决于磁场电流,所以在转速变化时只要自动调节磁场电流就能使电压保持一定。电压调节器就是根据这一原理进行电压调节。 三、FT61型双触点式电压调节器 1.结构 FT61型双级触点式电压调节器用于东风EQl090型汽车上,其结构原理如图2—17所示。

动触点在两个静触点中间形成一对常闭的低速触点K1,另一对常开的高速触点K2,能调节两级电压,故称为双级触点式。高速静触点与金属底座直接搭铁。对外只有点火(或“火线”、“电枢”、“A”、“S”、“+”)和磁场(或“F”)两个接线柱。

同步电机励磁系统电力系统研究用模型Excitationsystemfor

同步电机励磁系统 电力系统研究用模型 Excitation system for synchronous electrical machines Model for power system studies GB/T 7409.2—1997 、八— 前言 本标准是对GB 7409—87 的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC 已制定了国际标准。 为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC 标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409 改编为系列标准:修订后的GB 7409.1 等同采用IEC 34-16-1:1991;GB 7409.2 等同采用IEC 34-16-2:1991 ,至于GB 7409.3,由于IEC 目前还没有相应的标准,此部分是根据GB 7409 执行七年的情况并参考了美国IEEE std 421.1—1986、421.A —1978、421.B—1979 和原苏联rOC T 21558—88等标准编写的。 本标准规定了适用于电力系统稳定性研究的励磁系统模拟简图及相应的数学模型,以及其包括的参数和变量的术语定义。 本标准的附录A、附录B、附录C、附录D都是标准的附录; 本标准的附录E 是提示的附录。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。本标准主要负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 GB/T7409.2 —1997 IEC 前言 1) IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC 国家委员会)组成的世界范 围内的标准化组织。IEC 的目的是促进电工和电子领域内所有有关标准化问题的国际间的合作。为此目的和除其他活动之外,IEC 出版国际标准。这些标准是委托各个技术委员会制定的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC 有联系的 国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大 组织之间共同确定的条件紧密合作。 2) IEC 关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC 各国家委员会应尽最大可能在各自的国家和地区标准中明确地采用IEC 国际标准,并应清楚地指明IEC 标准与对应的本国或本地区标准之间的某些分歧。 5)IEC 对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 GB/T7409.2 —1997 IEC 序言本报告由No.2旋转电机技术委员会制定。本报告的原文以下述文件为根据

(完整版)同步电动机励磁柜原理

励磁柜 介绍一些同步电动机励磁柜的基本知识,希望大家能了解并多交流一下同步电动机励磁柜的基本知识。 一.KJLF11 具有以下特点: 1.转子励磁采用三相全控整流固接励磁线路; 2.与同步电动机定子回路没有直接的电气联系;3.实现了按同步电动机转子滑差,顺极性自动投励。按到达亚同步转速(95%)时投入励磁,使同步电动机拖入同步运行; 4.具有电压负反馈自动保持恒定励磁; 5.起动与停车时自动灭磁,并在同步电动机异步运行时具有灭磁保护; 6.可以手动调节励磁电流,电压进行功率因数调整,整流电压可以从额定值的10%至125%连续调节;7.交流输入电源与同步电动机定子回路来自同一段母线;8.同步电动机正常停车5 秒钟之内,本设备整流电路和触发电路的同步电源不容许断电;9.灭磁电阻RFD1 和RFD2 的阻值为所配的转子励磁绕组直流电阻的 5 倍,其长期容许电流为同步电动机额定励磁电流的15%;10.当同步机矢步运行时,可以发出矢步信号,用于报警或跳闸;11.输入电源为380V. 二.保护电路:(1).过压保护:1.同步电动机异步运行时,转子感应过电压由灭磁环节将放电电阻RFD1-2 接入,消除开路过电压。 2.主电路可控硅元件的换向过电压由并接于元件两端的阻容电路吸收。(RC4-9) 3.整流变压器一次侧分,合闸引起的操作过电压由RC1-3 组成的阻容吸收装置来抑制。4.为使同相两桥臂上可控硅元件合理的分担自直流侧的过电压,设置了R10-15 均压电阻来保护。(2)过电流保护: 1.与可控硅串联的快速熔断器是作为直流侧短路保护用,快熔熔断时,保护环节可发出声响报警信号,跳开同步电动机定子侧电源开关,切断励磁。 2.短路电流发生在整流变压器二次侧时,其一次侧空气开关脱扣器顺动,切断电源。 3.直流侧过负荷时,空气开关脱扣器或热继电器动作。但整定值应保证强励磁30 秒内不动作。 三. 励磁线路各环节的工作电压均由同步电源变压器供给,其工作原理如下:同步电动机起动过程中,灭磁环节工作,使转子感应交变电流两半波都通过放电电阻,保证电机的正常起动。起动过程中,整流电路可控硅处于阻断状态,当电

