当前位置:文档之家› POSS合成与表征

POSS合成与表征

POSS合成与表征
POSS合成与表征

Synthesis and Characterization of Fillers of Controlled Structure Based on Polyhedral Oligomeric Silsesquioxane Cages and Their Use in Reinforcing Siloxane Elastomers

GUIRONG PAN,1,2JAMES E.MARK,1,3DALE W.SCHAEFER1,2

1Polymer Research Center,University of Cincinnati,Cincinnati,Ohio,45221

2Department of Chemical and Materials Engineering,University of Cincinnati,Cincinnati,Ohio,45221-0012

3Department of Chemistry,University of Cincinnati,Cincinnati,Ohio,45221

Received1February2003;revised14April2003;accepted15April2003

ABSTRACT:Four polyhedral oligomeric silsesquioxane(POSS)cages with vinyl groups

were linked to a central siloxane core by hydrosilylation.The goal was to obtain?ller

particles of sizes between those of the POSS cages themselves and the much larger

silica particles typically used to reinforce elastomers.The hydrosilylation reaction was

monitored with Fourier transform infrared spectroscopy and proton nuclear magnetic

resonance,and the resulting structure was con?rmed by mass spectrometry.Simply

blending these POSS-based?llers into silanol-terminated poly(dimethylsiloxane)

(PDMS)had little effect on the mechanical properties,but bonding them to PDMS

provided considerable reinforcement.?2003Wiley Periodicals,Inc.J Polym Sci Part B:

Polym Phys41:3314–3323,2003

Keywords:polyhedral oligomeric silsesquioxane(POSS);MALDI;mass spectrome-

try;siloxane elastomers;nanocomposites;mechanical properties;reinforcement

INTRODUCTION

Although polymer–inorganic composites have been known for decades,they continue to be the focus of worldwide research interest.1Some prop-erties are a combination of those of traditional organic polymers and inorganic compounds, whereas other properties show favorable syner-gistic effects.Moreover,when the size scale of the phases is in the nanometer range,manipulation of the interfacial molecules can be used to adjust the mechanical properties.

A variety of polymers have been used in such composites.Inorganic phases include exfoliated clays,carbon nanotubes,and polyhedral oligo-meric silsesquioxane(POSS)cages.2POSS cages are interesting in part because of their unusual structure,(RSiO3/2)n,where R can represent inert organic groups used to enhance miscibility with polymeric host materials.3,4These molecules have well-de?ned shapes and sizes ranging from 1–3nm.The n?8cage is most common and has been described as the smallest version of colloidal silica,which is used to reinforce elastomers such as polysiloxanes.Making one or more of the R groups reactive permits bonding of the cages to polymers by copolymerization5or grafting onto the chain backbone.6,7Incorporating such POSS cages into polymeric materials has already pro-vided useful property enhancements,such as in-creased glass-transition temperatures,decomposi-tion temperatures,and mechanical strength.2,6,8,9

Correspondence to:D.W.Schaefer(E-mail:dale.schaefer@ https://www.doczj.com/doc/9215441140.html,)

Journal of Polymer Science:Part B:Polymer Physics,Vol.41,3314–3323(2003)?2003Wiley Periodicals,Inc.

3314

Because of the tailorability of POSS molecules,they can also be designed to probe the molecular basis of reinforcement and to establish structure–property relationships that can then be exploited to optimize properties for particular applications.

The primary goal of this study was to explore ?ller particles of sizes between those of the POSS cages themselves and the much larger silica par-ticles typically used to reinforce elastomers. These limits correspond to diameters of about15?for the cages to300?for typical particles of fumed silica.Of course,the?ller size is not the

only issue with respect to reinforcement.The polymer–?ller interface is known to be important, as is the state of aggregation of colloidal?llers. The?rst stage of synthesis of hierarchical POSS structures is reported here with tetrakis(dimeth-ylsilyloxy)silane{[HSi(CH3)2O]4Si(TDSS)}as the multifunctional core.The four hydrogen atoms attached to the silicon atoms can be used in a hydrosilylation reaction to attach four POSS cages that have been monosubstituted with vinyl groups.Extensive effort has been made to use the POSS cubes as building blocks to prepare orga-nic–inorganic nanocomposite materials and pre-cursors.10–12Laine and coworkers13–16developed several routes for linking POSS cubes by chemical reactions that lead to organic tethers(spacers) between the cubes.The resulting materials in-cluded thermoplastic and thermoset methacry-late nanocomposites as well as epoxy resin,hy-drocarbon-linked,amide,and imide-linked nano-composites.

Poly(dimethylsiloxane)(PDMS)was chosen as the matrix because it is by far the most important siloxane elastomer.Two types of PDMS were used. Silanol-terminated PDMS was chosen as an inert version that would not undergo a chemical reaction with vinyl-terminated POSS.In this case,?llers containing one POSS cage(mono-POSS)or four linked POSS cages(tetra-POSS)were physically blended into the elastomer.The other type of PDMS had vinyl terminal groups to which the vinyl-POSS ?llers could be bonded.Reinforcement in the vari-ous types of nanocomposites was characterized with respect to their mechanical properties in simple elongation.

EXPERIMENTAL

Materials

The POSS chosen was an eight-cornered cube with one vinyl substituent and seven isobutyl groups.The material was a white powder with a molecular weight of843.52g/mol and a melting point of213–219°C.The material was supplied by Hybrid Plastic,Inc.Its structure is shown in Scheme1.

The TDSS core material was obtained from Gelest,Inc.The hydrosilylation catalyst was cis-dichlorobis(diethyl sul?de)platinum(II){[(C2H5)2-S]2PtCl2}and was obtained from Sigma–Aldrich;it was dissolved in tetrahydrofuran(THF)to yield a 1mg/mL solution that was stored under nitrogen. Anhydrous toluene was used as a solvent.Sam-ples of vinyl-terminated and silanol-terminated PDMS were obtained from Gelest.The number-average molecular weights were obtained with a Waters746chromatograph and were found to be 14,000and18,000g/mol,respectively.The tetra-ethoxysilane(TEOS)crosslinking agent and the stannous octoate catalyst used in the curing of silanol-terminated PDMS were obtained from Sigma–Aldrich.

Addition of POSS Cages to a Central Core

For the linking of the four POSS cages to TDSS, the hydrosilylation was intentionally starved with respect to SiH groups to ensure that all of these groups were attached to POSS molecules (the molar ratio of TDSS to POSS was1:4.2).This reaction is shown in Scheme2.

The synthesis was carried out in a250-mL, round-bottom?ask equipped with a re?uxing con-denser,a magnetic stirrer,a N2inlet,and a ther-mometer.The?ask was charged with dry N2before 2.2g of POSS,0.1mL of a THF solution of [(C2H5)2S]2PtCl2,and50mL of anhydrous toluene were added.The ingredients were stirred at room temperature for30min,and followed by the addi-tion of0.23mL of TDSS.The resulting mixture was again stirred,subsequently warmed to90°C,and held at that temperature under a stream of dry N2 for33h.Then,volatile components were removed

at Scheme1.Structure of monovinyl-POSS with isobu-tyl substituents(R).

SYNTHESIS AND CHARACTERIZATION OF FILLERS3315

a reduced pressure,and a dark-brown solid was obtained.The following analysis shows that small quantities of mono-POSS and tri-POSS remained.No attempt was made to remove these products.

