当前位置:文档之家› 用电器电源自动控制电路的电子自动化实现 左函未

用电器电源自动控制电路的电子自动化实现 左函未

用电器电源自动控制电路的电子自动化实现 左函未
用电器电源自动控制电路的电子自动化实现 左函未

目录

1实验要求 (1)

2设计内容................................................................................. . (1)

3设计思想. (2)

4设计方案..... . (2)

模块一:计数的设计 (2)

模块二:定时的设计 (4)

模块三:扫描电路的设计 (6)

5底层元器件的生成程序 (9)

5.1 BCD-7段数码管显示译码器电路 (9)

5.2 MUX8 (9)

5.3 60进制计数器 (10)

5.4 十进制计数器 (12)

5.5 JK (14)

6硬件实验结果 (15)

7心得体会 (15)

8参考文献 (16)

用电器电源自动控制电路

1 实验要求

1.控制电路能使用电器的电源自动开启X秒,然后自动关闭X秒,如此周而复始的工作2.X可以设置,范围为1~30 s;

3.定时范围Y可以调节,范围为1~60分;

4.单独设置置数输入控制端实现范围调节;

5.要有工作状态指示;并有分秒的倒计时显示。

2 设计内容

随着计算机技术的发展,计算机的应用领域也以惊人的速度拓展。计算机的高效性、灵活性使得它在CAD(Computer Aided Design计算机辅助设计)方面得到广泛的应用,这使得产品的开发和研制的周期大大缩小了,而这一点是非常重要的。这些因素就决定了在市场对于掌握CAD知识的人才的青睐。事实也是如此,在人才市场上,大量需求具有CAD知识的人才。

EDA(Electronic Design Automation 电子设计自动化)就包含在CAD范畴之中,利用计算机的优势,快速高效的开发和研制电子产品,来缩短产品开发时间。EDA技术是电子技术的发展趋势,利用EDA工具可以代替设计者完成电子系统设计中的大部分工作,EDA工具从数字系统设计的单一领域发展到今天,应用范围以射击模拟、微波等多个领域,可以实现各个领域电子系统设计的测试、设计仿真和布局布线等。我们作为设计者只要完成对电子系统的功能描述,就可以利用计算机和EDA工具,进行设计处理,最终得到设计结果。

现代的大学教育是面向市场的,开设EDA课程设计,可以帮助我们熟悉电子EDA的一些基本知识,培养独立思考和动手的能力,也可以增强我们的创新意识。

此次课程设计是一次很好的锻炼机会,通过自己认真思考,动手动脑,设计出属于自己的作品,那是一件多么令人愉悦的事情!另外一点就是,经过这次课程设计还可以对以前学过的知识进行巩固练习,继而对以后的工作和学习有所帮助。

3 设计思想

首先分析题目要求,我从中得到下面几点内容:

1.用电器可以自动开启30s,然后就会自动关闭30s,如此周而复始,同时要有状态的显示—〉所以这里需要用到一个30进制的计数器,且有一个输出端表示用电器的工作状态。

2.题目要求随时都可以采用自动控制方式对用电器进行控制,即:通过手动使用器由运行转换到停止或由停止转换到运行—〉因此必须有一个输入端用作开关来对用电器进行工作状态的控制。

3.定时信号的设计,且要有分秒的倒计时显示—〉首先必须得用到减法计数器,用减法计数器来做成”分”和”秒”;另外很重要的是要用到扫描电路,用以显示倒计时。此定时信号是用来控制整个电路的工作时间。

4.当然,在这其中不免会用到一些触发器、与非门、或非门、与门、或门、非门等。

5.在设计的时候可以首先把整个电路分成若干个小模块,如果先把小模块设计出来,那么整个电路就不成问题了。

4 设计方案

将整个器件设计变为三个模块,即 30计数器,计时器和显示模块

模块一:计数的设计

(一) 30计数器

因为现成的计数器只有十进制计数器74160和十六进制计数器74161,要想做一个30进制的计数器,需要用两片计数器。这里,我利用两片十进制计数器74160来构成一个30进制计数器。依据如下:把第一片74160的四位输出端接成1001(即十进制中的9),另一片接成0010(即十进制中的2),然后把第一片的进位输出端C接到第二片的使能控制端EP和ET上,每当第一片计成9(1001)时C变为1,下一个CP信号到达时第二片为计数工作状态,计入1,而当第一片计成0(0000),它的C端回到低电平;第一片的EP

和ET接高电平恒为1,始终处于计数工作状态。这样就构成了30进制计数器。另外,还要

有一个输出端是用来表示用电器工作状态的,我用到了一个JKFF、非门、与门。

具体的逻辑电路如下图所示:

图1

图形说明:

(1)此图是采用整体置数法接成的30进制计数器。首先需将两片74160接成百进制计数器,然后将电路的29状态译码产生0信号,把此0信号和一个表示开关的输入端相“与”的结果(以下均称为” A”)同时加到两片74160的LD端(即LD非端),当下一个计数脉冲(第30个计数脉冲)到达时,将0000同时置入两片74160中,从而得到30进制计数器。