电压调节器工作电路工作原理

一.发电机的功用 汽车使用的电源有蓄电池和发电机两种。采用交流发电机作为主要电源,蓄电池作为辅助电源。在汽车行驶过程中,由发电机向用电设备提供电源,并向蓄电池充电。蓄电池在汽车启动时提供启动电流,当大电机发出电量不足时,可以协同发电机供电。 二.发电机的分类 1.按磁场绕组搭铁形式分两类 a.外搭铁型(A线路) 磁场绕组的一端(负极)接入调节器,通过调节器后再搭铁。 b.内搭铁型(B线路) 磁场绕组的一段(负极)直接搭铁(和壳体相连)。如下图2-13所示: 2.按整流器结构分四类 a.六管交流发电机(例丰田系列) b.八管交流发电机(例天津夏利轿车所用) c.九管交流发电机(例三菱系列) d.十一管交流发电机(例奥迪、大众汽车用) 三.交流发电机结构 交流发电机一般由转子、定子、整流器、调节器、端盖组成,JF132型交流发电机组件图见图 1.转子 转子的功用是产生旋转的磁场。它由爪极、磁轭、磁场绕组、集电环、转子轴组成,结构图见图

转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔内装有磁场绕组(转子线圈)和磁轭。 集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。2.定子 定子的功用是产生交流电。它由定子铁心和定子绕组组成。见图 定子铁心由内圈带槽的硅钢片叠成,定子绕组的导线就嵌放在铁心的槽中。定子绕组由三相,三相绕组采用星型接法或三角形(大功率)接法。三相绕组必须按一定要求绕制,才能使之获得频率相同、幅值相等、相位互差120°的三相电动势。 3.整流器、端盖 整流器的作用是将定子绕组的三相交流电变为直流电。 端盖一般用铝合金铸造,一是可有效的防止漏磁,二是铝合金散热性能好。 四.交流发电机的电压调节器 交流发电机的转子由发动机通过皮带驱动旋转的,且发动机和交流发电机的速比为~3左右,因此交流发电机转子的转速变化范围非常大,这样将引起发电机的输出电压发生较大变化,无法满足汽车用电设备的工作要求。 为了满足用电设备恒定电压的要求,交流发电机必须配用电压调节器,使其输出电压在发动机所有工况下几本保持恒定。 1.交流发电机电压调节器按工作原理可分为: a.触点式电压调节器 b.晶体管调节器 c.集成电路调节器

同步电动机的工作原理

同步电动机的工作原理 同步电动机 转子转速与定子旋转磁场的转速相同的交流电动机。其转子转速n 与磁极对数p、电源频率f之间满足n=f/p。转速n决定于电源频率f,故电源频率一定时,转速不变,且与负载无关。具有运行稳定性高和过载能力大等特点。常用于多机同步传动系统、精密调速稳速系统和大型设备(如轧钢机)等。 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁

场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步 同步电动机的起动方法: 同步电动机只有在定子旋转磁场与转子励磁磁场相对静止时,才能得到平均电磁转矩。如将静止的同步电动机励磁后直接投入电网,这时定子旋转磁场与转子磁场间以同步转速n1作相对运动,转子受到交变的脉动转矩,其平均值为零,电机不能起动。所以必须借助其他方式来起动。

