当前位置:文档之家› 热熔覆合金涂层研究进展

热熔覆合金涂层研究进展

热熔覆合金涂层研究进展
热熔覆合金涂层研究进展

热熔覆合金涂层研究进展

机械工程师

MECHANICAL ENGINEER

田雪梅《

姚军^乔红斌' 陈国昌w ,古绪鹏w

(1.安徽工业大学化学与化工学院,安徽马鞍山243002;2.马鞍山市安工大工业技术研究院高分子与固体润滑研究所,安徽

马鞍山243002)

摘要:热溶覆涂层显著改善金属的耐磨、耐蚀和抗氧化等性能,而热培覆合金粉末组成与成型工艺决定着热熔覆涂层的服 役性能。文中综述了镍基、钴基、铁基以及复合基自熔性合金粉末在热培覆涂层中的应用,指出了热培覆合金涂层未来的主 要研究方向。

关键词:自熔性合金粉末;热培覆;研究现状中图分类号:TB 331

文献标志码:A

文章编号:1002-2333(2017)09-0015-03

Research Progress of Hot Melting Alloy Coatings

TIAN Xuemeiw, YAO Jun1, QIAO Hongbin1,2, CHEN Guochang1^, GU Xupeng1’2

(1.School of C hemistry and Chemical Engineering, Anhui University of T echnology, Ma^shan 243002, China;

2.Ma'anshan Industrial Technology Research Institute, Ma'anshan 243002, China)

Abstract : Hot-melt coating can improve the wear resistance , corrosion resistance and oxidation resistance of metal , and

the composition and molding process of hot—melt alloy powder determine the service performance of hot-melt coating . This paper reviews the application of nickel —based , cobalt -based , iron—based and composites self—fluxing alloyed powder in hot-melt coating , and the main research directions of hot-melt alloy coating are pointed out .Key words: self-fluxing alloy powder ; hot melting ; research status

〇引言

全世界一次性能源的1/3损耗于摩擦磨损。美、英、德 等国每年因摩擦磨损造成的经济损失约占国民生产总值 的2%~7%?。我国每年摩擦磨损耗费资金超过950糾乙元% 热熔覆技术为提高零件的耐磨耐蚀性能提供了简便可行 的方法,其特点主要是与基体之间冶金结合,承载应力和 冲击力较大的磨损M 。目前,热熔覆所用材料大多以自熔 性合金粉末为主。自熔合金涂层的组成及其工艺直接影 响热熔覆涂层性能。1

自熔性合金涂层主要类型

按照成分分类,自熔性合金涂层主要有Ni 基、Co 基、

Fe 基、Cu 基H 以及复合基涂层1

不同类型的自熔性合金涂

层组成各具特点,且作用不尽相同。其中B 和(或)Si 元素能 够与Ni 、Co 、Fe 分别形成低熔点共晶合金,显著降低合金 的熔点,同时具有自我脱氧和造渣性能。1.1 Ni 基自熔性合金涂层

相对于Fe 基和Co 基,Ni 基自熔性合金粉末具有良好

的润湿性、耐蚀性以及高温自润滑作用等优势,广泛应用

于铸铁、铸钢、合金结构钢等零部件表面修复和预保护。

Ni 基自熔性合金目前主要有镍硼硅和镍铬硼硅两大 系列。其中,镇铬硼硅系较镇硼硅系而言,由于Cr 固溶于 Ni 中,不仅使得涂层强度、抗氧化性和耐磨性有所提高, 且富余的Cr 与B 、C 形成硬质的金属间化合物硼化铬和碳

化铬,从而提高了涂层硬度,但同时熔覆层的軔性有所下基金项目:国家自然科学基金项目(51474003);安徽省自然科

学基金面上项目(l 4〇8〇85ME 97)

降。在上述两大类Ni 基自熔性合金中适量添加Cu 和Mo 元 素可提高涂层的耐酸性;适量添加Co 和W 元素可提高涂

层的高温硬度和耐磨性^

唐英等在45钢上激光熔覆Ni 基自熔性合金粉末,研 究了 B 、Si 含量及其相对应配比对涂层各项性能的影响, 并确定高硬度Ni 基激光熔覆用粉的B 、Si 最佳含量。刘元 富等13在钛合金表面激光熔覆60%Ni +30%Ti +10%Si (质量 分数)的混合粉末,制备了以金属硅化物Ti 5Si 3为增强相、 以金属间化合物NiTi 2为基体的复合涂层,在干滑动摩擦 条件下耐磨性能优良。激光熔覆沉积WC 增强NiCrBSi 涂 层可用于抗磨粒磨损岡。李江恒等[11荆用M 〇Si 2配制Ni 基 自熔性合金,通过高频感应加热熔覆于高速钢,\1〇&2含 量为35%的粉块制得的增强Ni 基熔覆层组织结构致密, 硬度显著提高,界面结合良好,熔覆层热物性参数较好。