(2)JKFF在J=K=1时,输出波形不断翻转。将“A”作为JKFF的CP信号,则输出端会0、1、0、1……这样循环,将此输出连接到某一指示灯上,若出现“灭”与“亮”每隔30秒交替的现象,就说明该用电器的工作状态为:自动开启30s,然后自动进入关闭状态。

(3)该逻辑图中的CP信号设为CP

该模块的仿真波形图如下所示

图2

图形说明:

(1) KaiGuan一栏表示开关的状态:0表示关闭,1表示打开。

7表示用电器的状态:0表示停止,1表示运行。

20表示计数的高位(即十位),一直按照0、1、2……循环。

10表示计数的低位(即个位),一直按照0、1、2、3、4、5、6、

7、8、9、0……循环。

(2)当开关保持状态1不变,20由2变为0时,7会自动改变状态进行翻转。这说明用电

器运行30s和停止30s是自动循环的。

(3)在任意时刻,若手动开关改变其状态,则用电器的状态也会翻转,并且重新开始计时30s。

结论:通过对逻辑电路进行仿真,从波形图上可以看出,此逻辑电路的设计是正确的,符合题目要求。

模块二:定时的设计

题目要求有分秒的定时,且为倒计时,所以必然会用到减法计数器。74168为十进制同步加减计数器,当U/DN=0时,它可以做减法计数。不妨把时间定时为5分钟,即数码管上倒计时的时间显示为从5分59秒开始,到0分00秒结束。这里要用到3片74168。另外,还须有T触发器、或门、或非门、与门、非门等。

图3

图形说明:

(1)首先,74168做减法计数,U/DN=0,要把它接地。

(2)秒的定时为0~59s需要用到两片74168,因为是倒计时,和一般的情况稍有差别,所以应该把八个输出端用一个或门译成0后加到LD非端,且第一片和第二片的输入端D0~D3应分别译成1001、0101(即十进制中的9、5)。还要把秒的借位输出作为分的脉冲信号,这样,当秒减够60后,分会自动减1。依据同样的道理,分的定时只需一片74168即可,同时把四个输出端用或门译成0加到LD非端,输入端D0~D3译成0101(即十进制中的5)。这样,就把时间的的初始值置为0分00秒,而后马上回到5分59秒,这就开始了倒计时。

(3)为了使倒计时计到0分00秒的时候自动停止而不至于循环,所以这里需要对控制秒的脉冲信号加上一些限制。用到了或非门、与门、非门,还有T触发器,具体连线见图中所示。

(4)该逻辑图中的CP信号设为CP2。

该模块的仿真波形图如下所示:

图4

图形说明:

(1)b(4~1)表示“分”由5自减到0;

(2)a[8~5]表示“秒”的高位有5自减到0;

Q[4~1]表示“秒”的低位由9自减到0。

(3) 从整个图形可以看出:时间由5分59秒开始,一秒一秒的自减到0分0秒。

结论:通过对逻辑电路进行仿真,从波形图上可以看出,此逻辑电路的设计是正确的,符合题目要求。

模块三:扫描电路的设计

由于只用到3个数码管,所以地址端只需S0、S1即可,体现在试验箱上就是有4个数码管。用到一片74161,将其接成4进制;还用到四片74151双8选一数据选择器;另需一片7449 BCD--七段显示译码器。

具体的逻辑电路如下页图所示:

图5

图形说明:

(1)74161的输出端QA、QB分别作为数码管的地址端S0、S1和74151 的地址端A、B。

(2)两片74151的32个输入端分别称为1~32;74151的四个输出端分别作为7449的输入端;7449的输出端OA~OG分别称为a~g。

(3)该逻辑电路的CP信号设为CP3,

图6

有图可知电路的设计是正确的。

将上述三个模块组合到一起,就构成了整个的逻辑电路,如下图所示:

总逻辑电路的仿真模型为

图8

结论:

通过对逻辑电路进行仿真,从波形图上可以看出,用电器每隔30秒就会自动改变一下状态,且可以随时由KaiGuan改变状态,数码管上的数字显示是:5分59秒~0分00秒,此逻

辑电路符合题目要求,其设计是正确的。

5 底层元器件的生成程序

5.1 BCD-7段数码管显示译码器电路

library ieee;

use ieee.std_logic_1164.all;

entity bcd71 is port(d: in std_logic_vector(3 downto 0); led: out std_logic_vector(6 downto 0));

end entity bcd71;

architecture arch of bcd71 is

begin led<= "1111110"

when d="0000" else "0110000"

when d="0001" else "1101101"

when d="0010" else "1111001"

when d="0011" else "0110010"

when d="0100" else "1011011"

when d="0101" else "1011111"

when d="0110" else "1110000"

when d="0111" else "1111111"

when d="1000" else "1111011"

when d="1001" else "0000000";

end architecture arch;