发电机自动电压调节器

发电机自动电压调节器 —2053 安装使用说明书 广州三业科技有限公司

发电机自动电压调节器 SY-A VR-2053系列自动电压调节器(简称A VR),是专门为配套多种类型的交流无刷发电机而设计。系统通过对发电机交流励磁机励磁电流的控制,实现对发电机输出电压的自动调节。 技术参数:

定工作点,以适应不同的应用条件。顺时针调节拐点升高,逆时针调节拐点下降。 下(图2)为外型及安装尺寸 防震橡胶X4 安装尺寸 2053A安装尺寸 2053C安装尺寸 2053B安装尺寸

采用200V线电压供电的接线如下: SY- A VR-2053系列的调试方法: ①电压整定 开机前应首先将电压整定电位器顺时针调到最小(出厂时已整定在400V,故正常情况下用户不必调整),当发动机运行正常达到额定转速后,将电压整定电位器逆时针方向慢慢调节,直至输出电压满足要求。 ②稳定度调节 顺时针稳定度减小,逆时针稳定度增加。调节时先将电位器往顺时针调节,待输出电压出现不稳定,然后再往逆时针方向慢慢调节,直至输出电压稳定。注意:输出电压过于稳定会使系统动态响应变差。

③并联正交调差(下垂调节) SY-2053系列调节器具有调差输入端可配接1A电流互感器。 警告:不能使用二次电流大上述数值的互感器直接接入,否则会损坏调节器!! 当需要进行并联运行时,一定要按正确的方式进行接线:确保电压检测回路的电压等级相符及连接线正确,而调差电流互感器应穿接于另外的一相(不能与电压检测的两相同相)。如果只是单机运行,则不必要求电压检测回路的相位,只要电压等级相符(单相电压也可使用)。 另外应首先单机运行,并将正交调差电位器设在中间,加上额定负载(cos φ= 0.8滞后),输出电压应下降2.5%左右。如果输出电压出现上升,则应对调调差电流互感器调差输入端两根导线。投入并联前应使所有发电机的空载电压一致,并联后在有功功率分配平衡的情况下,通过细调正交调差电位器达到无功电流平衡。电流偏大(功率因数偏后)的机组可将正交调差电位器顺时针增加小许角度,或电流偏小(功率因数偏前)的机组向逆时针方向调节(注意:应缓慢细调)。 ④微调(并联运行无功微量调节) 当机组并列带载运行时,如果出现小量的无功不平衡,可通过对微调的调整使其达到平衡,顺时针电流增大,反之减小。(微调的作用必须是在上述空载电压整定及调差等工作完成后方凑效) 注意: 1、在全自动并联操作的系统中,不须安装外控电压微调(如果没有特殊需要,建议不安装),因为在第一次统调整定后,其参与并网机组的输出电压外特性已确定,如果设有外控电压调节电位器,则操作者可能在没有基准的条件下改变了发电机的运行参数(会造成并网时空载环流增大、带载无功负荷分配不均)。 2、因为外接电位器接点带电,所以系统若要安装外控电压微调电位器,其电位

