当前位置:文档之家› 【清华 数学建模】第二章 初等模型

【清华 数学建模】第二章 初等模型

【清华 数学建模】第二章 初等模型
【清华 数学建模】第二章 初等模型

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模的经典模板

一、摘要 内容: (1)用1、2句话说明原问题中要解决的问题; (2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点; (3)算法思想(求解思路),特色; (4)主要结果(数值结果,结论);(回答题目的全部“问题”) (5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广 要求 (1)特色和创新之处必须在这里强调; (2)长度 (3)要确保准确、简明、条理、清晰、突出特色和创新点; 二、问题的提出 内容: 用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求; 要求: (1)不是题目的完整拷贝 (2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求; 三、条件假设 内容 (1)根据题目中的条件做出假设 (2)根据题目中的要求做出假设; 要求 (1)合理性最重要; (2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺; (3)合理假设作用: 简化问题,明确问题,限定模型的适用范围 四、符号约定 五、问题分析 1.名词解释 2.问题的背景分析 3.问题分析 六、模型建立 抽象要求 (1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、

优化模型、决策模型、图论模型等 (2)几种常见的建模目的:(对应相对(1)的方法) 描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性; 预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法; 优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法; (3)建模过程常见的几个要点: 模型的整体设计、合理的假设、建立数学结构、建立数学表达式; (4)模型的要求: 明确、合理、简洁、具有一般性; 例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应)) (5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理 (6)避免出现罗列一系列的模型,又不做评价的现象; 具体要求: (1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出; 七、模型求解 每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称 写作要求: 1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密 2、需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 3、计算过程,中间结果可要可不要的,不要列出 4、设法算出合理的数值结果 5、最终数值结果的正确性或合理性是第一位的 6、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进 7、题目中要求回答的问题,数值结果,结论,须一一列出 8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 9、结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式 ▲求解方案,用图示更好 10、必要时对问题解答,作定性或规律性的讨论。最后结论要明确 内容 (1)算法设计或选择,算法的思想依据,步骤; (2)引用或建立必要的数学命题和定理; (3)在不能给出精确解的情况下,需要给出不知一种解法(算法),并进行测试比较,给出

初等数学建模试题极其标准答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 :顶=1:a:b ,选坐v>0,而设语雨速 L( 1q -+v x ),v≤x Q(v)= L( v x -q +1),v>x 2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

一些经典初等数学模型

初等数学模型 本章重点是:雨中行走问题、动物的身长与体重、实物交换、代表名额的分配与森林救火模型的建立过程和所使用的方法 复习要求 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵。 2.进一步理解数学模型的作用与特点。 类比法是建立数学模型的一个常见而有力的方法.作法是把问题归结或转化为我们熟知的模型上去给以类似的解决:这个问题与我们熟悉的什么问题类似?如果有类似的问题曾被解决过,我们的建模工作便可省去许多麻烦.实际上,许多来自不同领域的问题在数学模型上看确实具有相类似的甚至相同的结构. 利用几何图示法建模.有不少实际问题的解决只要从几何上给予解释和说明就足以了,这时,我们只需建立其图模型即可,我们称这种建模方法为图示法.这种方法既简单又直观,且其应用面很宽. 1.雨中行走问题 雨中行走问题的结论是: (1)如果雨是迎着你前进的方向落下,即2 0π θ≤ ≤,那么全身被淋的雨水总量为 ? ? ? ??++=++= +=h v hr dr pwD v r h dr v pwD C C C θθθθcos sin )] cos (sin [21 这时的最优行走策略是以尽可能大的速度向前跑. (2)如果雨是从你的背后落下,即πθπ≤≤2 . 令απθ+=2 ,则2 0π α<<. 那么全身被淋 的雨水总量为 ?? ? ??+-=h v rh rd Dpw v C ααθsin cos ),( 这时你应该控制在雨中行走的速度,使得它恰好等于雨滴下落速度的水平分量. 从建模结果看,“为了少些淋雨,应该快跑”,这个一般的“常识”被基本上否定,那么根据何在?由此提出了建模目的:减少雨淋程度. 而为减少雨淋程度,便自然提出“被淋在身上的雨水量”这个目标函数C ,而C =C (v ),于是问题便归结为确定速度v ,使C (v )最小——本模型的关键建模步骤便得以确定。 有了确定的建模目的,自然引出与C (v )有关的量的设定与简化假设. 一般地,开始时不要面面俱到地把所有相关量都涉及到,往往只需考虑几个主要量,甚至暂时舍弃某个主要量,以求尽快建立模型.尤其对初学者,这样做有助于建模信心的增强.自不必说建模过程往往如此,更有模型尚有的进一步修改和推广的主要步骤.而一旦建立起简单模型后,其进一步的改善也相对容易多了.这就是本模型只所以建立了两个模型的原因,是符合人们的认识规律的. 另外,为了检验所建模型的合理性,建模后用较为符合实际的几组数据对模型加以检验是重要的,它既是对所建模型是否基本符合实际的检测,也是进一步完善模型的需要. 例1 在某海滨城市附近海面有一台风.据监测,当前台风中心位于城市O (如