Preparation of the Composites

Physical Blending of POSS-Based Fillers into PDMS Networks

Various amounts of ?ller particles were blended into silanol-terminated PDMS before end linking.For better mixing,a small portion of anhydrous

THF (amounting to 10wt %of PDMS)was added to dissolve the ?ller before it was mixed with PDMS.The mixture was stirred vigorously,and the solvent was removed at an elevated temperature and then by evacuation.The stannous octoate catalyst and TEOS end-linking agent were then added at room temperature and dispersed completely.The result-ing solution was poured into Te?on molds and put into an oven at 50°C for approximately 10h.The thickness of the resulting ?lms was around 1mm.Pure PDMS ?lms were prepared under the same conditions.The resulting transparent ?lms were consistent with the minimal formation of silica via sol–gel condensation of

TEOS.

Scheme 2.Addition of POSS cages to the TDSS core material through hydrosilylation reaction.

3316PAN,MARK,AND SCHAEFER

Chemical Incorporation of Monovinyl-POSS into PDMS Networks

Vinyl-terminated PDMS was used in this case,and the ?lled networks were formed as shown in Scheme 3.

Speci?cally,the POSS powders (amounting to 5,10,or 20wt %of PDMS)were mixed into uncrosslinked vinyl-PDMS as previously de-scribed.However,in this case,no solvent was used,and the undiluted mixture was stirred vig-orously 48h for good mixing.Then,the desired amount of the catalyst solution was added.The mixture was stirred at approximately 75°C until the small amount of THF from the catalyst solu-tion had evaporated.After the mixture was cooled,TDSS was added and completely dis-persed.This reaction was carried out at 90°C,producing ?lms suitable for the evaluation of the mechanical properties.A pure vinyl-terminated PDMS ?lm was also prepared under the same conditions as a control.The molar ratio of PDMS to TDSS was kept at 0.54:0.33for all the samples.According to Scheme 2,meeting the stoichiomet-ric proportion between silanes and vinyls re-quired 3wt %mono-POSS based on PDMS.Therefore,the ?ller loadings were greater than the stoichiometric proportion in all our chemically

bonded ?lms.Dumbbell-shaped specimens were cut from the ?lms according to Die C of ASTM D 412with a benchmark distance of 25mm for later use in tensile testing.Spectroscopic Measurements

Fourier transform infrared (FTIR)and 1H NMR spectroscopy were used to monitor the hydrosily-lation reaction in the formation of tetra-POSS.FTIR spectra were recorded as a function of time on a PerkinElmer 1600FTIR spectrometer from 450to 4000cm ?1,with 16scans recorded for each spectrum.After each time interval,one or two drops of the sample were removed from the reac-tor by means of a syringe.The samples were dried into ?lms on a KBr plate.1H NMR spectra were obtained at 250.013MHz with a Bruker Ac-250general-purpose spectrometer.

The composition of the ?nal products was in-vestigated with matrix-assisted laser desorption/ionization (MALDI)mass spectrometry (MS).The samples were analyzed with a Bruker Re?ex IV MALDI-TOF mass spectrometer (Bruker Dalton-ics)in the positive-ion mode.The matrix was an-thracene,and silver tri?uoroacetate was used as a cationization reagent.Because the magnitude of a peak in MALDI is not linearly proportional to the concentration,quantitative analyses could not be carried out directly from the heights of the peaks.

Mechanical Properties

Mechanical measurements were made using ten-sile testing and dynamic mechanical analysis.For the former,an Instron 4465tester with comput-erized recording was used at room temperature.The tests were carried out at a crosshead speed of 3mm/min,and an average of at least three mea-surements for each sample was recorded.The dy-namic mechanical properties of the samples were analyzed at 25°C with a TA Instruments 2980dynamic mechanical analyzer operated in the ten-sile strain–sweep mode at a frequency of 1Hz.

RESULTS AND DISCUSSION

FTIR and 1H NMR Analysis

The FTIR spectra of POSS,TDSS,and the ?nal hydrosilylation product are shown in Figure 1.The characteristic stretching vibration peaks of Si O CH A CH 2and Si O H groups are at

1641.9

Scheme 3.Chemical incorporation of POSS cages into PDMS networks.

SYNTHESIS AND CHARACTERIZATION OF FILLERS 3317

and 2186.2cm ?1,respectively.In the product,the peak for Si O H has disappeared completely,and the peak for the vinyl group has nearly disap-peared.The corresponding 1H NMR spectra are shown in Figure 2.The chemical shift of Si O H at approximately 4.72ppm 17,18has almost disap-peared in the ?nal product.The peaks for the chemical shift of vinyl protons around 5.8ppm remain in the ?nal product,but their areas de-crease dramatically.The persistence of vinyl groups is expected because the excess POSS used should leave residual vinyl groups in the ?nal product.Also different from the FTIR spectrum of the ?nal product,a small peak due to the O Si O H group can be detected in the NMR spectra,indi-cating the presence of a small amount of unre-acted Si O H groups.This result has been con-?rmed by the output of MALDI MS,which shows the presence of tri-POSS with one unreacted Si O H left in the ?nal product.The new peak around 5.2might have resulted from the newly formed bonds,Si O CH 2O CH 2O Si O ,but this is-sue needs to be tested by further investigation.Figure 3shows a time sequence of FTIR spec-tra for various stages in the hydrosilylation reac-tion.The characteristic peak of Si O H at 2186.2cm ?1and the peak of O CH A CH 2at 1641.9cm ?1diminish with time.At 31h,the Si O H peak has disappeared completely,and the expected small vinyl peak remains.These results indicate that complete reaction was obtained well before the 33h allowed.MALDI MS Analysis

The molecular weights of POSS (843.52)and TDSS (338)were used to identify the structures of

the compounds from the mass spectrum.Because silver tri?uoroacetate was used as a cationization reagent,the mass spectrum includes peaks with silver adducts,as well as some sodium adducts.Sodium was not added,but it is normally present in trace amounts either on a MALDI plate or in the silver salt.

The positive-ion MALDI mass spectrum of the ?nal product (Fig.4)reveals an ion peak at m /z ?953.43,which can be attributed to unreacted POSS plus Ag.The peak at m /z ?2991.46can be identi?ed as a combination of three POSS mole-cules bound to one TDSS molecule (including the masses of Ag and Na).The amount of this tri-POSS product must be very small because the concentration of unreacted O Si O H groups in the ?nal product was too small to be detected by FTIR.Although there are some other peaks due to the fragments,the signi?cant peak is at m /z ?3821.91,which is the desired structure with four POSS molecules linked to the TDSS core.From this result,it can be estimated that the amount of tetra-POSS is greater than that for mono-POSS because MALDI MS is more sensitive to low-molecular-weight species than high-molec-ular-weight species.Nonbonded Composites

Figure 5shows the results from tensile testing:the engineering stress is plotted against the en-gineering strain for pure silanol-terminated PDMS,2%POSS/PDMS,and 2%tetra-POSS/PDMS.There are no signi?cant differences among these three curves.This result shows that the physical blending of isobutyl-POSS into PDMS does not generate reinforcement.Linking four cages to form tetra-POSS also leads to only a marginal enhancement of elongation.The conclu-sion is that these small particles do not reinforce,at least when they are not bonded to the matrix.There is a possibility that the lack of reinforce-ment is due to the poor miscibility of isobutyl POSS with PDMS,which leads to extensive phase separation.3To test this,the ?ller amount was increased to 5%,and the results are given in Figure 6.Because the amount of POSS is small in this system,increasing it will lead to enhanced susceptibility to phase separation.Both the mod-ulus and elongation of the composite are substan-tially reduced in comparison with those of PDMS,and this suggests that there is aggregation of POSS or interference with PDMS network forma-

tion.

Figure 1.FTIR spectra of POSS,TDSS,and the product:POSS ?TDSS.