球磨机同步电机励磁系统改造

球磨机同步电机励磁系统改造 发表时间:2019-03-13T11:36:39.293Z 来源:《电力设备》2018年第27期作者:崔勃[导读] 摘要:空气压缩机和划痕的同步电击器系统有问题。(河南中原黄金冶炼厂河南三门峡 472100)摘要:空气压缩机和划痕的同步电击器系统有问题。使用tmds11型立体磁碟机改造旧磁器系统,在确定改造方案,电气连接及设定等方面说明改造过程。 关键词:同步电机;励磁系统;改造前言:机电一体化控制磁性系统的发展主要经历了三大过程:如kglf系列激励磁器等插件控制为核心。以集成单位控制为核心,以KD 系列激励磁器装置,柔性电子等微机控制为核心。如tmds系列激励磁器等。没有齿轮的电力驱动装置(gmd)的电力驱动部分主要由低速大回转矩的直线驱动马达,变速器控制等构成。由此可见,没有齿轮的研磨机由电动机的转子部分组成,在外面安装了永久磁体或设置了绕 圈。定子磨耍设置部分机基系统之上座圆筒体所需的石头的电子矩矩石头,通过直接产生子间转政府通过隙画家并没有传达合耦机械能源的方式传达磨损没有爬结构等问题的出现,为了最小化,工厂运转过程中将复杂的整顿工作。”。无齿轮驱动系统靠输送带输电,系统有良好的控制可能。 1 存在的问题 新疆良山矿业公司的空气压缩机,划痕等同期制动器,使用kglf11项类型的女机时,存在以下问题: (1)控制系统全部由插件(其中6个促发环节,主语,努力,保护,自我消灭,电压,逆变,附加阶段各1个)发热,控制控制稳定性差; (2)换下插头和滤磁器投入前,必须进行不活化调整,功率波形调整,重压时修正等一系列操作,需要试验设备的帮助,较为麻烦。调试完毕后,还要固定所有的调节器,等待试车。 (3)与控制硅硅散热的一般散热器相配合,送风机和通风器始终运转,耗电量大;自我消灭环在正常运行中会造成导热状况(旅磁衰变电阻经常发生热)的电流不稳定,影响生产,为此还会设置一台自主留声机,使柜台进一步冷却,定期清理或更换插件面板,使工人的维护量大,生产时间长;产生影响。于是公司决定改造4台旧碾盘机动力磁系统,各电机系数见表1。表1 2 球磨机励磁系统改造 2.1 改造方案 由于kglf系列控制系统基本淘汰,生产厂大部分停产,并经过技术论证,确定用重庆中正公司tmds11恒流励磁装置(图1)取代kglf11-300/110型旅磁柜1.#、2.#电器机器tmdsⅢ型、11-3。#4。#电器机器tmds11-Ⅱ型使用,并考虑因素,价格,以现有的减肥后的配合和使用的变压器类。 主控电路与移动式电路采用并转调控捷威集成电路集成电路集成电路集成电路集成电路集成电路块,采用三相衔接输入不尽相同顺序,完全实现外部连接设备测试,免费维修。根据转子电路内测定的转子电压波形,采用改变方向波的方法,利用光束隔离,输入计算机系统,在计算机控制下,可选择最高投票角。tmds11-v采用微芯片公司数字pic微控制器,tmds11-fps采用三菱fx系列plc。接口友好,可在显示器网上设定或修改用户计数器和各种保护精度,在运行中人工调节吕子电流和功率接收。用真空管散热效果好。 2.2 电气接线(图2) 拆除旧磨损电机控制电路连接的控制接线端子(5个控制点,10个控制联系点)。输送站(141,142)接通电机开关电路。断路器无源,经常接入滤磁器,向旅磁控制电路提供甲流信号(103,105);励磁系统允许工作接口(1313138)连接到断路器开关电路;电表的电流表和功率由数值上的电流连接点a上电流相互制导机提供的一个连接点为"a413,a416"。计量器接收压的地点,由电压互动器提供的b,c对电压的连接点连接为b601,c601。 图1 TMDS11系列励磁装置原理

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

发电机自动电压调节器

SY-A VR-2058系列发电机自动电压调节器 产品说明书

SY-A VR-2058A、2058B、2058C、2058D型发电机自动电压调节器(简称A VR),是专门为配套基波励磁的交流有刷/无刷发电机而设计。系统通过对发电机交流励磁机励磁电流的控制,实现对发电机输出电压的自动调节。 普通应用技术参数:

辅助设计技术参数表: 接线与调整 SY-2058系列专门为配套通用的基波励磁的发电机配套,可满足普通60/50Hz单机或并列运行的发电机使用,系统接线前应检查励磁电源的电压(P1-P2 180~250V)及检测电压(P3-P4 400V)的等级应符合上表格规定(可接受特殊电压的定货)。调节器具有F/V拐点选择(出厂整定为48Hz/57Hz),