最经典的数学模型

最经典的数学模型 怎样得到最好的女孩子的数学模型 【关键词】怎样得到最好女孩子数学模型 由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。 人们常常希望能够获得一个最可爱的人作为自己的伴侣。但是,由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。也许你很早就结婚了,但是结婚之后却又不断发现还有不少更好更适合结婚的异性,这就是结婚太早的机会成本。那么,是不是晚一点结婚就可以避免这个问题呢?不是的!当结婚太晚,你错过最好的异性的可能性也就更大。那么,一个人究竟应采取什么样的策略才能最大可能地遇到最适合的异性,从而使结为伴侣的机会成本最低呢?我们不妨建立一个模型来考察。 假设你是一个男孩子,而老天爷在你20岁到30最之间安排了20位适合你的女孩子。这些女孩子都愿意作为你的伴侣,但是你只能选择其中的一位。对于你来说,这20位女孩子的质量是可以排序的,也就是说事后你可以对她们的质量排名,质量排第一的对你来说就是最好的,排第20的对你来说就是最差的。可惜的是,由于20位女孩不是同时出现在你的生命中,而是按时间先后出现,每出现一个你都要决定是否留下她或拒绝她。如果留下她则她成为你的伴侣,你将再没有权利选择后面的女孩子;如果拒绝她,则你还可以选择后面的女孩子,但是对前面已经拒绝的女孩子将没有机会从头再来。 20个女孩子的排名虽然可以在事后决定,但是在观察完20个女孩子之前,你并不知道全部女孩子的排名,你只知道已经观察过的女孩子谁比谁会更好。而且,上帝是完全随机地安排每个时间段出现的女孩子的,也就是说出现时间的先后与女孩子的质量是完全没有关系的。那么,你应该在什么时候决定接受一个女孩子,并且使得被接受那个女孩子属于最好女孩的概率最大呢? 当然,你完全可以在碰到第一个女孩子时就接受她。她确有可能刚好就是最好的,但也有可能是最差的。当你接触到第二个女孩子,你可以知道她和第一个女孩子谁更好,但却不知道她们与剩下的18个女孩比又如何——前两个分别是最差的、次差的概率当然有,但前两个刚好是最好的、次好的可能性也是存在的,其他的概率情况也是有的。看来,你要尽可能挑到最好的女孩做伴侣还真是费神哦。 现在让我们来设计几种挑选策略,以便在不确定性中尽可能找到最好的女孩子。 策略1:事先抽签,抽到第几个就第几个。比如,抽到第10位,那么第10个在你生命中出现的女孩就事前被确定为你的伴侣。而她刚好是最好的女孩之概率是多少呢?答案是1/20=0.05。这种策略使你有5%的可能性获得最好的女孩。这样的概率显然太小,很难发生。 策略2:把全部女孩分成前后两段,最先出现的10位均不接受,但了解了这10位女孩的质量,然后在后来出现的10位女孩当中,第一次碰到比以前都可爱的女孩子,就立马接受。这是一种等一等、看一看的策略。这样的策略中,你得到最好的女孩子的概率是

《数学模型第三版》学习笔记完整版

《数学模型第三版》学 习笔记 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

《数学模型(第三版)》学习笔记 写在开始 ---小康社会欢迎您今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的 都是. 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点: (一)“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假 设了; (二)模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的 求解似乎是家常便饭了; (三)用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的

数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业 学生)。 从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。 也可以作为未读过、准备读这本书的同学的参考~ ——Tony Sun July 2012, TJU (目前已更新:全12章) 第1章建立数学模型关键词:数学模型意义特点 第1章是引入的一章,对数学模型的意义来源,做了很好的解释。其实数学模型 也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。 椅子在不平的地面上放稳、商人安全过河、预报人口增长这3个熟悉的例子,用 简单的数学进行描述、建模分析,给数学模型一个最好的诠释:用数学语言描述事

数学模型的分类有哪些

数学模型的分类有哪些? 数学模型可以按照不同的方式分类,下面介绍常用的几种. 1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等. 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等. 按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模. 3.按照模型的表现特性又有几种分法: 确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型. 静态模型和动态模型取决于是否考虑时间因素引起的变化. 线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的. 离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的. 虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法. 4.按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等. 5.按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.