5.2 MUX8

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

use ieee.std_logic_unsigned.all;

entity mux8_12 is

port(d0,d1,d2,d3,d4,d5,d6,d7:in std_logic; g:in std_logic;

a2,a1,a0:in std_logic; y: out std_logic);

end entity mux8_12;

architecture one of mux8_12 is

signal a: std_logic_vector(2 downto 0);

begin

a<=a2&a1&a0;

process(a,g,d0,d1,d2,d3,d4,d5,d6,d7)

begin

if g='0' then y<='0';

else

case a is

when"000"=>y<=d0;

when"001"=>y<=d1; when"010"=>y<=d2; when"011"=>y<=d3; when"100"=>y<=d4; when"101 "=>y<=d5; when"110"=>y<=d6; when"111"=>y<=d7; when others=>y<='0'; end case; end if;

end process;

end architecture one;

5.3 60进制计数器

library ieee; --调用ieee库

use ieee.std_logic_1164.all; --使用ieee库中的1164包

use ieee.std_logic_unsigned.all; --使用ieee库中的无符号

entity cntm60 is

port(ci :in std_logic; --来至低级的进位

nreset:in std_logic; --清零端

load :in std_logic; --置数端

d :in std_logic_vector(7 downto 0); --与置数端对应的数据输入端

clk :in std_logic; --时钟端

co :out std_logic; --进位输出端

qh :buffer std_logic_vector(3 downto 0); --计数器的高位输出端 ql :buffer std_logic_vector(3 downto 0)); --计数器的低位输出端

end cntm60;

architecture behave of cntm60 is

begin

co<='1'when(qh="0101"and ql="1001"and ci='1')else'0';

process(clk,nreset)

begin

if(nreset='0')then

qh<="0000";

ql<="0000";

elsif(clk'event and clk='1')then

if(load='1')then

qh<=d(7 downto 4);

ql<=d(3 downto 0);

elsif(ci='1')then

if(ql=9)then

ql<="0000";

if(qh=5)then

qh<="0000";

else

qh<=qh+1;

end if;

else

ql<=ql+1;

end if;

end if;

end if;

end process;

end behave;

5.4 十进制计数器

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY cnt10 IS

PORT(

CLK:IN STD_LOGIC;

LOAD,CLR:IN STD_LOGIC; --CLR:清除数据

EN:IN STD_LOGIC; --信号使能 DATAIN:IN STD_LOGIC_VECTOR(3 DOWNTO 0); --输入的4位数据 Q:OUT STD_LOGIC_VECTOR(3 DOWNTO 0); --输出的4位数据 CARRY_OUT:OUT STD_LOGIC --数据装载

);

END cnt10;

ARCHITECTURE rtl OF cnt10 IS

SIGNAL TMP:STD_LOGIC_VECTOR(3 DOWNTO 0); --链接输入输出

BEGIN --数据的信号

PROCESS(CLK,LOAD,CLR,EN)

BEGIN

IF CLR = '1' THEN --当CLR高电平,数据变为0000 TMP<= "0000";

ELSIF LOAD='1'THEN --否则装载输入的数据

TMP<=DATAIN;

ELSIF CLK'EVENT AND CLK='0'THEN --上升沿时,执行10进制减法

IF EN='1'THEN

IF TMP="0000"THEN --0跳转到9

TMP<="1001";

ELSE --自动减1

TMP<=TMP-'1';

END IF;

END IF;

END IF;

IF TMP="0000"THEN

CARRY_OUT<='1'; --COOK<=CARRY_OUT

ELSE

CARRY_OUT<='0';

END IF;

END PROCESS;

Q<=TMP;

END rtl;

5.5 JK

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity cnt16 is

port(clk,clr,enb,control:in std_logic; cout:out std_logic;

coh:out std_logic_vector(3 downto 0));

end entity cnt16;

architecture one of cnt16 is

begin

process (clk,clr,enb,control)

variable co :std_logic_vector(3 downto 0); begin

if clr='1' then co:="0000";

elsif rising_edge(clk) then

if enb='1' then

case control is

when '0' =>

if co<15 then co:=co+1;

else co:="0000";

end if;

when '1'=>

if co>0 then co:=co-1;

else co:="1111";

end if;

end case;

end if;

end if;

if co=15 then cout<='1';

else cout<='0';

end if;

coh<=co;

end process;

end architecture;

6 硬件实验结果

对总的逻辑电路进行编译下载后,在试验箱上连线,观察到如下现象:表示用电器工作状态的指示灯每隔30s就会自动“亮”或“灭”,用高低电平当作开关来控制电路,也可以实现用电器状态的自动转换;数码管上的时间显示为000、559、558……000。硬件实验的结果完全符合题目要求,说明此逻辑电路的设计是完全正确的。

7 心得体会

当我刚刚拿到题目的时候,感觉特别难,一点思路都没有,对此软件

的掌握也不是太熟练,后来,经过自己进一步的仔细琢磨、认真思考以及刻苦练习,慢慢地有了点眉目。然后我就一点一点的设计电路,最后再进行模块组合,把整个设计思路连接起来成为了一个整体的数字电路。当然在这其中也有过不少的错误,我仔细查看电路找错误,通过一次又一次的不断修改与仿真,我的电路一步步趋于完善,我也正一步步走向成功,当我波形仿真后,完全符合题目的各个要求,经过老师的验收,我顺利通过了这次为期两周的EDA课程设计。

经过这次课程设计,我发现自己还有很多不足,对数字电路某些内容的掌握不是太熟练,在逻辑电路设计方面欠佳;同时,在课程设计的过程中,我也学会不少新的知识,扩展了自己的知识面,培养了亲自动手实践的能力,并且也对以前已经学过的知识进行了巩固练习。

我又一次深深体会到了知识的力量,感受到在知识海洋里遨游是一件多么愉快的事情。从中我也悟出了一些道理:人是不可以满足的!