1.2 Co 基自炫性合金涂雇

钴基自熔性合金是在Stellite 系合金的基础上发展起

来的。Stellite 合金高温性能优良,其熔点较碳化物低,受 热后Co 元素最先处于熔化状态,而合金凝固时它最先与 其它元素形成新的物相,对溶覆层的强化极为有利。Co 基 自熔性合金元素主要包括Ni 、Cr 、C 、B 、Si 和Fe 等。可外加 硬质相作为强化相,如 W C 、TiC 、VC 、Si 02、A 1203、SiC 、Y 203 及Zr 02等。

谢丰豪等[121以Co 基粉末和A 1203粉末为原料,通过微 波烧结在氧化铝陶瓷表面制备涂层,该涂层微观组织均 匀,界面结合较好。陈鹏荣M 采用等离子喷涂方式,通过

网址:https://www.doczj.com/doc/922010772.html, 电邮:hrbengineer@https://www.doczj.com/doc/922010772.html, 2017年第9 期■ 15

硬质合金刀具涂层

硬质合金刀具的涂层技术 [ 摘要]切削刀具表面涂层技术是近几十年应市场需求发展起来 的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命, 使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。主 要介绍涂层硬质合金刀具涂层材料的特点、要求,涂层制备技术,分 析化学气相沉积法(CVD)、物理气相沉积法(PVD),单、复合涂层 制备方法及优缺点。 [关键字] 硬质合金涂层刀具;化学气相沉积法;物理气相沉积法; 现状及发展 引言 现代化的金属切削加工要求刀具具有高切削速度、高进给速度、 高可靠性、长寿命、高精度和良好的切削控制性。因此, 高水平、稳 定的刀具涂层技术越来越受到机械加工企业的青睐。。涂层技术是提 高切削效率, 降低加工成本的有效途径。刀具基体与硬质薄膜表层相 结合, 由于基体保持了良好的韧性和较高的强度, 硬质薄膜表层又 具有高耐磨性和低摩擦因数, 从而使刀具的性能显著提高, 而且, 随着涂层技术设备的日趋集成化、模块化和智能化, 涂层费用已比初 期下降1/2~ 2/3, 涂层刀具在刀具总量中所占的比例将会越来越大。 表面涂层硬质合金在基体硬质合金上, 用(CVD)化学气相沉积, 或(PVD)物理气相沉积等方法, 涂覆耐磨的TiC、TiN、Al2O3等薄 层, 形成表面涂层硬质合金。涂层硬质合金刀片均为可转位形式, 刚

机夹方法装夹在刀杆或刀体上使用。具有以下优点: 1) 表面涂层材 料具有很高的硬度和耐磨性, 故与未涂层刀片相比, 涂层硬质合金 可采用较高的切削速度, 或能在同样的切削速度下大幅度地提高刀 具耐用度。2)涂层材料与被加工材料之间的摩擦系数较小, 故切削力有一定减小, 比未涂层刀片约降低 5%左右。润滑薄膜具有良好的固 相润滑性能, 可有效地改善加工质量, 也适合于干式切削加工。3) 用涂层刀片加工, 已加工表面质量较好。 4) 涂层技术作为刀具制造的最终工序, 对刀具精度几乎没有影响, 并可进行重复涂层工艺。5)由于综合性能好, 涂层刀片有较好的通用性。一种牌号的刀片经常有较宽的适用范围。涂层切削刀具所带来的益处: 可大幅度提高切削刀具寿命; 有效地提高切削加工效率; 明显提高被加工工件的表面质量; 有效地减少刀具材料的消耗,降低加工成本; 减少冷却液的使用, 降低成本, 利于环境保护。 1 涂层材料的发展现状与趋势 1.1 涂层材料的特点 涂层的特点是涂层薄膜与刀具基体相结合, 提高刀具的耐磨性 而不降低基体的韧性, 从而降低刀具与工件的摩擦因数, 延长刀具 的使用寿命。此外, 由于涂层自身的热传导系数比刀具基体和加工材料低得多, 可以有效减少摩擦所产生的热量, 形成热屏蔽, 改变热 量的散失途经, 从而降低刀具与工件、刀具与切屑之间的热冲击和力冲击, 有效地改善了刀具的使用性能。 刀具涂层所起的作用表现为: 1) 在刀具与被切削材料之间形成