3318PAN,MARK,AND SCHAEFER

The dynamic mechanical results for the physi-cally blended composites in Figures 7and 8con-?rm the aforementioned tensile results.The plots of the storage modulus versus the strain ampli-tude for pure PDMS,PDMS with 2%POSS,and PDMS with 2%tetra-POSS are all very similar.Again,there is a signi?cant decrease in the mod-ulus for 5%?lled PDMS,as shown in Figure 8.Chemically Bonded Composites

Quite different results were obtained when the POSS ?llers were partially chemically bonded to the polymer network (Fig.9).Both the ultimate strength (as gauged by the stress at rupture)and the maximum extensibility increase considerably.Figure 10shows the corresponding dynamic me-chanical analysis results.Again,the POSS com-posites show a considerable increase in the low-strain modulus with the POSS loading,and the trend is monotonic.

Probably the most interesting aspect of these materials is the very large dynamic strain soften-ing effect shown in Figure 10.This so-called Payne effect can also be seen in organic rubbers ?lled with carbon black or silica and is tradition-ally attributed to ?ller networking.19In organic rubber,the unfavorable surface energy

associated

Figure 2.

1

H-NMR spectra of POSS,TDSS,and their product:POSS ?TDSS.

SYNTHESIS AND CHARACTERIZATION OF FILLERS 3319

with the dispersed ?ller is relieved by the forma-tion of a physically bonded network of ?ller par-ticles.The rigidity of the bonded network leads to the increased modulus of the composite.The Payne effect (dynamic stress softening)is attrib-uted to that fact that the physically bonded net-work breaks down as the network is strained.The ?ller-networking interpretation of the Payne effect rests on the assumption that the ?ller particles have percolated.Because the per-colation threshold of a random collection of spheres is about 15vol %,we expect a dramatic increase in the Payne effect (de?ned as the stor-age modulus at zero strain divided by the storage

modulus at large strain)at loadings of about 15wt %if the ?ller and polymer have the same density.Although we do not have data for enough loadings to de?nitively ?x the percolation thresh-old,the data in Figure 10suggest that the perco-lation threshold is at or below 10%according to the qualitative differences in the shapes of the 5and 10%curves.The lower percolation threshold could be due to a larger effective ?ller volume fraction caused either by the lower density of POSS compared with that of PDMS or because of fractal aggregation of POSS.

Some con?rmation of the ?ller-networking idea comes from the loss tangent data in Figure 11.Here the loss tangent (the ratio of the loss mod-ulus to the storage modulus)is plotted versus the strain amplitude.In Figure 11,we can observe a substantial peak in the loss tangent in the 10%sample.Kraus 20explained this peak in organic rubbers with the ?ller-networking concept.At a low strain,the strain is insuf?cient to disrupt the ability of the network to reform in its unstrained con?gurations on relaxation of strain,so there is little loss.As the strain amplitude increases,the ?ller particles are not able to recover their un-strained con?guration,and this leads to loss.If the strain amplitude is too high (beyond the peak in Fig.11),however,the network does not have enough time to reform in any con?guration,and this leads to a decrease in the loss.The

maximum

Figure 3.Hydrosilylation reaction monitored with FTIR spectra of the

product.

Figure 4.Positive-ion MALDI mass spectrum of the ?nal product.

3320PAN,MARK,AND SCHAEFER

loss occurs when the amplitude is large enough to destroy the zero-strain con?gurations but not so large that the network cannot recon?gure itself during the zero-strain part of the cycle.The im-plicit timescale in this analysis is the reciprocal of the test frequency,which is 1Hz in our case.This time is to be compared to the time it takes the ?ller to diffuse a distance that depends on the strain amplitude.Because the prefactors are un-known,however,the argument can only be qual-itative.

If these ideas were correct,we would expect that bonding to the network would have a mini-mal effect on reinforcement,contrary to our ob-servations.What network bonding may be doing,however,is not providing reinforcement directly but merely providing the compatibilization needed to ensure full dispersion of POSS in the matrix.Because for loading above 3%there is excess unbonded POSS,it seems that only a tiny fraction of POSS needs to be bonded to alter the

thermodynamics suf?ciently to induce compati-bility.

CONCLUSIONS

Through a study of two levels of the hierarchy of POSS,we have shown that tiny POSS can rein-force silicone rubber,but only when partially bonded to the polymer network.The

bonding,

Figure 5.Stress–strain curves of silanol-terminated PDMS,PDMS blended with 2%POSS,and PDMS blended with 2%

tetra-POSS.

Figure 6.Stress–strain curves of silanol-PDMS and PDMS blended with 2or 5%

tetra-POSS.Figure 7.Strain dependence of the elastic modulus of PDMS,PDMS blended with 2%POSS,and PDMS blended with 2%tetra-POSS

cages.

Figure 8.Strain dependence of the storage modulus of PDMS and PDMS blended with 2or 5%tetra-POSS.

SYNTHESIS AND CHARACTERIZATION OF FILLERS 3321

however,is not the source of reinforcement.Rather,bonding acts as an attractive force be-tween the polymer and the ?ller,leading to in-creased compatibility.Without bonding,POSS phase-separates,leading to,at best,no change in the mechanical properties.If the PDMS network is altered by the chemical incorporation of about 3wt %POSS,however,POSS is dispersed,and substantial reinforcement is possible.

The bonded composite shows a dynamic me-chanical response that is very similar to that of organic rubbers ?lled with colloidal silica:a large Payne effect and a peak in the strain dependence of the loss tangent.These characteristics are the signature of a physically bonded network of ?ller particles.The reinforcement,therefore,is not di-

rectly attributed to the bonds between the ?ller and the matrix.Rather,bonding improves the dispersion of the ?ller,which is necessary if the ?ller network is to form in the ?rst place.The ability to link POSS to the network at just one point is perhaps critical to the enhancement effect because the undecorated POSS dangling from the chain is still capable of forming a ?ller network because it remains incompatible with the PDMS chains.

Some general insight into the role of interfacial linkages can be distilled from our observations.Traditionally,silica is compatibilized with rubber with a silane-coupling agent.Coupling the ?ller to the matrix leads to improved dispersion (good)but also leads to a weaker ?ller network (bad).Our results suggest that optimal reinforcement is achieved with minimum coupling,just enough to ensure dispersion.In this case,the ?ller remains locally incompatible with the matrix,and so there is a strong driving force to form a ?ller network,even though the particles are globally dispersed.

The authors are pleased to acknowledge the ?nancial support provided to J.E.Mark by the National Science Foundation (DMR-0075198)through the Polymers Pro-gram of the Division of Materials Research.The au-thors also thank Stephen Macha for performing the MALDI MS experiments and Elwood Brooks for his help with the 1H NMR

measurements.

Figure 9.Stress–strain curves of vinyl-PDMS and PDMS ?lled with 5,10,or 20%

POSS.

Figure 11.Loss tangent of POSS-?lled samples.Filled symbols represent samples in which POSS is linked to PDMS.Open circles represent samples not chemically linked;in this case,samples with more than 5%POSS are dif?cult to achieve because of the incom-patibility of POSS and

PDMS.

Figure 10.Strain dependence of the storage modulus of vinyl-PDMS with various amounts of chemically linked POSS.

3322PAN,MARK,AND SCHAEFER

REFERENCES AND NOTES

1.Mark,J.E.;Lee,Y.-C.C.;Bianconi,P.A.,Eds.;

ACS Symposium Series585;Hybrid Organic-Inor-ganic Composites;American Chemical Society: Washington,DC,1995.

2.Schwab,J.J.;Lichtenhan,J.D.Appl Organomet

Chem1998,12,707.

3.Blanski,R.L.;Phillips,S.H.;Chaffee,K.;Lichten-

han,J.Mater Res Soc Symp Proc2000,628, cc6.27.1.

4.Li,G.Z.;Wang,L.C.;Toghiani,H.;Daulton,T.L.;

Koyama,K.;Pittman,C.U.Macromolecules2001, 34,8686.