调节器设有励磁电流限制、输出过电压保护、并联(下垂)0~5%调差、外接电压微调电位器、外接功率因数控制(并联大电网使用)等功能。 ① 电压整定 开机前应首先将电压整定电位器逆时针调小(出厂已整定为230/400V ,一般情况下,用户不须调整),当发动机运行正常并达到额定转速后,将电压整定电位器顺时针方向慢慢调节,直至输出电压满足要求。由于电压设定电位器是采用多圈(36圈)精密电位器,所以可获得较精确的电压整定,特别有利于并联运行的高要求。 用户若须进行外部电压调整,可断开“电压微调”引线R1-R2连线点后并接一个可调电位器:其电阻减小输出电压上升。配套的电位器阻值为(以输出400V 为基准):200Ω/ 5%、500Ω/ 10%、1K Ω/ 15%、5K Ω/ 20%、10K Ω/ 25% ② 稳定度调节 顺时针稳定度减小(动态响应增加),逆时针稳定度增加(动态响应减小)。调节时先将电位器往顺时针调节,待输出电压出现不稳定,然后再往逆时针方向慢慢调节,直至输出电压稳定。 注意注意::输出电压过于稳定会使系统动态响应变差输出电压过于稳定会使系统动态响应变差。。 ③ F/V 频率/电压特性设定 2058针调节拐点下降之间选择)

同步电动机的起动

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

交流发电机电压调节器的分类及工作原理

调节器 交流发电机电压调节器按工作原理可分为以下四类: (1)集成电路调节器 集成电路调节器除具有晶体管调节器的优点外,还具有超小型,安装于发电机的内部(又称内装式调节器),减少了外接线,并且冷却效果得到了改善,现广泛应用于桑塔纳。奥迪等多种轿车车型上。 (2)晶体管调节器 随着半导体技术的发展,采用了晶体管调节器。其优点是:三极管的开关频率高,且不产生火花,调节精度高,还具有重量轻、体积小、寿命长、可靠性高、电波干扰小等优点,现广泛应用于东风、解放及多种中低档车型。 (3)电脑控制调节器 电脑控制调节器是现在轿车采用的一种新型调节器,由电负载检测仪测量系统总负载后,向发电机电脑发送信号,然后由发动机电脑控制发电机电压调节

器,适时地接通和断开磁场电路,即能可靠地保证电器系统正常工作,使蓄电池充电充足,又能减轻发动机负荷,提高燃料经济性。如上海别克、广州本田等轿车发电机上使用了这种调节器。 (4)触点式电压调节器 触点式电压调节器应用较早,这种调节器触点振动频率慢,存在机械惯性和电磁惯性,电压调节精度低,触点易产生火花,对无线电干扰大,可靠性差,寿命短,现已被淘汰。2.当发电机电压上升到高于蓄电池电压但还低于调节电压上限U2时,发电机处于自励状态。 交流发电机电压调节器的工作原理 当发电机电压高于蓄电池电压但还低于调节电压上限时U2时,VS与VT1仍截止,VT2保持导通。此时励磁电路为: 发电机定子绕组→正极管→发电机输出端子“B”→点火开关SW →熔断器 F3→发电机端子“F1”→发电机励磁绕组RF→发电机端子“F2”→调节器磁场端 子“F”→三极管VT2→调节器搭铁端子“E”→发电机搭铁端子“E”→发电机负极管→发电机定子绕组 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/8f10791217.html,/

励磁系统励磁调节器技术要求

励磁系统励磁调节器技术要求 4.1.1 自动励磁调节器 4.1.1.1 自动励磁调节器应有两个独立的自动电压调节通道,含各自的电压互感器、测量环节、调节环节、脉冲控制环节、限制环节、电力系统稳定器和工作电源等。两个通道可并列运行或互为热备用。 4.1.1.2 自动励磁调节器的各通道间应实现互相监测,自动跟踪。任一通道故障时均能发出信号。运行的自动电压调节通道任一测量环节、硬件和软件故障均应自动退出并切换到备用通道进行,不应造成发电机停机,稳定运行时通道的切换不应造成发电机无功功率的明显波动。 4.1.1.3 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.4 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.5 自动励磁调节器电压测量单元的时间常数应小于 30ms。 4.1.1.6 自动励磁调节器直流稳压电源应由两路独立的电源供电,其中一路应取自厂用直流系统。