聚碳酸酯PC

聚碳酸酯PC 聚碳酸酯是在分子链中含有碳酸酯的一类高分子化合物的总称。聚碳酸酯是一种新型的热塑性塑料,透明度达90%,被誉为透明金属。刚硬而有韧性,具有高抗冲击性,高度的尺寸稳定性和范围很宽的使用温度,良好的绝缘性及耐热性和无毒性。聚碳酸酯燃烧特性:慢燃,离火后慢熄,火焰呈黄色,黑烟碳束。燃烧后塑料熔融,起泡,发出特殊的花果臭气味。聚碳酸酯比重1.20,透明,本色呈微黄。 聚碳酸酯性能:聚碳酸酯树脂通过共聚,共混,增强等途径发展了很多改性品种。聚碳酸酯是抗冲击韧性为一般热塑料之冠,尺寸稳定性很好.耐热性教好,可在-60~120度下长期使用,热变温度130~140玻璃化温度149度热分解大于310度.聚碳酸酯极性小,玻璃温度高,吸水率低,收缩率小,尺寸精度高,对光稳定,耐候性好.熔融粘度和注射温度降低,因而易于加工成形。聚碳酸酯与此20~ 40%的ABS树脂共混后,具有优良的综合性能,它既有聚碳酸酯树脂的高机械强度和耐热性,又具有ABS的流动性好,便于加工的特点,各项性能指标大都介于聚碳酸酯和ABS之间。 用途:聚碳酸酯主要用于生产工业制品,用来代替金属及其它合金,在机械工业上作耐冲击及高强度的零部件。玻璃纤维增强聚碳酸酯具有类似金属的特性,可代替铜,锌,铝等压铸件。聚碳酸酯可以进行注射成形,挤出成形,吹塑成形,旋转成形,真空成形和溶剂铸造膜片等技术。制件还可以机械加工,常温冲孔,锯切及焊接和粘合。聚碳酸酯树脂的注射成形,一般采用螺杆式注射机进行。料筒温度:250~320℃,注射压力:50~80MPa,模具温度:85~120℃,螺杆转速:40~60次/min,成品热处理:先在100~105℃的烘箱中烘烤10分钟,然后在120~125℃再烘烤30分钟,自然冷却到常温即可。 聚碳酸酯(PC)介绍,聚碳酸酯是分子主链中含有—[O-R-O-CO]—链节的热塑性树脂,按分子结构中所带酯基不同可分为脂肪族、脂环族、脂肪一芳香族型,其中具有实用价值的是芳香族聚碳酸酯,并以双酚A型聚碳酸酯为最重要,分子量通常为3 -10万。 聚碳酸酯,英文名Polycarbonate, 简称PC。PC是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在-60~120℃下长期使用;无明显熔点,在220-230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。 PC可注塑、挤出、模压、吹塑、热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温

ABS合金材料的研究进展

ABS合金材料的研究进展 摘要:本文介绍了ABS树脂的基本性能和应用,并对国内市场进行了分析和预测。详细阐述了PVC /ABS 、PC/ABS 、PA/ABS、PBT/ABS、PMMA/ABS等几种ABS合金的相容性、共混组成与性能的关系,以及制备过程中的影响因素和最新研究进展。 关键词:ABS合金;研究进展;共混;相容性

1 前言 ABS树脂通常是指聚丁二烯的苯乙烯、丙烯腈接枝共聚物与苯乙烯一丙烯腈游离共聚物(SAN)的混合物。其中,接枝在聚丁二烯橡胶上的苯乙烯、丙烯腈接枝共聚物为聚丁二烯橡胶和SAN树脂提供了良好的相容化界面,形成了稳定的两相结构。ABS树脂中含有侧苯基、氰基和不饱和双键使ABS与许多聚合物有比较好的相容性,这为ABS 树脂的共混改性创造了有利条件。为此,将各种不同材料与ABS共混以期获得满意的性能,于是种类繁多的ABS合金应运而生。目前ABS合金的种类已达几十种,并且由二元向三元、多元化方向发展。另外,近年来全球ABS需求一直保持着5%左右的年均增长率,亚太地区尤其是我国大陆是带动消费增长的主要地区。目前我国AB S制品高度集中在电子电器配件上,约占总消费量的80%;玩具和汽车配件各占10%;受我国居民消费结构升级,出口加工贸易和汽车产业发展的整体拉动,预计2004—2009年我国ABS树脂需求年均增长率将达到9%;到2009年我国ABS树脂市场需求量将达到390万吨左右。截至到2004年,我国ABS产能达110万吨/年,产量约为60万吨,ABS表观消费量达到256万吨,自给率只有23%,我国ABS消费仍然依赖进口。目前国内LG甬兴、奇美、台化、国亨、吉化等公司的ABS已实现了规模化生产,并计划在未来几年大规模提高产能,预计近几年我国新增产能将达到100万吨/年左右。 2 PVC / ABS合金 PVC的突出优点就是难燃性、耐磨性、抗化学腐蚀性、气体水汽低泄露性好,此外综合机械性能好,是性能性价比最为优越的通用型材料,缺陷是热稳定性差和抗冲击性差。ABS树脂中引入PVC,提高了体系的阻燃性、耐腐蚀性、成本低等优点。如果在向体系中加入合适的阻燃剂,即可成为阻燃性能、力学性能均优良的复合材料;PVC中引入ABS树脂,提高了PVC的加工性、 冲击性能。PVC/ABS合金的性能受多种因素的影响,其中两种树脂的相容性及组成是影响性能的关键因素。ABS树脂具有复杂的两相结构,作为连续相的苯乙烯—丙烯腈的共聚物的溶解度参数为19.0~20.1,作为分散相聚丁二烯的溶解度参数为17.3。而PVC的溶解度参数为19.6,它与ABS树脂中的连续相具有良好的相容性,而与分散相不相容,因此PVC / ABS合金属于“半相容” 体系。因而在该体系中,PVC与SAN 的界面状况是影响相容性的重要因素。PVC与SAN界面状况又受到SAN中丙烯腈(AN) 含量的影响,SAN中的AN质量含量在l2%~26%时可与PVC良好混合,超过这一范围,则混合效果不理想。由于ABS产品在生产过程中使用的原料种类、工艺条件、生产方法多种多样,使得ABS树脂的实际组成干差万别。对PVC/ABS 共混体系而言,在ABS的三组分中,丙烯腈含量降低能提高流动性和强度,降低热变形温度和相