5.Zheng,L.;Farris,R.J.;Coughlin, E. B.Polym

Prepr2000,41,1929.

6.Haddad,T.S.;Lichtenhan,J.D.Macromolecules

1996,29,7302.

7.Haddad,T.S.;Mather,P.T.;Jeon,H.G.;Chun,S.B.;

Phillips,S.H.Mater Res Soc Symp Proc2000,628, cc2.6.

8.Lee,A.;Lichtenhan,J.D.J Appl Polym Sci1999,

73,1993.

9.Fu,B.X.;Hsiao,B.S.;White,H.Polym Int2000,

49,437.

10.Choi,J.;Harcup,J.;Yee,A.F.;Zhu,Q.J Am Chem

Soc2001,123,11420.

11.Cassagneau,T.;Caruso,F.J Am Chem Soc2002,

124,8172.

12.Kim,B.-S.;Mather,P.T.Macromolecules2002,35,

8378.

13.Sellinger,A.;Laine,R.M.Macromolecules1996,

29,2327.

14.Sellinger,A.;Laine,R.M.Chem Mater1996,8,

1592.

15.Zhang,C.X.;Babonneau,F.;Bonhomme,C.;Laine,

R.M.J Am Chem Soc1998,120,8380.

16.Hoebbel,D.;Endres,K.;Reinert,T.;Pitsch,I.J

Non-Cryst Solids1994,176,179.

17.Liu,C.Q.;Xie,P.;Dai,D.R.;Zhang,R.B.;Zhu,

C.F.;Wang,C.Polym Adv Technol2001,12,626.

18.Chun,S.B.;Mather,P.T.Mater Res Soc Symp

Proc2001,661,KK10.8.1.

19.Wang,M.J.Rubber Chem Technol1998,71,520.

20.Kraus,G.J.J Appl Polym Sci Appl Polym Symp

1984,39,75.

SYNTHESIS AND CHARACTERIZATION OF FILLERS3323

聚苯胺的合成及表征

聚苯胺的合成及表征 (贵州省贵阳市贵州师范学院11级化本 550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份有限公司)、过硫酸铵(APS)(分析纯,AR天津市科密欧化学试剂有限公司)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯 AR,天津博迪化工股份有限公司)、N,N-二甲基甲酰胺(分析纯AR,广东光华科技股份有限公司)、二甲基亚砜(分析纯AR,广东光华科技股份有限公司)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。 导电性——聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2

固相配位反应及配合物性质表征

固相配位反应及配合物性质表征 摘要:本实验研究的是固相配位反应及其配合物的表征,在室温下将8-羟基喹啉与醋酸锌,按物质的量之比为2:1,在研钵中充分研磨,发生固相配位反应。混合物颜色逐渐由浅暗黄色变黄绿色,最后变为浅亮黄色。用IR、TG-DTA和XRD 对产物进行表征,其测定结果表明:配合物的反应级数n=1,活化能Ea=218.75kJ/mol,频率因子k =1.37×1012,速率系数k=5.83×10-3s-1。 关键词:8-羟基喹啉;醋酸锌;固相反应;表征 Abstract:The solid-phase reaction at room temperature was studied. The compounds were synthesized and characterized with eight -hydroxyquinoline and Zinc-accurate according to the molar ratio of 2:1 weighing. The Mixture colour gradually from dark yellow to yellow green, finally to light yellow. The products were characterized by IR, TG-DTA and XRD. Their results showed the complex reaction order is n = 1, the = the activation energy is Ea = 218.75 kJ/mol, the frequency factor k 0 1.37 * 1012, the rate coefficient is k = 5.83 * 10-3 and has no pair of electron. Keywords: 8-Quinolino1;zinc acetate;Coordination compound;Crystal structure

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。 目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。 目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。 聚苯胺是一种典型的共扼导电高分子,具有原料价廉易得,合成方法简便,经过质子掺杂的聚苯胺具有良好的电子导电性,可以作为电极材料应用于各种电源器件中[8]。杨红生等人[9]在酸性条件下化学法合成聚苯胺,并组装成电容器。 在过去的10年里,新混合动力系统电极的设计结合了电池和电容性能,并且由于新的电极材料的发现,尤其是纳米材料[8)使得超级电容器技术在性能方面有了卓越的提升。纳米材料不寻常的电气、机械和表面性质使其逐渐成为能量存储的重要研究对象[12,13]。相关纳米材料的优点和缺点在之前的相关文献报道中

酰腙及其配合物的表征

对-二甲氨基苯甲醛缩对氯苯甲酰腙及其钴(Ⅱ )、镍(Ⅱ ) 配合物的合成与表征 姓名:**学号:********指导教师:*** 摘要合成了对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及其钴(Ⅱ )、镍(Ⅱ )配合物, 并通过红外光谱、热重分析对对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及配合物进行初步表征。 关键词对-二甲氨基苯甲醛缩对氯苯甲酰腙配合物表征 Synthesis and characterization of 4-(dimethylamino) Benzaldehyde 4 –chloro benzoylhydrazone and the Cobalt (Ⅱ) ,Nickel (Ⅱ) Complexes Abstract:The 4-(dimethylamino)Benzaldehyde 4-chloro benzoylhydrazone and its Cobalt (Ⅱ),Nickel (Ⅱ) complexes were synthesized and characterized by IR and TG. Keywords:4-(dimethylamino)Benzaldehyde 4- chloro benzoylhydrazone Complexes Characterization 引言:酰腙因其含有甲亚胺基(C=N)属于席夫碱类化合物,又因为羰基(C=O)的存在,构成活性亚结构基团,因而具有很强的配位能力[l-5],其广泛的生物和药物活性[ 6-7]、非线性光学性质[ 8 ]在分析、催化等方面有广泛的应用。这类配合物同时具有独特的抗结核病菌的药理活性和消炎、杀菌以及抗肿瘤等生理活性[ 9 ]。因此,酰腙及其配合物的合成与活性研究引起了人们的广泛关注。在不同的条件下席夫碱和不同的金属离子配位会呈现出不同的颜色。为了研究酰腙及其配合物的性质,本实验设计合成对-二甲氨基苯甲醛缩对氯苯甲酰腙及其Co(Ⅱ)、Ni(Ⅱ)配合物以做研究。 1.实验部分 1.1仪器与试剂 油浴加热装置;78-1型磁力加热搅拌器(江苏省金坛市荣华仪器制造有限公司);冷凝管;抽滤装置;Nexus2870型红外光谱仪(KBr压片,北京第二光学仪器厂);Q600同步热分析系统(美国TA

配合物的合成与表征

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 5-(3-吡啶基)四唑-2-乙酸根与Zn(II)配合物的合成与表征报告 班级:09化学(师范) 学号:8 姓名:蔡福东

目录 1. 前言...................................................................... 错误!未定义书签。 1配位化合物 .................................................... 错误!未定义书签。 1. 1配位化合物的组成 .............................. 错误!未定义书签。 1. 2配合物的种类 ...................................... 错误!未定义书签。 2配位化学发展简史 ........................................ 错误!未定义书签。 3配位化学的今天 ...................................... 错误!未定义书签。 2. 实验部分 ............................................................... 错误!未定义书签。 2.1药品................................................................. 错误!未定义书签。 2.2仪器................................................................. 错误!未定义书签。 2.3合成方法 ........................................................ 错误!未定义书签。 3. 结果与讨论 ......................................................... 错误!未定义书签。 3.1 结构分析 ................................................... 错误!未定义书签。 3.2 红外光谱 ................................................... 错误!未定义书签。 3.3 荧光光谱 ................................................... 错误!未定义书签。 4.小结....................................................................... 错误!未定义书签。