我深信,经过刻苦学习,我一定可以掌握更多的科学知识。

在此,我深深地感谢每一位老师!

8 参考文献

[1]赵全利.《EDA技术及应用教程》

[2]韩力群.《人工神经网络理论、设计及应用》第二版.化学工业出版社,1990.1

[3] 闻新,周露,李翔,张宝伟.《MATLAB神经网络仿真与应用》.科学出版社,2003.7

[4] 邹彦.《EDA技术与数字系统设计》.电子工业出版社

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

电气控制电路基础原理图

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制, 也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排

在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KM、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转900,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索 电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图 的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

铣床电路控制原理图

铣床控制电路:

一、铣床的结构原理: 1、铣床的工作台及夹具

2、铣床的外形 3、铣床结构: ①、主轴;②、悬梁;③、刀杆支架;④、工件工作台;⑤、(工件工作台)左右进给操作手柄; ⑥、(工件工作台)前后进给操作手柄;⑦、(工件工作台)上下操作手柄;⑧、进给变速手柄及变速盘; ⑨、升降工作台;⑩、主轴变速盘及变速手柄;⑾、主轴电动机及进给电动机等等。

4、铣床的运动形式: ①、主轴运动:主轴带动铣刀作旋转运动,由M1拖动(为减小负载波动对加工质量影响,主轴上装有飞轮); ②、进给运动:指工作台带动工件作上下、左右、前后6个方向的直线运动(由三根进给丝杆实现),及圆形工作台的旋转运动,由M2拖动; ③、辅助运动:指工作台带动工件作上下、左右、前后6个方向的快速运动,由M2与电磁离合器YC3(YC3又叫快速电磁离合器)联合拖动。 5、铣床对各运动形式的要求: ①、主轴旋转平稳,以保证加工质量(采用飞轮); ②、铣削加工时,工件同一时刻只能作某一个方向的进给运动; ③、用圆形工作台加工时,不能移动,只能旋转; ④、主轴变速、进给变速用机械变速实现,为保证变速易于齿合,应有变速冲动控制; ⑤、据工艺要求,先主轴旋转后再进给运动; ⑥、为操作方便,应有两地控制。(机械离合器) 6、机床进给运动示意图:圆形工作台旋转传动链 横向移动传动链 (电磁离合器) YC2(正常进给) 垂直移动传动链 M2——— YC3(快速进给)纵向移动传动链 7、铣床的加工功能: ①、加工平面; ②、加工斜面; ③、加工沟槽; ④、(装上分度盘)可以铣切齿轮和螺旋面; ⑤、(装上园工作台)可以铣切凸轮和弧形槽。 二、铣床电路控制原理: 1、电路图(见上)