聚碳酸酯(PC)材料简介

聚碳酸酯材料简介 聚碳酸酯 3.1 简介聚碳酸酯是一种无味、无臭、无毒、透明的无定形热塑型材料,是分子链中含有碳酸酯的一类高分子化合物的总称,简称PC。一般结构式可表示,由于R基团的不同,它可分为脂肪族类和芳香族类两种。但因制品性能、加工性能及经济因素等的制约,目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。双酚A型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一。双酚A型聚碳酸酯(Bisphenol A type Polycarbonate,简称PC)的结构式因其具有优良的冲击强度、耐蠕变性、耐热耐寒性、耐老化性、电绝缘性及透光性等,广泛应用于电气电子零部件、机械纺织工业零部件、建筑结构件、航空透明材料及零部件、泡沫结构材料等。随着汽车行业和电子行业的迅猛发展,近年来对PC的需求空前高涨,世界消费能力已达l100kt/a,其中国内PC消费也已达60kt/a。目前PC的生产厂主要分布在美国、西欧和日本,其中,GE塑料公司、Bayer公司和Dow化学公司的生产能力占世界总生产能力的80%以上。我国PC的研制开发工作始于1958年,由沈阳化工研究院首先开发成功;发展至今,所有工艺路线均以光气为起始原料,生产规模较小。PC作为一类综合性能优越的工程塑料,应用范围越来越广。但它也存在一些缺点:如加工流动性差,易于应力开裂、对缺口比较敏感以及耐磨性欠佳等。但随着PC的生产工艺和改性技术的进步,这些方面逐步得到了改进,因此PC在越来越多的领域中得以应用。3.2 聚碳酸酯的合成技术PC的早期工业化生产方法有酯交换法和溶液光气法两种,这两种工艺现在基本不再使用。目前在工业生产中采用的主要是接口光气法。由于光气毒性大,同时二氯甲烷和副产品氯化钠对环境污染严重,故20世纪90年代以来非光气法工艺发展迅速,1993年第一套非光气法装置在日本投产。 3.2.1 接口光气法接口光气法工艺先由双酚A和50%氢氧化钠溶液反应生成双酚A钠盐,送入光气化反应釜,以二氯甲烷为溶剂,通入光气,使其在接口上与双酚A钠盐反应生成低分子聚碳酸酯,然后缩聚为高分子聚碳酸酯。反应在常压下进行,一般采用三乙胺作催化剂。缩聚反应后分离的物料、离心母液、二氯甲烷及盐酸等均需回收利用。该法工艺成熟,产品质量较高。 3.2.2 溶液光气法溶液光气法工艺是将光气引入含双酚A和酸接受剂(加氢氧化钙、三乙胺及对叔丁基酚)的二氯甲烷溶剂中反应,然后将聚合物从溶液中分出。GE公司曾在其美国的第一套装置中使用此工艺。此工艺经济性较差,与接口光气法相比缺乏竞争力。 3.2.3 普通熔融酯交换法熔融酷交换法工艺是以苯酚为原料,经接口光气化反应制备碳酸二苯酯(DPC)碳酸二苯酯再在催化剂(如卤化锂、氢氧化锂、卤化铝锂及氢氧化硼等)、添加剂等存在下与双酸A进行酯交换反应得到低聚物,进一步缩聚得到PC产品。酯交换法生产成本比接口光气法低,但该工艺存在的一些缺陷,阻碍了其工业化应用。如产品光学性能差、分子量范围有限、催化剂存在污染等。目前Bayer公司仍在对该工艺继续进行研究,试图用电解法从副产物氯化钠中回收氯,并将氯循环用于制光气。 3.2.4 非光气熔融法工艺由于光气法毒性大、污染严重,近年来不用光气法生产聚碳酸酯的新工艺已研究成功,并实现了工业化,这是聚碳酸酯工业生产的一大突破。与普通熔融酯交换法的不同之处是,非光气熔融法工艺不使用剧毒的光气生产碳酸二苯酯,而是用碳酸二甲酯(DMC)和苯酚进行酯交换反应生产碳酸二苯酯碳酸二苯酯再和双酸A缩聚得到聚碳酸酯。此工艺中的原料碳酸二甲酯的生产方法一般采用意大利埃尼公司的专利,以甲醇、一氧