聚苯胺合成与表征

《化学综合设计实验》实验论文论文题目:聚苯胺的合成与表征 学院: 专业: 班级: 姓名: 学号: 指导教师: 二零一五年五月二十五日

目录 摘要 (1) 关键词 (1) 前言 (2) 1实验设备和聚苯胺性能表征方法 (4) 1.1实验药品及设备 (4) 1.1.1实验药品 (4) 1.1.2实验仪器 (4) 2.2 化学氧化法合成聚苯胺 (5) 2.2.1苯胺的合成 (6) 3.3 聚苯胺性能表征 (5) 3.3.1溶解率的测定 (5) 3.3.2电阻的测定 (5) 3.4 实验数据处理 (5) 3.4.1聚苯胺产率 (5) 3.4.2溶解率 (7) 3.4.3电阻 (6) 4.4实验结果与分析 (6) 5.5展望 (6) 参考文献 (6)

摘要:本实验主要采用化学氧化法制备聚苯胺,以苯胺为单体,过硫酸铵为氧化剂,控制反应的温度和反应时间,在酸性介质中合成聚苯胺。探究当加入的氧化剂与苯胺的摩尔比为1:1、质子酸为硫酸、反应温度为10℃、反应时间为3h时聚苯胺的产率。以及有机溶剂对聚苯胺的溶解率,测定单位长度电阻值,判断其导电性效果,其中产率高达90%以上,溶解性为58%,具有较好导电性。 关键词:聚苯胺;合成;表征;溶解性;电阻;

前言 1826年,德国化学家Otto Unverdorben 通过热解蒸馏靛蓝首次制得苯胺 (aniline ),产物当时被称为“Krystallin ”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche 从靛蓝中得到无色的油状物苯胺,将其命名为aniline ,该词源于西班牙语的anti (靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey 也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的结构长期处于争论中,Macdiarmid 于1987年提出苯-醌式结构单元共存的模型后,得到大家广泛的认可;它存在的状态可以随着苯、醌两种结构单元的含量不同而相互改变。 聚苯胺合成方法主要有化学氧化法和电化学聚合法等。化学氧化聚合法又有溶液聚合、乳液聚合、模板聚合、酶催化聚合等;电化学聚合法有动电位扫描、恒电流、恒电位、脉冲极化等合成方法。化学氧化聚合法制备过程如下图1所示。 图1 聚苯胺的制备示意图 Fig.1 Diagram for preparing PANI N N N n NH 2 氧化剂 酸或碱 1-y y H H

一种钴配合物的制备及表征

1 实验9 一种钴III配合物的制备及表征一、实验目的1. 掌握制备金属配合物的最常用的方法――水溶液中的取代反应和氧化还原反应2. 学习使用电导率仪测定配合物组成的原理和方法二、实验原理 1. 合成运用水溶液的取代反应来制取金属配合物是在水溶液中的一种金属盐和一种配体之间的反应。实际上是用适当的配体来取代水合配离子中的水分子。氧化还原反应是将不同氧化态的金属配合物在配体存在下使其适当的氧化或还原制得金属配合物。CoII的配合物能很快地进行取代反应是活性的而CoIII配合物的取代反应则很慢是惰性的。CoIII的配合物制备过程一般是通过CoII实际上是它的水合配合物和配体之间的一种快速反应生成CoII的配合物然后使它被氧化成为相应的CoIII配合物配位数均为六。常见的CoIII配合物有CoNH363黄色、CoNH35H2O3粉红色、CoNH35Cl2紫红色、CoNH34CO3紫红色、CoNH33NO23黄色、CoCN63-紫色、CoNO263黄色等。2. 组成分析用化学分析方法确定某配合物的组成提出先确定配合物的外界然后将配离子破坏再来看其内界。配离子的稳定性受很多因素影响通常可用加热或改变溶液酸碱性来破坏它。本实验先初步推断一般用定性、半定量甚至估量的分析方法。推定配合物的化学式后可用电导率仪来测定一定浓度配合物溶液的导电性与已知电解质溶液进行对比可确定该配合物化学式中含有几个离子进一步确定该化

学式。游离的CoII离子在酸性溶液中可与硫氰化钾作用生成蓝色配合物CoSCN42-。因其在水中离解度大固常加入硫氰化钾浓溶液或固体并加入戊醇和乙醚以提高稳定性。由此可用来鉴定CoII离子的存在。其反应如下Co2 4SCN CoNCS42-蓝色游离的NH4离子可由奈氏试剂来鉴定其反应如下NH4 2HgI42- 4OH O NH2I↓ 7I 3H2O 奈氏试剂红 褐色电解质溶液的导电性可以用电导G表示KG 式中γ为电导率常用单位为S·cm1K为电导池常数单位为cm1。电导池常数K的数值并不是直接测量得到的而是利用已知电导率的电解质溶液测定其电导然后根据上式即可求得电导池 常数。一般采用KCl溶液作为标准电导溶液Hg Hg 2 三、实验用品仪器与材料电子台秤、烧杯、锥形瓶、量筒、研钵、漏斗、铁架台、酒精灯、试管15mL、滴管、药勺、试管夹、漏斗架、石棉网、温度计、电导率仪、pH试纸、滤纸等。固体药品氯化铵、氯化钴、硫氰化钾液体药品浓氨水、硝酸浓、盐酸6 mol/L、浓、H2O230、AgNO32 mol/L、SnCl20.5 mol/L、新配、奈氏试剂、乙醚、戊醇等。四、实验内容 1. 制备CoIII配合物在锥形瓶中将1.0g氯化铵溶于6 mL浓氨水中待完全溶解后持锥形瓶颈不断振荡使溶液均匀。分数次加入2.0g氯化钴粉末边加边摇动加完后继续摇动使溶液呈棕色稀浆。再往其中滴加过氧化氢302-3mL边加边摇动加完后再摇动当溶液中停止起泡时慢慢加入6 mL浓盐

《人工合成有机化合物》教案(苏教版)

第三单元 第1课时简单有机化合物的合成 教学设计 一、学习目标 1.通过乙酸乙酯合成途径的分析,让学生了解简单有机化合物合成的基本 思路。 2.在认识取代反应、加成反应、水解反应、氧化反应等简单的有机反应的基 础上,分析从乙烯制取乙酸乙酯的合成路线,了解有机物合成的路线和方 法。 二、教学重点与难点 乙酸乙酯的几种合成途径,有机化合物合成的基本思路。 三、设计思路 依据《普通高中化学课程标准(实验)》提出的学习要求,运用生产和生活中的实例,帮助学生初步了解简单有机物的合成反应。教学中通过交流和讨论活动,帮助学生了解从乙烯制取乙酸乙酯的合成路线,初步认识人们是怎样合成有机物的;同时通过合成实例的分析认识实验、比较等科学方法对化学研究的作用。四、教学过程 [激发情感] 通过以下两个方面来学生的学习热情,调动学生学习的积极性,了解合成有机化合物的重要意义及其在生产和科技领域的地位: ①近几百年来,有机化学家已经设计和合成了数百万种有机化合物,极大地丰富了物质世界。 ②在20世纪,有机合成和金属有机化学领域共获得10届诺贝尔化学奖。[问题情境] 由于自然条件的限制,天然有机化合物往往难以满足生产、生活的需要,人们需要通过化学方法来合成新的有机化合物。那么如何运用化学方法来合成新的有机化合物呢?