超声波发生器电源控制电路

超声波发生器电源控制电路信息发布时间:(2008年8月7日22:02:40 ) 发布者IP地址: 信息详细内容: 第60324篇:基于PWM大功率超声波电源的设计发布时间:2006年12月30日点击次数:120 来源:电子设计应用作者:内蒙古科技大学机械工程学院苏凤岐汪建新孙建平摘要:本文详细介绍了为驱动磁滞伸缩换能器而设计的一种频率、功率可调式大功率超声波电源,该电源采用由IGBT构成的全桥式逆变主电路,实现了逆变降压和输出电压调控。控制电路以脉宽调制电路为核心,通过给定信号和反馈信号电压的比较,获得宽度可变的脉冲信号,调节电源的输出电压,并实现对电源的闭环控制。关键词:IGBT;波形发生器;超声换能器;脉宽调制引言近年来,随着全控制型电子器件和PWM技术的迅速发展,功率超声的应用及其驱动电源的开发已成为热点研究领域之一。本文介绍的高频换能器驱动电源,采用全桥移相式串联电路拓扑,以单片脉宽调制电路为核心、IGBT功率管为功率开关器件,实现了大功率输出。它具有效率高、性能稳定、体积小、质量轻和调节方便等优点。超声波电源的设计超声波电源的组成及原理框图逆变式超声波电源主要由主电路和控制电路两部分组成,其基本原理框图如图1所示。图1超声波发生器原理框图主电路是将电能从电网传递给负载的电路,其主要作用是减小变压器体积和改善电源的动态品质。控制电路则主要为逆变主电路提供开关脉冲信号,驱动逆变主电路工作,并借助反馈电路和给定电路来实现对逆变器的闭环控制。逆变主电路逆变主电路包括输入整流滤波、逆变器和输出滤波三个主要部分,而逆变器则是其核心部件。逆变器本设计采用的逆变电路为全桥式逆变电路,其优点是:适用于大功率输出,主变压器只需一个原边绕组,通过正、反向的电压得到正、反向的磁通。因此,变压器铁芯和绕组得到最佳利用,使效率得到提高。另外,功率开关管在正常运行情况下,最大的反向电压不会超过电源电压,4个能量恢复二极管能消除一部分由漏感产生的瞬时电压,无须设置能量恢复绕组,反激能量 便得到恢复利用。在全桥式逆变电路中,采用IGBT作为大功率开关器件。IGBT管构成的逆变器的电路原理图如图2所示。图2桥式变换电路图交流电经桥式整流器而获得直流电压,并经C0滤波,变成平滑的直流电压V+。该电压加在IGBT功率管Tr1、Tr2、Tr3、Tr4组成的逆变桥上。当Tr1、Tr2、Tr3、Tr4都截止时,中频变压器T 原边线圈绕组T1p两端的电压U1=0。给Tr1、Tr3触发脉冲,这两个功率管导通, Tr2、Tr4截止时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=V+,流经变压器原边线圈绕组T1p的电流方向由下至上。当Tr1、Tr3截止, Tr2、Tr4导通时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=-V+,变压器原边线圈绕组T1p电流的方向为由上至下。由此可见,通过Tr1、Tr3和Tr2、Tr4的交替导通和关断,也就是交替驱动Tr1、Tr3和Tr2、Tr4, 中频变压器T的二次侧即得到矩形波交流输出,实现了直流变交流的过程。T r1, Tr2、Tr3, Tr4的通断受控于电子控制电路,其每秒钟驱动IGBT的次数决定了电源的工作频率。中频变压器在逆变器部分, 中频变压器的作用是实现电压变换,功率传递以及输入、输出之间的隔离。由于中频变压器的工作频率较高,随着频率的增大,铁芯的铁损将成倍增加。为了减少其铁损需选用厚度极薄的硅钢片,这显然是很不经济的,因而选用高导磁合金材料的铁氧体磁芯。铁氧体磁芯的规格可根据输出功率及其效率来确定,则磁芯有效截面积Ae、总磁感应强度增量△B也就确定。根据公式1,可计算出中频变压器的原边绕组匝数。 (1) 其中,Np为变压器原边绕组匝数,U1为变压器绕组电压,△B为总磁感应强度增量,Ton为最大导通时间。控制电路控制电路主要由电子控制电路和驱动电路构成,而电子控制电路又包括时序控制电路和脉宽调制电路。其中,脉宽调制电路是整个超声电源控制系统的核心,它与控制系统中的其它电路都有直接联系,其主要作用是将电压给定信号和电压 反馈信号进行比较放大,根据给定值与反馈值的差值,输出相应宽度的脉冲信号,以调整电源输出电压的大小。通常采用定频率调脉宽的PWM方式来达到换能器所需的各种特性控制。脉宽调制电路还有欠压、过压、过流等保护功能,封锁输出脉冲,使电源停止输出。另外,脉宽调制电路还具有软启动、死区设定等功能。脉宽调制电路本设计采用SG3525A作为电源的PWM芯片。该芯片使用简单,只需要外接少量电阻电容,即可构成所需的脉宽调制电路。如图3所示,芯片内部主要由误差放大器N1、比较器N2、振荡器、分相器和触发器等组成。图3 脉宽调制电路图给定电压Ug和反馈电压Uf分别接至误差放大器N1的同相端和反相端,N1 端的输出电压UN1接至比较器N2的反相输入端,同时,振荡器产生的三角波信号UN2,接至N2的同相输入端。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端输出一个随误差放大器输出电压的高低而改变脉宽的方波脉冲。再将此方波脉冲送或非门的一个输入端,或非门另三个输入端分别为触发器、振荡锯齿波、欠压

电气控制电路基本环节习题解答

电气控制电路基本环节 习题解答 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第六章电气控制电路基本环节 6-1常用的电气控制系统有哪三种 答:常用的电气控制系统图有电气原理图、电气布置图与安装接线图。 6-2何为电气原理图绘制电气原理图的原则是什么 答:电气原理图是用来表示电路各电气元器件中导电部件的连接关系和工作原理的图。绘制电气原理图的原则 1)电气原理图的绘制标准图中所有的元器件都应采用国家统一规定的图形符号和文字符号。 2)电气原理图的组成电气原理图由主电路和辅助电路组成。主电路是从电源到电动机的电路,其中有刀开关、熔断器、接触器主触头、热继电器发热元件与电动机等。主电路用粗线绘制在图面的左侧或上方。辅助电路包括控制电路、照明电路。信号电路及保护电路等。它们由继电器、接触器的电磁线圈,继电器、接触器辅助触头,控制按钮,其他控制元件触头、控制变压器、熔断器、照明灯、信号灯及控制开关等组成,用细实线绘制在图面的右侧或下方。 3)电源线的画法原理图中直流电源用水平线画出,一般直流电源的正极画在图面上方,负极画在图面的下方。三相交流电源线集中水平画在图面上方,相序自上而下依L1、L2、L3排列,中性线(N线)和保护接地线(PE线)排在相线之下。主电路垂直于电源线画出,控制电路与信号电路垂直在两条水平电源线之间。耗电元器件(如接触器、继电器的线圈、电磁铁线圈、照明灯、信号灯等)直接与下方水平电源线相接,控制触头接在上方电源水平线与耗电元器件之间。 4)原理图中电气元器件的画法原理图中的各电气元器件均不画实际的外形图,原理图中只画出其带电部件,同一电气元器件上的不同带电部件是按电路中的连接关系画出,