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

聚碳酸酯和PC材料介绍

聚碳酸酯和PC材料介绍 聚碳酸脂(PC - Polycarbonate) 聚碳酸酯(简称PC) 中文名称:聚碳酸酯(又作:聚碳酸脂) 英文名称:Polycarbonate 比重:1.18-1.20克/立方厘米 成型收缩率:0.5-0.8% 成型温度:230-320℃ 干燥条件:110-120℃ 8小时 结构:-[-O-(C6H4)-C(CH3)2-(C6H4)-O-CO-]n- 聚碳酸酯结构图 缩写:PC 是分子链中含有碳酸酯基的,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的较低,从而限制了其在方面的应用。目前仅有芳香族聚碳酸酯获的了工业化生产。由于聚碳酸酯结构上的特殊性,现已成为五大工程塑料中增长速度最快的通用工程塑料。 聚碳酸酯也叫(Polycarbonate)常用缩写PC 是一种韧的热塑性树脂,通常是由双酚A和光气生产的,现在也开发了不使用光气的生产方法,并已在20世纪60年代初实现工业化,90年代末实现大规模工业化生产。现在产量仅次于聚酰胺的第二大工程塑料。其名称来源于其内部的CO3基团。 2011年3月双酚A在食用瓶中

已被欧美国家禁用,2.5m宽聚碳酸酯(PC)板已由无锡正成企业安装成功!大大改善了采光和版面效果 化学名:2,2'-双(4-羟基苯基)聚碳酸酯 CAS编号:25037-45-0 化学性质 聚碳酸酯耐弱酸,耐弱碱,耐中性油。 聚碳酸酯不耐紫外光,不耐强碱。 PC是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可两者皆有。双酚A型PC是最重要的工业产品。 PC是几乎无色的玻璃态的无定形聚合物,有很好的光学性。PC高分子量树脂有很高的韧性,悬臂梁缺口冲击强度为600~900J/m,未填充牌号的热变形温度大约为130°C ,玻璃纤维增强后可使这个数值增加10°C 。PC的弯曲模量可达2400MPa以上,树脂可加工制成大的刚性制品。低于100°C 时,在负载下的蠕变率很低。PC有较好的耐水解性,但不能用于重复经受高压蒸汽的制品。 PC主要性能缺陷是耐水解稳定性不够高,对缺口敏感,耐有机化学品性,耐刮痕性较差,长期暴露于紫外线中会发黄。和其他树脂一样,PC容易受某些有机溶剂的浸浊。 物理性质 :1.20-1.22 g/cm^3 线膨胀率:3.8×10 cm/cm°C 热变形温度:135°C 低温-45度 聚碳酸酯无色透明,耐热,抗冲击,阻燃BI级,在普通使用温度内都有良好的。同性能接近相比,聚碳酸酯的耐冲击性能好,高,加工性能好,不需要添加剂就具有UL94 V-0级阻燃性能。但是聚甲基丙烯酸甲酯相对聚碳酸酯价格较低,并可通过的方法生产大型的器件。随着聚碳酸酯生产规模的日益扩大,聚碳酸酯同聚甲基丙烯酸甲酯之间的在日益缩小。 不耐强酸,不耐强碱,改性可以耐酸耐碱

刀具涂层有哪些-刀具涂层种类大全

刀具涂层有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方 法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼 等超硬材料刀片上)而制备的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩 散和化学反应,从而减少了基体的磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳 定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍 以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。 现状 涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中 使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、 成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 类别 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚 石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀 片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以 上),可减少刀片的崩刃及破损,扩大应用范围。 新型涂层技术

Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。 涂层方法 生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD 相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。涂层材料 涂层材料须具有硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求。显然,单一的涂层材料很难满足上述各项要求。所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体

硬质材料之硬质合金与硬质合金涂层

h 硬丽 硬质合金 謬第 硬质合金涂 第一! -

硬质材料包括硬质合金f并包括组成硬质合金的碳化磚粉、碳化起.碳化帆、碳化错、碳化钛这些硬质粉末”以及金刚石(C)f PcD (多晶钻),cBN (立方氮化硼)f和Si3N4 氮化硅。 PcD (多晶钻)是一种使用金刚石微粒和化学粘合剂混合之后,在高温高压环境下沉积为相干结构的人造材料。 cBN (立方氮化硼)是来自PcBN的多晶体。PcBN是一种由cBN微 粒和陶瓷或金属触媒粘合剂在高温高压下沉积而成的聚合体。 Si3 N4氮化硅是一种具有高抗碎性能的陶瓷材料。 硬质合金和碳-氮化合物一尽管高速钢对于如钻孔. 拉削这样的应用仍然非常重要■但大多数的金属切削都是通过

硬质合金工具完成的。对于那些非常难于加工的材料,硬质合金现在正逐渐由碳氮化合物、陶瓷制品和超硬材料所替代。渗碳的(或烧结的)硬质合金和碳氮化合物,被世界上大多数一致认为是硬金属, 是一系列通过粉末;台金技术制成的非常硬的.耐火. 耐磨的合金。微小的硬质合金或者氮化物颗粒在处于烧结題液体时被金属粘结剂”胶结"o个体硬金属的成分和属性与那些黄铜和高速钢是不同的。所有的硬金属都是金属陶瓷,是由陶瓷颗粒和金属粘结剂化合而成。 第一节硬质合金 ? “碳化磚”是非常硬的硬质合金颗粒,特别是碳化锯在 工能力。早期 富铁基质的出现 的硬质合金在用于工业用途时过于脆弱■但是不久发现将