学生根据教材第76页的『交流与讨论』,分小组进行合作学习,交流讨论。 『交流与讨论』乙酸乙酯是一种重要的有机溶剂,也重要的有机化工原料。 依据乙酸乙酯的分子结构特点,运用已学的有机化学知识,推测 怎样从乙烯合成乙酸乙酯,写出在此过程中发生反应的化学方程 式。 [归纳总结] 1. 从乙烯合成乙酸乙酯的合成路线: 2.合成有机物要依据被合成物质的组成和结构特点,选择适合的有机化学反应和起始原料,精心设计并选择合理的合成方法和路线。 [思维拓展] 除上述合成路线外,根据所学过的有机化学知识,还有哪些合成方法和途径呢? [学生活动] 学生根据教材《苏教版·化学2》第81页的图3-22“制备乙酸乙酯可能的合成路线”,分小组合作,展开讨论。 [归纳总结] 合成路线1: 合成路线2:

铁配合物的制备和表征

X射线单晶衍射:1.配合物晶体数据:

2.配合物的部分键长和键角: 3.配合物晶体结构:

紫外可见分光光度法: 图中实线代表配体H2L1的实验数据,虚线代表相应铁配合物的实验数据。实线在波长为282nm和268 nm处有吸收峰,将其归属为苯环π→π*跃迁。虚线在波长为495nm,340nm和281nm处有吸收峰,现将其进行归属。281nm处的吸收峰为苯环π→π*跃迁;340 nm处的吸收峰为电子由苯环上氧原子的最高占据轨道pπ跃迁到Fe(III)半充满轨道dx2?y2/d z2;495 nm处的吸收峰为电子由苯环上氧原子的pπ轨道跃迁到Fe(III)的d*轨道。

XRD: 普通PAN纤维的XRD谱线在16.84,21.42,23.74和29.06°处都有特征峰。而PAN 纳米纤维的XRD谱线与上述谱线较为相近,但是在22~30°范围内的特征峰有所不同。这说明PAN纳米纤维的结晶特征并未发生显著改变。经过反应后两种纤维的主要特征峰几乎全部消失。这说明改性和铁配位反应具有去晶化作用,使纤维表层的结晶度大为降低。

红外: 配合物Fe1和Fe2在3247cm-1处有强的吸收峰。因配合物Fe2和Fe5的结构中含有炔基,谱图中很明显的能够观察到配合物Fe2和Fe5在ν =2120 cm-1处有振动吸收峰,与配体L2 (ν =2100 cm-1)相比峰波向高波数方向移动约20 cm-1。配合物Fe4的红外谱图中同样能观察到羧酸酯的羰基吸收峰(ν =1731 cm-1)。

常规溶液法:是最常见、最简单的单晶培养方法。通过将金属盐和配体溶于合适溶剂中,静置,待其自然挥发而形成配合物。此方法适用于配体溶解性较好而配合物溶解性较差情况,通常在遇到配体溶解性较差的情况时,采用适当加热的方法于以处理。 扩散法:包括气相扩散法和液相扩散法。 气相扩散法:将金属盐和配体溶于适当的溶剂当中,使惰性易挥发溶剂或者碱性物质扩散其中,以减小配合物的溶解度或者加快反应的速度从而使配合物结晶产生。 液相扩散法:将金属盐和有机配体分别溶于不同的两种溶剂当中,将一种溶液置于另一种溶液之上或者在两种溶液分界面处加入另一种溶剂以减小其扩散速度,使反应物缓慢发生反应,从而使产物结晶产生。 水热/溶剂热法:水热法是指在特制密闭反应容器中(一般是内衬聚四氟乙烯不锈钢反应釜),以水作为溶剂,通过对反应容器加热以制造一个高温高压环境(100-1000℃,1-100MPa),使得通常难溶或者不溶的物质溶解从而重新结晶产生出来。溶剂热法与水热法类似。

聚苯胺的合成及表征

题目(中文):聚苯胺的合成及表征姓名 xx xxx 学号111111111112222222222 院(系)化学与生命科学 专业、年级 12级化学(3)班(B组) 指导教师xxx职称教授 二○一四年十月

聚苯胺的合成及表征 摘要 聚苯胺(Polyaniline)是一种重要的导电聚合物,是研究最为广泛的导电高分子材料之一,其具有原料低廉、工艺简单、导电性优良、耐高温及抗氧化性能好等优点,受到人们普遍青睐,应用前景十分广阔,使其成为导电高分子研究的主流和热点。本论文使用化学氧化法合成聚苯胺,以苯胺(An)为单体,过硫酸铵(Aps)为氧化剂,控制反应温度和反应时间,在三聚磷酸铝(ATP)的氢氧化钠溶液中合成聚苯胺。本文主要研究不同的反应温度和反应时间对聚苯胺合成产率的影响。实验结果表明聚苯胺的合成与温度、反应时间均有关,在温度为10℃、反应时间为8小时时,聚苯胺的合成效果最好,产率最高。 关键词:聚苯胺;表征;合成;影响因素 1.绪论 1.1聚苯胺的发现过程 1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为“Krystallin”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche从靛蓝中得到无色的油状物苯胺,将其命名为aniline,该词源于西班牙语的anti(靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。 图1.1聚苯胺的链结构模式 1.2聚苯胺的研究背景

催化剂制备与表征

催化剂制备简答题: 36.挤条成型过程中影响催化剂的性能有哪些因素? 粉体颗粒度、混捏时间和方式、水粉比、助挤剂。 37.喷雾干燥、油柱成型的原理是什么? 喷雾干燥成型和油柱成型是利用物料的自身表面张力、收缩成微球或小球。原理:前者是把料浆高速通过喷头(雾化器)将原料浆液分散成雾滴,并用高温气流干燥雾滴,失水成干燥微球;后者是将溶胶滴入油类中,利用介质和溶胶本身的表面张力将物料切割成小滴并收缩成小球。 38.连续流动搅拌反应器和活塞流反应器(无体积变化)的速率公式推导。 (1)连续流动搅拌反应器 从反应的稳态料平衡分析: 反应物进入反应器的流速=反应物离开反应器的流速+ 反应物反应速率 Q 0:反应物体积进料速度;W :反应器中催化剂的重量; C 0和C :反应物进入和流出反应器的摩尔浓度 r :单位重量催化剂上的总反应速率。 则上述物料平衡式可表述为Q 0C 0=Q 0C+rW 所以r=(C 0-C)Q 0/W 另一方面,速率也可以按单位催化剂体积来表示,在这种情况下r=(C 0-C)Q/V 式中V 为反应器中所盛催化剂的体积。 测量进料和出料中反应物浓度的变化,即可求得反应速率。 (2)活塞流反应器 在理想的活塞流反应器中,假定没有轴混,而且无浓度或流体速度的径向梯度,只是流体的组成随流动的距离而变化,所以须分析微分体积元dV 中的物料平衡。参照图,对微分体积元dV ,设 F :反应物的摩尔流量;V :催化剂体积;r :单位催化剂体积的反应速率. 则物料平衡式为F=(F+dF)+rdV 由此可得出r= -dF/dV 设F 0为反应物进入反应器的摩尔进料速率,x 为转化率,如果在反应时无体积改变,则 F =F o (1一x),r= - dF/dV=F 0×dx/dV 对截面为S 的管式反应器,dV =Sdl ,dl 为微分圆柱形体积元的厚度,则 F r 与CSTR 相反,PFR 不能直接测量反应速率,只有在转化率小到可以用x 代替dx 时才给出速率的直接测量。这实际上意味着使用极少量的催化剂,这种反应器称之为微分反应器。在这种条件下,速率可以由简单的差分方程计算而得 然而极小的dx 值在分析上有较大的困难,所以PFR 大都是在较高的转化率的情况下进行实验的,即按积分方式运转。其反应速率随反应器的轴向位置而改变,此时 (1) 式中停留时间=V/Q 0。将(1)式对整个反 应器积分,则得

钴(Ⅲ)配合物的制备及表征

基础化学实验I课程小论文题目:钴(Ⅲ)配合物的制备及表征 姓名王一贺学号及专业化学3120000170 姓名徐剑光学号及专业化学3120101744 指导教师曾秀琼 浙江大学化学系 浙江大学化学实验教学中心 2014年 1 月