常用电气控制电路

常用电气控制电路 1.控制柜内电路的一般排列和标注规律为便于检查三相动力线布置的对错,三相电源L1、L2、L3 在柜内按上中下、左中右或后中前的规律布置。L1、L2、L3三相对应的色标分别为黄、绿、红,在制作电气控制柜时要尽量按规范布线。二次控制电路的线号,一般的标注规律是:用电装置(如交流接触器)的右端接双数排序,左端按单数排序。 二次控制电路的线号编排如图1所示。动力线与弱点信号线要尽量远离,如传感器、PLC、DCS 集散控制系统、PID控制器等信号线,如果不能做到远离,要尽量垂直交叉。弱电线缆最好单独放入一个金属桥架内,所有弱电信号的接地端都在同一点接地,且与强电的接地分离。 常用电气控制电路图1 二次控制电路的线号编排 2.电动机起停控制电路该电路可以实现对电动机的起停控制,并对电动机的过载和短路故障进行保 护,电动机起停控制电路如图2所示。

图2 电动机起停控制电路 在图2中,L1、L2、L3是三相电源,信号灯HL1用于指示L2和L3两相电源的有无,电压表V指示L1和L3相之间的线电压,熔断器FU1用于保护控制电路(二次电路)避免电路短路时发生火灾或损失扩大。合上断路器QF1,二次电路得电,按下起动按钮(绿色)SB2,交流接触器KM1的线圈通电,交流接触器的主触点KM1的辅助触头KM1-1闭合,电动机M1通电运转。由于KM1-1触头已闭合,即使起动按钮SB2抬起,KM1的线圈也将一直有电。KM1-1的作用是自锁功能,即使SB2抬起也不会导致电动机的停止,电动机起动运行。按下停止按钮SB1,KM1的线圈断电,KM1-1和KM1触头放开,电动机停止,由于KM1-1已经断开,即使停止按钮SB1抬起,KM1的线圈也仍将处于断电状态,电动机M1正常停止。当电动机内部或主电路发生短路故障时,由于出现瞬间几倍于额定电流的大电流而使断路器QF1迅速跳闸,使电动机主电路和二次电路断电,电动机保护停止。当电动机发生过载时,电动机电流超出正常额定电流一定的百分比,热继电器FR1发热,一定时间后,FR1的常闭触头FR1-1断开,KM1线圈断电,KM1-1和KM1主触头断开,电动机保护停止。KM1线圈得电时,HL2指示灯亮说明电动机正在运行,KM1的线圈断电后HL2灯灭,说明电动机停止运行。当FR1发生过载动作,常开触头FR1-2闭合,HL3灯亮说明电动机发生了过载故障。假设上述的三相交流电动机M1的功率3.7kW,额定电流为7.9A,工作电压为AC380V,则3.7kW 电动机起停控制电路元件清单见表1。 表1 3.7kW电动机起停控制电路元件清单

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

用TL494制作的ATXC开关电源控制电路图

用TL494制作的ATXC开关电源控制电路图 本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路。 图1 ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。 比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母

a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较器集成电路。按管脚的顺序把内部四个比较器设为A、B、C、D比较器。494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电脑ATX电源控制电路的工作原理