碳化锯粉末与大约10%的金属,如铁、银或钻,允许压坯在大约1500°CT 烧结,在这个过程中生成的产品具有低孔隙率、非常高的硬度,而且相当大的强度。这些性质的组合使得材料理想的适合用来作为切削金属的加工刀具。 ?硬质合金的变化是由铜焊接硬质合金嵌入变成夹具嵌入,以及涂敷技术的迅速发展。 硬质合金刀具材料的制法: 一种是经过压锻和烧结至精确的形状和尺寸。 另外的一个进步是高温真空固态渗粘法(HIP)的应用。此方法实际上允许通过高压下的惰性气体将硬质合金中所有的残余孔隙度都挤出来>应用的温度大约是烧结温度。通过此方法刚度、抗裂强度和抗

CVD涂层技术对硬质合金材料形成脱碳层_相层_影响分析(精)

2010年第44卷 5 21 CVD涂层技术对硬质合金材料形成脱碳层( 相层)影响分析 宋洪刚,曾祥才,高见,袁晓光,吴春涛 成都工具研究所 摘要:采用CVD技术对硬质合金材料涂层时,温度超过1000 很容易在基体材料表面形成脱碳层。先进行900 以下的中温TiCN、TiN涂层作为保护层,再进行高温涂层,能有效降低脱碳层的厚度。本文分析了脱碳层对基体材料抗弯强度的影响,并对不同涂层刀片的切削性能进行了对比分析。 关键词:CVD;硬质合金;脱碳层;抗弯强度 中图分类号:TG113.12;TG17 文献标志码:A InfluenceofCVDMethodonDecarburizedLayerFormedonCementedCarbideSubstrate SongHonggang,ZengXiangcai,GaoJian,YuanXiaoguang,WuChuntao Abstract:Whenthecoatingsdepositedontothecementedcarbidesubstratebychemicalvapord epositionmethod,itisquieteasytoformadecarburizedlayeronthesurfaceofthesubstrateifthet emperatureisabove1000 .Inordertodecreasethethick nessofthedecarburizedlayer,aTiCNorTiNcoatingisfirstlydepositedonthecarbidematerials asabufferlayertoprotectthesubstratebelowthetemperatureof900 ,andthentheothercoatings areprocessedatahightemperature.Thepaperinvestigatestheinfluenceofdecarburizedlayero nthebendingstrengthofthesubstratematerial,andcomparativeanalysestheturningperfor manceofthecarbidetipscoveredbydifferentcoatings. Keywords:CVD;cementedcarbide;decarburizedlayer;bendingstrength 1 引言 用化学气相沉积(CVD)涂层技术在硬质合金工具、模具基体上沉积TiC、TiCN等涂层时,由于基体和涂层之间各元素的扩散和化学反应,容易在基体材料表面形成一层脱碳层( 相层,W3Co3C或W6Co6C)。虽然少量很薄的点状、短线状相层(小于0 2 m)对提高涂层和基体之间的结合强度和耐磨损性能有利,但由于脱碳层硬度高、脆性大,能大幅降低涂层制品的抗弯强度和韧性,从而影响涂层制品的使用性能。特别是用于精加工的螺纹刀片,由于脱碳层的影响,往往更容易引起刀尖崩刃。所以在CVD技术沉积涂层的过程中,应尽量减少脱碳层的产生。 2 试验方法(1)CVD涂层工艺设计 本试验所选用的硬质合金材料为成都工具研究所生产的CP2型B8N2-3刀片和标准试验条。选用以下四种CVD涂层方案。 GY1HT(TiC+TiCN+TiC+TiCN)为高温涂层,每层涂层时间为20min。TiN为900 中温涂层,涂层时间为40min;GY2第一层中温TiN涂层时间为20-40min,再升温按