前言:在水溶液中,电极反应Eθ(Co3+/Co2+)=1.84V,所以在一般情况下,Co(Ⅱ)在水溶液中是稳定的,不易被氧化为Co(Ⅲ),相反,Co(III)很不稳定,容易氧化水放出氧气(Eθ(Co3+/Co2+)=1.84V >E θ(O2/H2O)=1.229V)。但在有配合剂氨水存在时,由于形成相应的配合物[Co(NH3)6]2+,电极电势E θCo[(NH3)63+/ Co(NH3)62+]=0.1V,因此Co (Ⅱ)很容易被氧化为Co(III),得到较稳定的Co(Ⅲ)配合物。Co(Ⅲ)可与多种配体配位,能形成多种配合物。 实验方案简述:一、实验中采用H2O2作氧化剂,在大量氨和氯化铵存在下,选择活性炭作为催化剂将Co(Ⅱ)氧化为Co(Ⅲ),来制备三氯化六氨合钴(Ⅲ)配合物,反应式为: 2[Co(H2O)6]Cl2(粉红色)+ 10NH3 +2NH4Cl + H2O2 活性炭 C 2[Co(NH3)6]Cl3(橙黄色)+ 14H2O 将产物溶解在酸性溶液中以除去其中混有的催化剂,抽滤除去活性炭,然后再在浓盐酸存在下使产物晶体析出。 293K时,[Co(NH3)6]Cl3在水中的溶解度为0.26mol·L-1,K不稳=2.2×10-34,在过量强碱存在且煮沸的条件下会按下形式分解: 2[Co(NH3)6]Cl3 + 6NaOH 煮沸 2Co(OH)3 + 12NH3 + 6NaCl 样品中的Co(Ⅲ)用碘量法测定: 2Co(OH)3 + 2I- + 6H+ 2Co2+ + I2 + 6H2O I2 + 2S2O32- S4O62- + 2I- 二、2[Co(en) 2 Cl2]Cl的制备: 2CoCl2·6H2O+4HCl+4en trans- 2[Co(en) 2 Cl2]Cl trans- 2[Co(en) 2 Cl2]Cl?HCl?2H2O △trans- 2[Co(en) 2 Cl2]Cl↓+ HCl+2H2O trans- 2[Co(en) 2 Cl2]Cl △cis- 2[Co(en) 2Cl2]Cl 仪器:100mL锥形瓶,布氏漏斗,量筒,胶头滴管,蒸发皿,恒温水浴,抽滤泵,烘箱,分析天平,台天平,250mL碘量瓶,滴定管,红外光谱仪,烧杯。 药品:H2O2(10%),稀盐酸(3+50),浓氨水(AR),浓盐酸,CoCl2·6H2O(AR),氯化铵(AR),活性炭,冰块,3mol·L-1H2SO4,0.1mol·L-1Na2S2O3,20%的NaOH,0.5%淀粉,6mol·L-1HCl,碘化钾(AR)、、亚硝酸钠(AR)、无水乙醇(AR)、NH4Cl(AR)、乙二胺(AR)。

苏教版化学必修2 专题3 第三单元 人工合成的有机物1 合成简单有机物的方法(同步练习)

(答题时间:25分钟) 一、选择题 1.下列物质反应后可生成纯净的1,2-二溴乙烷的是() A. 乙烯和溴化氢加成 B. 乙烷和少量的溴蒸气光照 C. 乙烯通入溴的四氯化碳溶液 D. 乙烷通入溴水 **2.从原料和环境两方面考虑,对生产中的化学反应提出原子节约的要求,即尽可能不采用那些对产品的化学组成来说没有必要的原料。现有下列3种合成苯酚的反应路线:其中符合原子节约要求的生产过程是() A. 只有① B. 只有① C. 只有① D. ①①① 3.以乙烯为有机原料制备乙酸乙酯的合成路线中,最后一步化学反应的反应类型是() A. 氧化反应 B. 酯化反应 C. 加成反应 D. 水解反应 4.下列反应不能引入羟基的是() A. 加成反应 B. 取代反应 C. 消去反应 D. 还原反应 *5. (浙江温州检测)具有一个羟基的有机物A 与8 g乙酸充分反应生成了10.2 g 酯,经分析还有2 g 乙酸剩余,则A可能是() A. C2H5OH C. CH3CH(OH)CHO B. C6H5-CH2-OH D. CH3CH(OH)CH3 二、填空题 *6.(海南高考节选)乙烯是一种重要的化工原料,以乙烯为原料衍生出部分化工产品的反应如下(部分反应条件已略去): 已知:D的结构简式为,F的结构简式为CH3COOCH2CH2OOCCH3。 请回答下列问题: (1)A的化学名称是________; (2)B和A反应生成C的化学方程式为______________________________________,该反应的类型为________; (3)E的结构简式为__________________________________________________; (4)A生成B的化学方程式为_____________________________________________。 **7.以下是由乙烯合成乙酸乙酯的几种可能的合成路线: (1)分别写出乙烯、乙酸乙酯的结构简式:__________________、__________________。 (2)乙醇和乙醛中含氧官能团的名称分别是:______________、______________。 (3)请写出①、①反应的化学方程式: ①_______________________________________________________________________, ①_______________________________________________________________________, (4)乙酸乙酯在碱性(NaOH)条件下水解的方程式: ________________________________________________________________________。一、选择题

配合物的合成与表征

5-(3-吡啶基)四唑-2-乙酸根与Zn(II)配合物的合成与表征报告 班级:09化学(师范) 学号:150109118 姓名:蔡福东

目录 1. 前言 (1) 1配位化合物 (1) 1. 1配位化合物的组成 (1) 1. 2配合物的种类 (2) 2配位化学发展简史 (2) 3配位化学的今天 (5) 2. 实验部分 (6) 2.1药品 (6) 2.2仪器 (6) 2.3合成方法 (6) 3. 结果与讨论 (6) 3.1 结构分析 (6) 3.2 红外光谱 (6) 3.3 荧光光谱 (7) 4.小结 (8)

摘要:近几十年来, 配位化学在许多新的领域发展的很迅速,在分子识别领域利用也很广范。本文主要分析5-(3-吡啶基)四唑-2-乙酸乙酯水解与硝酸锌反应后得到的配合物晶体。通过结构分析,红外光谱,荧光光谱三种方式分别对生成的配合物晶体进行分析,得到这种新配合物三维结构,结晶学参数,含有主要的基团以及反射光谱,具体的确定该新晶体。 关键词:5-(3-吡啶基)四唑-2-乙酸乙酯,Zn(NO )2,红外光 3 谱,荧光光谱 1. 前言 配位化学已有300 年的发展历史, 近十几年来先后开辟了许多 新领域, 如大环配位化合物、超分子化学、分子识别、功能性配合物、卟啉类配合物、瞬变现象和C60配合物等, 配位化学在这些领域中的最新成就表明配位化学已成为当代化学的前沿领域之一, 它和物理 化学、有机化学、生物化学、固体化学和环境化学相互渗透, 使其成为贯通众多学科的交叉点. 1配位化合物 1. 1配位化合物的组成 配位化合物( Coordination Compounds) 旧称络合物( Complex Compound) , 是指独立存在的稳定化合物进一步结合而成的复杂化 合物. 从组成上看, 配合物是由可以给出孤电子对或多个不定域电子