ATX 电源的控制电路见图1。控制电路采用TL 4 9 4 (有的电源采用KA 7 5 0 0 B ,其管脚功能与 TL 4 9 4相同,可互换)及LM 3 3 9集成电路(以下简称494和3 39)。494是双排16脚集 成电路,工作电压7?4 0V 。它含有由{14}脚输出的+5V 基准电源, 输出电压为+5V ( ±0. 05V ), 最大输出电流2 5 0 mA; 一个频率可调的锯齿波产生电路, 振荡频率由{5}脚外接电容及{6}脚外接电阻来 决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此 种 工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输 入端牛";一个反相输入端 ■"和一个输出端。 比较器同相端电平若高于反相端电平,则输岀端输岀高电平;反之输岀低电平。4 9 4内的比较放 大器有四 个,为叙述方便,在图1中用小写字母a 、b 、c 、d 来表示。其中a 是死区时间比较器。因两 个作逆变工作的三极管 串联后接到+3 10V 的直流电源上,若两个三极管同时导通,就会形成对直流电 源的短路。两个三极管同时导通可能 发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时 候。因为管子在转换时有时间的延迟,截止的管 子已经转为导通了,但导通的管子尚未完全转为截止,于 是两个管子都呈导通状态而形成对直流电源的短路。为防止 这样的事情发生,494设置了死区时间比较 器a 。从图1可以看出,在比较器a 的反相输入端串联了一个 电源",正 极接反相端,负极接4 9 4的 {4} 脚。A 比较器同相端输入的锯齿波信号,只有大于 电源"电压的部分才有输出,在三极管导通变为截止与 截止转为导通期间,也就是死区时间,4 9 4没有脉冲输岀,避免了对直流电源的短路。 死区时间还可由{4} 脚外接 的电平来控制,{4}脚的电平上升,死区时间变宽,4 9 4输出的脉冲就变窄了,若 {4}脚的电平超过 了锯齿波的峰值电压,4 9 4就进入了保护状态, {8}脚和{11}脚就不输出脉冲了。4 9 4内部还有3个二 输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T 触发器等电路。与门是这样一种电 路,只有所有 的输入端都是高电平,输岀端才能输岀高电平;若有一个输入端为低电平,则输岀端输岀低 电平。反相器的作用是把 输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。 T 触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q 为低电平,输入一个脉冲后, Q 变为高 电平,再输入一个脉冲,Q 又回到低电平。比较器、与门、反相器、T 触发器以及锯齿波振荡器 及{8}脚、{11} 脚输出的波形见图2。 3 3 9是四比较器集成电路。 按管脚的顺序把内部四个比较器设为A 、 B 、 C 、 D 比较器。4 9 4和3 3 9再配合其他电路,共同完成ATX 电源的稳压,产生PW-OK 信 号及各种保护功能。 一、 产生PW-OK 信号 PC 主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-O K 信号(约+ 5V ),主机在获得此信号后才开始工作。接通电源时,要求PW-OK 信号比 ±5V 、±1 2V 、+3 .3V 电源延迟数百毫秒才产生,关机时PW-OK 信号应比直流电源先消失数百毫秒,以便 主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘。 ATX 电源接通市电后,辅助电源立即工作。一方面输出 + 5VSB 电源,同时向4 9 4的 {12}脚提 供十几伏到二十多伏的直流电源。4 9 4从 {14}脚输出+5V 基准电源,锯齿波振荡器也开始起振工作。 若主机未开机,PS —ON 信号为高电平,经R37使3 3 9的E 比较器 {6}脚亦为高电平,因电阻R37 小于R44, {6}脚电平高于{7}脚电平,E 比较器输出端{1}脚输出低电平,经D36的钳位作用,A 比较 器的反 输出斋暮一TLTL 期出也号m_r d W 的础宅平械官 』畀申弔恼向叶门脚疽出茂落 :沁冠屯平冏玄冈11胆侑出運孚 h_n : I”刑的勺闵呻平 肌剧4的丿翼呻.毛 匚,丄阴的枣她出靈晤 时刖斷1113駅FJS 轧5 ?ns 出常 二对心M 门

常见几种开关电源工作原理及电路图

开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路 图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1

处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。 单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。 单端反激式开关电源使用的开关管VT1 承受的最大反向 电压是电路工作电压值的两倍,工作频率在20-200kHz之间。 3.单端正激式开关电源 单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也 导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。 在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和 复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。 4.自激式开关稳压电源 自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。 当接入电源后在R1给开关管VT1提供启动电流,使VT1 开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振

常用电气控制电路知识讲解

常用电气控制电路

常用电气控制电路 1.控制柜内电路的一般排列和标注规律为便于检查三相动力线布置的对错,三相电源L1、L2、L3 在柜内按上中下、左中右或后中前的规律布置。L1、L2、L3三相对应的色标分别为黄、绿、红,在制作电气控制柜时要尽量按规范布线。二次控制电路的线号,一般的标注规律是:用电装置(如交流接触器)的右端接双数排序,左端按单数排序。 二次控制电路的线号编排如图1所示。动力线与弱点信号线要尽量远离,如传感器、PLC、DCS 集散控制系统、PID控制器等信号线,如果不能做到远离,要尽量垂直交叉。弱电线缆最好单独放入一个金属桥架内,所有弱电信号的接地端都在同一点接地,且与强电的接地分离。 常用电气控制电路图1 二次控制电路的线号编排 2.电动机起停控制电路该电路可以实现对电动机的起停控制,并对电动机的过载和短路故障进行 保护,电动机起停控制电路如图2所示。