4.1.1.7 励磁调节器的调压范围和调压速度: a)自动励磁调节时,应能在发电机空载额定电压的 70%-110%范围内稳定平滑的调节; b)手动励磁调节时,上限不低于发电机额定磁场电流的 110%,下限不高于发电机空载磁场电流的 20%; c)发电机空载运行时,自动励磁调节的调压速度应不大 于发电机额定电压的 1%/s,不小于发电机额定电压的 0.3%/s。 4.1.1.8 自动励磁调节器应配置电力系统稳定器(PSS)或具有同样功能的附加控制单元。 a)电力系统稳定器可以采用电功率、频率、转速或其组 合作为附加控制信号,电力系统稳定器信号测量回路 时间常数应不大于 40ms,输入信号应经过隔直环节处 理,当采用转速信号时应具有衰减轴系扭振频率信号 的滤波措施。 b)具有快速调节机械功率作用的大型汽轮发电机组,应 首先选用无反调作用的电力系统稳定器。 c)电力系统稳定器或其他附加控制单元的输出噪声应小 于±0.005p.u.。

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 技术分类:电机与运动控制作者:赵宇发表时间:2006-11-10 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。 图1 自励直流励磁机励磁系统原理接线图 上图中 LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁机励磁系统愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。 3 半导体励磁系统 半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。半导体励磁系统分为静止式和旋转式两种。 3.1 静止式半导体励磁系统 静止式半导体励磁系统又分为自励式和它励式两种。 3.1.1自励式半导体励磁系统 自励式半导体励磁系统中发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。系统起励时需要另加一个起励电源。 图2 无励磁机发电机自并励系统原理接线图

触点式电压调节器

一、概述 发电机在汽车上是按固定的传动比由发动机驱动的,因此它的转速完全由发动机的转速决定。汽车在行使中发动机的转速是经常改变的,致使发电机的转速也随之改变。故发电机的电压也必然随着转速的变化而变化。这与用电设备和蓄电池充电要求电压恒定相矛盾。因此,发电机必须具有调节电压的装置,以便当发电机转速变化时,自动调节发电机的电压,使电压保持一定或保持在某一允许范围内,以防发电机电压过高或者过低,烧坏用电设备,使蓄电池过充电或者使蓄电池充电不足。 交流发电机的硅二极管具有单向导电特性,有阻止反向电流作用,它决定了蓄电池不可能向发电机放电而出现逆电流,所以无需设置逆电流截断器;又因为交流发电机具有自身限制输出电流不超过最大值的能力,故也不必配用电流限制器,仅需要一个电压调节器。 二、电压调节器调压的基本原理 由式(2—9)可得 U=1.35UL=2.34UΦ U=CnΦ 式中:U是发电机输出电压;C是电机常数;n是发电机转速;Φ是磁极的磁通量;所以,在发电机转速变化时,要使电压保持一定,只有相应地改变磁极的磁通,即当n增高时减少声使电压保持一定。而磁通声的大小取决于磁场电流,所以在转速变化时只要自动调节磁场电流就能使电压保持一定。电压调节器就是根据这一原理进行电压调节。 三、FT61型双触点式电压调节器 1.结构 FT61型双级触点式电压调节器用于东风EQl090型汽车上,其结构原理如图2—17所示。

动触点在两个静触点中间形成一对常闭的低速触点K1,另一对常开的高速触点K2,能调节两级电压,故称为双级触点式。高速静触点与金属底座直接搭铁。对外只有点火(或“火线”、“电 枢”、“A”、“S”、“+”)和磁场(或“F”)两个接线柱。

同步电机励磁系统

同步电机励磁系统 Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997 本标准是对GB 7409—87的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。 本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。同步电机励磁系统所有 各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。其他未包括的术 语,应在同步电机励磁系统各分标准中作补充规定。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。 本标准负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 IEC

1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合 作。为此目的和除其他活动之外,IEC出版国际标准。这些标准是委托各个技术委员会制定 的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。 2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会 所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使 用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中 明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某 些分歧。 5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 IEC

相关主题
文本预览
相关文档 最新文档