数学建模实验答案初等模型

数学建模实验答案初等 模型 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / ×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / ×60) (验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-=

初等数学建模方法示例

第2章初等数学建模方法示例 公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数 = 某单位总人数比例总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为: 系名甲乙丙总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200

按比例分配席位 20 按惯例席位分配 10 6 4 20 由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A 1p 1n 1n 单位B 2p 2n 2n 要公平,应该有=1n 2n , 但这一般不成立。注意到等式不成立时有 若21n n >,则说明单位A 吃亏(即对单位A 不公平 ) 若21n n <,则说明单位B 吃亏 (即对单位B 不公平 ) 因此可以考虑用算式2 211n p n p p -= 来作为衡量分配不公平程度,不过此公式

数学模型课程学习大纲.doc

《数学模型》教学大纲 课程名称: 数学模型(Mathematical Model) 适用专业:应用数学、信息与计算科学 课程学时: 48学时理论+32学时实验 课程学分: 4 先修课程:微积分、线性代数、概率论 考核方式:期末论文 理论课教学大纲 一、课程的性质与任务 随着其它学科和计算机的迅速发展,数学已经向各个领域广泛渗透,数学已经由原来的高度抽象、严格推理和严密证明的理论课过渡成为解决许多边缘学科和交叉学科的关键技术。而数学一开始就是为了解决实际问题的需要而产生,数学模型或建立数学模型课程的开设就是一个朴素的回归。 设立数学建模课程的主要目的是培养学生应用所学的数学基础知识(微积分、线性代数、概率统计)解决实际问题的能力,培养新型的应用型动手能力强的人才。本课程通过一系列典型案例的分析、学习和应用,使学生掌握解决实际问题的一般步骤和原理;通过一些必要的辅助计算软件(lingo优化软件、matlab科学计算软件等)的培训,培养学生新型的数学观:数学中很多的复杂而重复的计算,应该完全交给计算机去做,人就回到思考、分析、设计、评估等更重要的工作中去。 由于实际问题的复杂性和广泛性,本课程在讲授不同类型的模型时,可以参考不同的教材和选取不同的计算软件,所以在教材的选取上本着灵活性和多样性,因而不同章节有不同的参考书。 二、课程的内容 第1章.数学建模概论 1.1 什么是数学模型

1.2 几个简单的建模案例 1.3 建立数学模型的基本方法和步骤 1.4 数学模型的特点和分类 1.5 数学建模能力的培养 参考教材:《数学模型》.高教出版社.姜启源 《数学建模与数学实验》.高教出版社.赵静 《数学建模方法及其应用》高教出版社.韩中庚 第2章. 初等数学模型 2.1 公平的席位分配问题 2.2 动物的身长和体重 2.3 空间点热源的扩散问题 参考教材:《数学模型》.高教出版社.姜启源 《数学建模与数学实验》.高教出版社.赵静 第3章. 数学规划模型 3.1 线性和非线性规划模型相关概念 3.2 几种线性规划问题 指派为问题运输问题材料切割问题配方问题排序问题 多阶段生产计划问题生产流程问题 参考教材:《数学模型》.高教出版社.姜启源 《运筹学》.清华大学出版社.胡运权 《管理运筹学》.高教出版社.韩伯棠 《lingo优化软件》.清华大学出版社.谢金星 第4章与图有关的优化问题 4.1 最短路径问题 4.2 流量问题 4.3 最优连线问题(最小树问题) 4.4 最优回路问题(哈密尔顿回路) 4.5 最小覆盖与最小配对问题 参考教材:《运筹学》.清华大学出版社.胡运权 《管理运筹学》.高教出版社.韩伯棠

数学模型第三版学习笔记

数学模型第三版学习笔记 The document was prepared on January 2, 2021

《数学模型(第三版)》学习笔记 写在开始 ---小康社会欢迎您今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是. 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:(一) “实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;(二) 模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了; (三) 用各种各样的数学工具、技巧、思想来建模的过程, 这本书读下来愈发觉得线性代数、高等数学基础的重要

性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。 从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流— —毕竟自己领会很有限。 也可以作为未读过、准备读这本书的同学的参考~ ——Tony Sun July 2012, TJU (目前已更新:全12章) 第1章建立数学模型关键词:数学模型意义特点 第1章是引入的一章,对数学模型的意义来源,做了很好的解释。其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。