聚苯胺的合成与表征

聚苯胺的合成与表征 贵州师范学院化学与生命科学学院化本一班姜华学号:1508040540014 同组人:蒲朝霞罗彬彬宋姗姗 摘要: 聚苯胺的合成方法主要有化学氧化聚合法(乳液聚合法、溶 液聚合法等)和电化学合成法 (恒电位法、恒电流法、动电 位扫描法等) , 近年来, 模板聚合法、微乳液聚合、超声辐照合成、过氧化物酶催化合成、血红蛋白生物催化合成法。此次的实验采用的是采用过硫酸铵氧化聚合合成聚苯胺:先将苯胺与酸(四种酸)反应生成可溶性的苯胺盐,然后再加入过硫酸铵合成聚苯胺,计算比较四种酸合成聚苯胺的产率。聚苯胺分子结构含有苯环,使其具有很强的刚性,分子间相互作用力很大,很难溶解于大部分溶剂中。用三甲基亚峰溶剂可以部分溶解聚苯胺,溶解率达20%。聚苯胺(PANI)是一种分子合成材料俗称导电塑料。它是一类特种功能材料具有塑料的密度又具金属的导电性和塑料的可加工性。采用压片对其进行压片并对其测量电阻值。 关键词:聚苯胺合成产率溶解性电阻值 绪论: 聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性。在电子工业、信息工程、国防工程

等的开发和发展方面都具有多种用途。聚苯胺的电活性源于分子链中的P电子共轭结构:随分子链中P电子体系的扩大,P成键态和P*反键态分别形成价带和导带,这种非定域的P 电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、硫酸根、磷酸根等)进入主链,与胺和亚胺基团中N原子结合形成极子和双极子离域到整个分子链的P键中,从而使聚苯胺呈现较高的导电性。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性。聚苯胺经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料等等。 将聚苯胺分别与四种酸混合,制备苯胺盐,在加入过硫酸铵搅拌3个小时制备聚苯胺。再将制备好的聚苯胺进行压片测量电阻,取少量聚苯胺溶解计算溶解率,制备涂料。

锌配合物的合成、表征

淮海工学院 优秀毕业设计(论文) 摘要 题目:锌配合物的合成、表征 作者:高镜学号:0503103409 系(院):化学工程系 专业班级:制药工程034班 指导者:许瑞波讲师 评阅者: 2007年6月连云港

锌配合物的合成、表征 作者高镜专业制药工程 教师许瑞波职称讲师 摘要:本文通过恒温水浴法合成了两种分别以1-苯基-3-甲基-5-吡唑酮、二乙烯三胺为配体的过渡金属锌的配合物:Zn(PMP)2Cl(1)和[Zn(dien)2]ZnCl4(2)。通过X-ray单晶衍射、红外光谱、紫外光谱和电化学对所得晶体进行组成、结构和性质分析。其中,配合物(1)是配 位聚合物,属单斜晶系,P2(1)/n空间群,晶胞参数:a=10.8498(17),b=17.578(2),c=10.9966(18) ?,V=2025.8(5)?3,Mr=448.21,Z=4,F(000)=920,Dc=1.470g/cm3,T=293(2)K,μ=1.367mm-1,λ=0.71073?,R1=0.0441和R2=0.0492。配合物(2)属四方晶体系,I-4空间群,晶胞参数:a=10.250(3),b=10.250(3),c=9.054(2)?,V=951.2(5)?3,Mr=486.95,Z=2,F(000)=504, Dc=1.700g/cm3,T=293(2)K,μ=3.083mm-1,λ=0.71073?,R1=0.0263和R2=0.0711。 关键词:吡唑酮二乙烯三胺过渡金属配合物合成表征 1引言 锌是重要的生命元素[1],是人类生长所必须的有益物质,具有抗菌、抗过滤性病原体作用,它是一些重要生物酶的活性中心,以超分子化合物形态参与各种新陈代谢。吡唑酮与锌等金属的配合物对大肠杆菌和金黄色葡萄球菌均有一定的抗菌作用,并表现出广谱抗菌、抗肿瘤、抗病毒等多种生物活性。吡唑酮含有活泼氢原子、氮原子、苯基等活性基团,两者配合可望获得具有良好生物活性的配合物。而二乙烯三胺作为三齿配体可生成一系列过渡金属配合物,通常是两个螯合的五元环,尤其是它与锌生成的配合物常用来模拟水解酶,因此研究锌与这两种配体通过配位反应所得到的配合物,具有重要的意义。本文报道了两个新的锌配合物的合成、组成和结构,其中吡唑酮-锌配合物是配位聚合物,它不是通过高温高压的水热反应合成的,而是用恒温水浴法合成的。要把相应的参考文献标示出来。2实验部分 2.1实验主要仪器及主要试剂 DF-1集热式磁力搅拌器,变倍体视解剖显微镜,WRS-2微机熔点仪,BRUKER SMART CCD-射线衍射仪.1-苯基-3-甲基-5-吡唑酮(以下简称吡唑酮)、二乙烯三胺、氯化锌等(均为分析纯)。 2.2配合物的合成及晶体培养 2.2.1配合物(1)的合成 称取0.348g PMP(0.5mol)置于250mL三口圆底烧瓶中,加入5mL的无水甲醇溶解,得浅黄白色溶液;将圆底烧瓶放入水浴锅中搅拌加热至55℃;称取0.5mol ZnCl2溶解于5mL 无水甲醇滴加进反应中的溶液里,继续搅拌恒温反应80min;冷却至室温过滤,滤液呈黄

化学实验报告 聚苯胺的合成及表征

聚苯胺的合成及表征 (省市师学院550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份)、过硫酸铵(APS)(分析纯,AR 天津市科密欧化学试剂)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯AR,天津博迪化工股份)、N,N-二甲基甲酰胺(分析纯AR,光华科技股份)、二甲基亚砜(分析纯AR,光华科技股份)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极限制了聚苯胺的应用。通过结构修

有机合成的四个基本

有机合成的“四个基本” 湖北省老河口市一中李军 从远古时代起,人类一直依靠自然界的资源生存。在实践中人类逐渐学会了对自然资源进行加工和转化。例如,通过酿酒、制药等以满足人类生活的需要。但自然资源是有限的,而且有时天然物质及其加工产品的性能也不尽如人意。19世纪20年代,人类开始进行有机合成的研究以来,有机化学家们不断地合成出功能各异、性能卓越的各种有机物。通过有机合成不仅可以制备天然有机物,以弥补自然资源的不足,还可以对天然有机物进行局部的结构发行和修饰。 一、有机合成的基本思路: 1.正向合成分析法: 2.逆向合成分析法: 目标化合物中间产物中间产物·······基础原料 解答这类问题时具体到某一个题目是用正推法还是逆推法,还是正推、逆推双向结合,这要由题目给出的条件决定。 正向合成分析法是从已知的原料入手,找出合成所需要的真接或间接的中间体,逐步推向合成的目标有机物,而逆向合成分析法是在设计复杂化合物的合成路线时常用的方法。它是将目标化合物倒退一步寻找上一步反应的中间体,该中间体同辅助原料反应可以得到目标化合物,而这个中间体,又可以由上一步的中间体得到,依次类推,最后确定最适宜的基础原料和最终的合成路线。 解题思路: (1) 剖析要合成的物质(目标分子),选择原料,路线(正向,逆向思维.结合题给信息) (2) 合理的合成路线由什么基本反应完全,目标分子骨架 (3) 目标分子中官能团引入 有机合成的解题思路是:首先要正确判断需合成的有机物的类别,它含有哪种官能团,与哪些知识信息有关;其次是根据现在的原料、信息和有关反应规律,尽可能合理地把目标化合物分成若干片段,或寻找官能团的引入、转换、保护方法,或设法将各片段拼凑衍变,尽快找出合成目标化合物的关键;最后将正向推导和逆向推导得出的若干个合成路线加以综合比较,选择出最佳的合成方案。 二、有机化学合成路线

相关主题
文本预览
相关文档 最新文档