聚碳酸酯注塑成型及其应用

聚碳酸酯注塑成型及其应用 摘要:本文简单介绍了聚碳酸酯以及它的优缺点和工艺特性,并详细阐述了聚碳酸酯的注塑成型工艺和注塑制品的常见缺陷,同时还详尽介绍了聚碳酸酯材料在各个领域的应用。 关键词:聚碳酸酯注塑成型工艺 1 聚碳酸酯的简介 聚碳酸酯(简称PC)是分子链中含有碳酸酯基的高分子聚合物的总称,它是一种无毒透明的热塑性工程塑料。根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用。目前仅有芳香族聚碳酸酯获的了工业化生产。由于聚碳酸酯结构上的特殊性,现已成为五大工程塑料中增长速度最快的通用工程塑料。 1.1 聚碳酸酯的优缺点 聚碳酸酯是一种无色透明热塑性聚合体, 它不仅具有很高的抗冲击强度、优良的热稳定性、耐蠕变性和耐寒性以及良好的电绝缘性、阻燃性,而且可抗紫外线、耐老化。目前使用的工程塑料中, PC的透明性能是最好的, 可见光透过率高达90%以上。此外, PC密度低,容易加工成型, 是一种性能优良,应用广泛的工程塑料。但它的缺点是容易产生应力开裂,耐溶剂性差、不耐碱、高温容易水解、对缺口敏感性大、与其他树脂相溶性差,摩擦因数大,无自润滑性。 1.2 聚碳酸酯的加工工艺特性 PC是分子主链结构中含有苯环、异丙基、酯键的线性聚合物,这种结构使其既有刚性又有一定的柔韧性,以及良好的耐高温能力,但同时存在着树脂的熔体粘度高、对水分敏感等不足,给注射成型加工带来一定的难度。其加工工艺特性是无明显熔点,在正常加工温度即230—320℃范围内熔体粘度高,粘度对剪切速率的敏感性小而对温度的敏感性大,近似于牛顿流体行为;对水分敏感,高温下树脂易水解;制品易产生内应力等。由此可见,PC是一种较难加工的塑料。 2 注塑成型的基本原理和工艺流程 2.1 注塑成型的基本原理

PVD涂层硬质合金刀具材料分类分组对照表

表4-4,五国十厂PVD 涂层硬质合金刀具材料分类分组对照表 注:上表摘自各公司样本和刊物,没有取得各公司的认可。 作 业 ISO 分类 分组代号 株洲 钻石 自贡 764 山特 维克 肯纳 公司 伊斯卡 公司 三菱 公司 东芝 公司 住友 公司 山高 公司 黛杰 公司 车 削 P P01 JC5003 P10 YBM252 KC5010 KC5510 1C507 VP10MF CP200 JC5003 P20 YBM252 GC1020 GC4125 GC1025 1C507 1C570 1C308 1C908 VP15TF VP20MF CP250 JC5015 P30 1C354 1C308 1C908 1C328 1C3028 VP15TF VP20MF GH330 AH120 CP500 JC5015 P40 GC1020 GC2145 1C328 1C3028 1C354 AH120 CP500 M M01 EH510Z M10 YBG202 GC1005 GC1025 KC5010 KC5510 1C507 1C907 VP10MF EH510Z CP200 JC5003 M20 YBG202 YBG302 YBM351 GC1020 GC1025 GC4125 1C507 1C907 1C1028 VP15TF VP20MF GH330 EH520Z CP200 CP500 JC5015 M30 YBG202 YBG302 YBM351 GC1020 GC2035 KC5025 KC5525 KC710 1C328 1C3028 1C1028 VP15TF VP20MF AH120 CP500 JC5015 M40 YBG302 YBM351 GC2145 1C328 1C3028 K K01 AH110 EH10Z JC5003 K10 KC5010 KC5510 1C507 1C907 GH110 AH110 EH10Z EH20Z CP200 JC5003 JC5015 K20 GC1020 1C308 1C908 VP15TF AH120 EH20Z CP200 CP250 JC5015 K30 GC4125 1C328 1C3028 1C1028 VP15TF CP500 S S01 VP05RT AH110 JC5003 S10 YBG102 GC1005 GC1025 KC5410 KC5010 KC5510 VP05RT VP10RT AH120 EH510Z CP200 CP250 CP500 JC5015 S20 YBG202 GC4125 KC5025 KC5525 VP10RT VP15TF EH20Z EH520Z CP250 CP500 S30 YBG202 VP15TF 铣 削 P P01 JC5003 P10 YBG202 KC792M KC715M ACZ310 JC5003 JC5030 P15 YBG202 YBG302 P20 YBG202 YBG302 GC1025 KC522M KC525M 1C950 1C908 VP15TF ACZ310 ASZ330 F25M JC5015 JC5030 JC5040 P25 YBG202 YBG302 P30 YBG302 YBG402 YBM351 KC725M 1C250 VP15TF VP30RT GH330 AH330 AH120 AH740 ACZ330 ACZ350 F25M F30M JC5015 JC5040 P40 YBG302 YBG402 YBM351 KC735M 1C328 1C928 VP30RT AH120 ACZ350 F40M T60M JC5040 P50 YBG402 YBM351