数学建模之初等模型

初等模型 ——贷款、税收等问题 一、房贷款 小李夫妇欲购一套价值10万元的房子,俩人现有积蓄4万元。需向银行贷款6万元,准备25年还清,假定银行贷款利息为月息1%,每月还款数一定,一月还一次,问每月需还多少钱,给出一般数学模型。 1、重述问题(略) 2、符号及假设: 设总贷款额为M 元,n 个月还清,月息r ,每月还款额为定值x ,每月月底还钱。 3、模型的建立与求解: 第1月底还欠多少钱:()1M r x +- 第2月底还欠多少钱:()()()()2 1111M r x r x M r x r x +-+-=+-+-???? 第3月底还欠多少钱: ()()()()()()232111111M r x r x r x M r x r x r x ??+-+-+-=+-+-+-?? … … 第n 月底还欠多少钱: ()() () ()() ()1 2 11 11111n n n n n r M r x r x r x r x M r x r --+-+-+-+- -+-=+- 由于n 个月还清,因此有() ()11 10n n r M r x r +-+-= ()()()11 11111n n n r x M r Mr r r ??+∴=?=+ ? ?+-+-?? 将M =60000元,n =25×12=300,r =0.001 代入得 x =232 (231.5970) 将M =60000元,n =25×12=300,r =0.01 代入得 x =632 (631.9345) 将M =60000元,n =25×12=300,r =0.02 代入得 x =1203 (1203.1643) 将M =60000元,n =25×12=300,r =0.03 代入得 x =1800 (1800.2536)

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

初等数学建模方法示例

第2章初等数学建模方法示例 2.1公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数= 某单位总人数比例 总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数100 60 40 200 学生人数比例100/200 60/200 40/200 席位分配10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为:系名甲乙丙总数 学生数103 63 34 200 学生人数比例103/200 63/200 34/200 按比例分配席位10.3 6.3 3.4 20 按惯例席位分配10 6 4 20

由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 10.815 6.615 3.57 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A 1p 1n 1n 单位B 2p 2n 2n 要公平,应该有=1n 2n , 但这一般不成立。注意到等式不成立时有 若21n n >,则说明单位A 吃亏(即对单位A 不公平 ) 若21n n <,则说明单位B 吃亏 (即对单位B 不公平 ) 因此可以考虑用算式2 211n p n p p -= 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如: 某两个单位的人数和席位为 1021==n n ,1201=p ,1002=p , 算得 2=p 另两个单位的人数和席位为 1021==n n ,10201=p ,10002=p , 算得 2=p

数学建模 第二单元 初等数据分析方法

第二单元初等数据分析方法 1数学建模方法论:类比、创新 2最简定量关系:人类建立起来的变量之间最简单最直观的定量关系就是函数关系 (1)函数概念的力学来源.(2)1637年笛卡尔的《几何学》首次涉及到变量,也引入了函数思想.(3)1667年英国数学家格雷果里被认为是函数解析定义的开始(4)公认最早提出函数概念的是17世纪德国数学家莱布尼茨.(5)为了得到变量之间的函数关系需要采集数据,于是提出三个问题:(6)如何采集数据?采集什么数据?如何分析数据3建立函数关系的方法 由此产生建立变量之间函数关系三种基本方法观察法:利用数据的比例性质拟合方法、插值方法统称初等数据分析方法 数据及其品质(1)有的提供数据:2008年“奥运场馆设计” (2)有的不给数据:2010年世博会的影响力(3)有的问你需要什么数据:2008年重金属污染源头问题(4)有的需要你自己判明应该采集什么数据才能说明这件事情:2015年“出租车”试建立合理的指标并分析不同时空出租车资源的“供求匹配”程度因此,需要评估数据的精确性,由于收集数据时精确度不高比如记录或报告一个数据时的人为错误,或测量精度限制等多种情况。比如在绘制地图时是按比例缩小的但测量时总有误差在分析一个数据集合时,可能遇到的问题是: (1)根据收集的数据进行建模.要么数据具有明显特征要么插值(2)按照选出的一个或多个模型(函数)类型对数据进行拟合.(3)从已经拟合模型中选取最合适的例:判断指数与多项式模型哪个拟合更好 4 观察法和初等数学方法 通过大量数据利用变量之间的比例性质得到自然规律:(1)Kepler(开普勒)第三定律开普勒曾帮第谷(Tycho Brahe) 收集了13年火星的相对运动的观察资料到1609年开普勒已经形成了头两条定律: a)每个行星都沿一条椭圆轨道运行太阳在该椭圆的一个焦点处.b)对每个行星来说,在相等的时间里该行星和太阳的联线扫过相等的面积.开普勒花了许多 年来验证并形成了第三定律T = c其中T 是周期(天数)而R是行星到太阳的平均距离他建立了轨道周期与从太阳到行星平均距离之间的关系.如表2.1中的数据

相关主题
文本预览
相关文档 最新文档