图2 电动机起停控制电路 在图2中,L1、L2、L3是三相电源,信号灯HL1用于指示L2和L3两相电源的有无,电压表V 指示L1和L3相之间的线电压,熔断器FU1用于保护控制电路(二次电路)避免电路短路时发生火灾或损失扩大。合上断路器QF1,二次电路得电,按下起动按钮(绿色)SB2,交流接触器KM1的线圈通电,交流接触器的主触点KM1的辅助触头KM1-1闭合,电动机M1通电运转。由于KM1-1触头已闭合,即使起动按钮SB2抬起,KM1的线圈也将一直有电。KM1-1的作用是自锁功能,即使SB2抬起也不会导致电动机的停止,电动机起动运行。按下停止按钮SB1,KM1的线圈断电,KM1-1和KM1触头放开,电动机停止,由于KM1-1已经断开,即使停止按钮SB1抬起,KM1的线圈也仍将处于断电状态,电动机M1正常停止。当电动机内部或主电路发生短路故障时,由于出现瞬间几倍于额定电流的大电流而使断路器QF1迅速跳闸,使电动机主电路和二次电路断电,电动机保护停止。当电动机发生过载时,电动机电流超出正常额定电流一定的百分比,热继电器FR1发热,一定时间后,FR1的常闭触头FR1-1断开,KM1线圈断电,KM1-1和KM1主触头断开,电动机保护停止。KM1线圈得电时,HL2指示灯亮说明电动机正在运行,KM1的线圈断电后HL2灯灭,说明电动机停止运行。当FR1发生过载动作,常开触头FR1-2闭合,HL3灯亮说明电动机发生了过载故障。假设上述的三相交流电动机M1的功率3.7kW,额定电流为7.9A,工作电压为AC380V,则3.7kW电动机起停控制电路元件清单见表1。 表1 3.7kW电动机起停控制电路元件清单

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析 单元电路原理简析 美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。美的KFR-26/33GW/CBPY型变频空调。属“数智星”变频系列。其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。它们的电路原理基本相似。结合图1~图6电路原理图,对整机单元电路作简要分析。 1.室内机主电源电路 电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容 C1和C2、T2过流保护和高频滤波后。一路经接线柱L、N两端送到室外机主电源电路的输入端。其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。 2.室内机辅助电源电路 电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。 3.室内风机控制电路 电路见上图、下图。在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。其发光强度控制内部双向可控硅的导通程度。从而进一步控制室内风机(FAN)的工作状态和运转速度。同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R23、C20反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。从而准确控制风机(FAN)的转速。 4.换气风机控制电路 电路见下图,为了让用户室内保持新鲜的空气,该空调设计了换气功能。由IC3(2)脚输出换气风机控制信号,当输出高电平时,经R10送到Q1的b极,Q1导通,驱动换气风机(M2)运转。从而实现与室外空气进行交换。 5.过零检测电路 电路见中图、下图,该电路一是检测供电电压是否正常;二是为双向可控硅提供同步触发信号。南电源变压器T1次级输出低压交流电,经D7和D8整流,输出频率约为100Hz脉动电压,经R43~R45 分压后的正弦交流信号,送到三极管Q3的b极,当b极电压大于0.7V时,Q3导通,C31通过Q3进行放电,主控芯片IC3(UPD780021)(51)脚便得到一个低电平;当b极电压小于0.7V时,Q3截止,+5V 电压通过R7对C31进行充电,于是IC3(51)脚便得到周期为10ms的(高电平)过零触发信号。 6.室内机晶振电路 电路见下图,由主控芯片IC3(48)、(49)脚内部电路与晶体XT1组成晶振电路,产生4.19MHz 主振荡频率信号。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

电气控制回路八种常用元件原理介绍

电气控制回路八种常用元件原理介绍 断路器、接触器、中间继电器、热继电器、按钮、指示灯、万能转换开关和行程开关是电气控制回路中最常见的八种元件,以图文并茂的方式介绍常用电气元件的原理及应用,通过了解它们在电气回路中的作用来掌握这些元件平时的运行情况。 1、断路器 低压断路器又称为自动空气开关,可手动开关,又能用来分配电能、不频繁启动异步电机,对电源线、电机等实行保护,当它们发生严重过载、短路或欠压等故障时能自动切断电路。常用断路器外形图(如下图) 1P微型断路器 3P微型断路器

塑壳断路器断路器文字符号为:QF 断路器图形符号为: 单极断路器图形符号三极断路器图形符号

2、接触器 接触器由电磁机构和触头系统两部分组成,接触器最常见线圈电压有AC380V、AC220V、AC110V、AC36V、AC24V、AC12V和DC220V、DC36V、DC24V、DC12V等多种。常用的有AC380V、AC220V,机床常用的有AC110V、AC36V 、DC36V、DC24V、等几种,外形一样,就是线圈的电压有区别。 接触器电磁机构由线圈、动铁心(衔铁)和静铁心组成;接触器触头系统由主触头和辅助触头两部分组成,主触头用于通断主电路,辅助触头用于控制电路中。常用接触器外形图片 接触器文字符号为:KM 接触器图形符号表示为:

接触器线圈图形符号: 接触器主触头图形符 号 : 接触器辅助常开触头图形符号接触器辅助常闭触头图形符号 3、热继电器 热继电器是利用电流通过元件所产生的热效应原理而反时限动作 的继电器。 热继电器文字符号:FR 热继电器图形符号: ---------------------------------

相关主题
文本预览
相关文档 最新文档