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

聚碳酸酯(PC)的注塑工艺知识

聚碳酸酯(PC)的注塑工艺知识 PC通称聚碳酸酯,由于其优良的机械性能,俗称防弹胶。PC具有机械强度高、使用温度范围广、电绝缘性能好(但防电弧性能不变)、尺寸稳定性好、透明等特点。在电工产品、电仪外壳、电子产品结构件上被广泛使用。PC的改性产品较多,通常有添加玻璃纤维、矿物质填料、化学阻燃剂、其它塑料等。PC的流动性较差,加工温度较高,因此其许多级别的改性材料的加工需要专门的塑化注射结构。 1、塑料的处理PC的吸水率较大,加工前一定要预热干燥,纯PC干燥120℃,改性PC 一般用110℃温度干燥4小时以上。干燥时间不能超过10小时。一般可用对空挤出法判断干燥是否足够。再生料的使用比例可达20%。在某些情况下,可100%的使用再生料,实际份量要视制品的品质要求而定。再生料不能同时混合不同的色母粒,否则会严重损坏成品的性质。 2、注塑机的选用现在的PC制品由于成本及其它方面的原因,多用改性材料,特别是电工产品,还须增加防火性能,在阻燃的PC和其它塑料合金产品成型时,对注塑机塑化系统的要求是混合好、耐腐蚀,常规的塑化螺杆难以做到,在选购时,一定要预先说明。华美达公司有专用的PC螺杆供客户选用。 3、模具及浇口设计常见模具温度为80-100℃,加玻纤为100-130℃,小型制品可用针形浇口,浇口深度应有最厚部位的70%,其它浇口有环形及长方形。浇口越大越好,以减低塑料被过度剪切而造成缺陷。排气孔的深度应小于0.03-0.06mm,流道尽量短而圆。脱模斜度一般为30′-1°左右。 4、熔胶温度可用对空注射法来确定加工温度高低。一般PC加工温度为270-320℃,有些改性或低分子量PC为230-270℃。 5、注射速度多见用偏快的注射速度成型,如打电器开关件。常见为慢速→快速成型。 6、背压10bar左右的背压,在没有气纹和混色情况下可适当降低。 7、滞留时间在高温下停留时间过长,物料会降质,放也CO2,变成黄色。勿用LDPE、POM、ABS或PA清理机筒。应用PS清理。 8、注意事项有的改性PC,由于回收次数太多(分子量降低)或各种成分混炼不均,易产生深褐色液体泡。

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

聚碳酸酯

聚碳酸酯(pc) 工业上应用的聚碳酸酯主要由双酚A和光气来合成,其主链含有苯环和四取代的季碳原子,刚性和耐热性增加,Tm=265-270℃,Tg=149℃,可在15-130℃内保持良好地力学性能,抗冲性能和透明性特好,尺寸稳定,耐蠕变,性能优于涤纶聚酯,是重要的工程塑料。但聚碳酸酯易应力开裂,受热时易水解,加工前应充分干燥。 聚碳酸酯的制法有酯交换法和光气直接法。 (1)酯交换法 原理与生产涤纶聚酯的酯交换法相似。双酚A与碳酸二苯酯熔融缩聚,进行酯交换,在高温减压条件下不断排除苯酚,提高反应程度和分子量。 酯交换法需用催化剂,分两个阶段进行:第一阶段,温度180-200℃,压力 270-400Pa,反应1-3h,转化率为80%-90%;第二阶段,290-300℃,130Pa以下,加深反应程度。起始碳酸二苯酯应过量,经酯交换反应,排出苯酚,由苯酚排出量来调节两基团数比,控制分子量。 苯酚沸点高,从高粘熔体中脱除并不容易。与涤纶聚酯相比,聚碳酸酯的熔体粘度要高得多,例如分子量3万,300℃时的粘度达600Pa·s,对反应设备的搅拌混合和传热有着更高的要求。因此,酯交换法聚碳酸酯的分子量受到了限制,多不超出3万。 (2)光气直接法 光气属于酰氯,活性高,可以与羟基化合物直接酯化。光气法合成聚碳酸酯多采用界面缩聚技术。双酚A和氢氧化钠配成双酚钠水溶液作为水相,光气的有机溶液(如二氯甲烷)为另一相,以胺类(如四丁基溴化铵)作催化剂,在50℃下反映。反映主要在水相一侧,反应器内的搅拌要保证有机相中的光气及时地扩散至界面,以供反映。光气直接法比酯交换法经济,所得分子量也较高。 界面缩聚是不可逆反应,并不严格要求两基团数相等,一般光气稍过量,以弥补水解损失。可加少量单官能团苯酚进行端基封锁,控制分子量。聚碳酸酯用双酚A的纯度要求高,有特定的规格,不宜含有单酚和三酚,否则,得不到高分子量的聚碳酸酯,或产生交联。 聚氨基甲酸酯 一、耐溶剂聚氨酯弹性体的制备方法 由聚酯多元醇与二异氰酸酯通过一步或多步硫化反应进行制备。聚酯多元醇可由琥珀酸与多元醇制备,多元醇可选择乙撑二醇,二乙二醇,丁二醇,甘油,三羟甲基丙烷,丙二醇和二新戊醇中的一种或几种。制得的弹性体浸到溶剂中(如醇类,甲苯,二甲苯,丙酮,环己酮,丁酮等)48小时,重量增长率<70%。该弹性体可用于印刷滚筒和丝网印刷刮刀片。 二、多异氰酸酯组分及聚氨酯硬泡的制备 一种多异氰酸酯组分,该组分在超低温下具有很好的贮存稳定性和粘合性,并介绍了由该组分制备的聚氨酯硬泡,通过由聚合MDI组成的多异氰酸酯,特定的聚醚单醇,有机硅泡沫稳定剂及二烷基二醇醚的反应可进行聚氨酯的制备

相关主题
文本预览
相关文档 最新文档