当前位置:文档之家› 常用系统电容电流现场测试方法浅析

常用系统电容电流现场测试方法浅析

常用系统电容电流现场测试方法浅析
常用系统电容电流现场测试方法浅析

常用系统电容电流现场测试方法浅析

发表时间:2017-10-23T10:17:31.923Z 来源:《电力设备》2017年第15期作者:魏存金1 吴晓晴1 翟莉1 冯梦娉1 李玫瑾2 [导读] 摘要:电容电流测量的方法有很多种,本文将结合现场实际测试,对比分析二次信号注入法(异频法)和中性点异频信号注入法这两种测试方法使用时的优缺点。

(1 国网阜阳供电公司安徽省阜阳市 236000;

2 国网安徽省电力公司阜阳市城郊供电公司安徽省阜阳市 236000)

摘要:电容电流测量的方法有很多种,本文将结合现场实际测试,对比分析二次信号注入法(异频法)和中性点异频信号注入法这两种测试方法使用时的优缺点。

关键词:系统电容电流;现场测试;二次信号注入法;中性点异频信号注入法【1】目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV系统电容电流较大时,装设消弧线圈,以补偿电容电流。这就要求对配网的电容电流进行测量后做决定。传统的测量配网电容电流的方法有外加电容间接测量法、单相金属接地的直接法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。现在系统中常用的二次信号注入法(异频法)和中性点异频信号注入法进行系统电容电流现场测试情。

【2】测试方法简介

1.二次信号注入法(异频法)

当PT开口三角形侧注入不同频率f1、f2的电流,即可通过测量计算得到整个串联回路的阻抗值Z1、Z2和相角θ1、θ2,从而得出系统电容C,最后将C代入公式I=3wCU求出电网中的容性电流。

使用该方法进行测试时存在一些问题。首先,存在安全风险。该方法需将一、二次消谐措施退出运行,若试验过程中出现接地故障,则存在激发铁磁谐振的风险。其次,在某些情况下该方法测试结果误差较大,和消弧线圈装置显示值差异性较大,且对地电容越大,差异性越大。第三,当系统电容电流超过仪器的量程时,该方法测量稳定性差,与实际值偏差较大。第四,当系统三相对地电容有较大的不平衡度时,50Hz工频信号会在开口三角形侧产生不平衡电压,从而导致测量注入信号受到干扰,使得测量结果产生较大误差。

2.中性点异频信号注入法

PT电压互感器---外接单相电磁式电压互感器

X---耐压电缆 DL---断路器 DS---隔离开关 ES---接地开关 L---限流电抗器 Ca、Cb、Cc----电容器组电容量

电子负载—超级电容测试方法

超级电容测试方法 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 费思负载在测试超级电容时的特点, 精确度:负载就有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。测试方法简单。 完善的接口:RS232,USB,GPIB口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功率及电压适当)、示波器(长存储最好)、万用表(选用,使用费思负载,可不使用本仪器)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容充电测试

负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。充电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 放电方式: 接线方式:请确定电容正负极及确定连接方式。 超级电容放电测试 负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定放电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,放电时间,放电内阻,放电电量,电容容量。放电曲线。 放电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 配件及配件功能和软件 配件及配件说明: 接线端子:配件每组具有6个端子,分别接负载、电容和电源。 通讯接口:具有RS232接口接电脑,连接软件。 电压采样:具有32路电压测量端子,测量各个分电容的电压曲线。 温度采样:具有8路温度测量端子,测量电容组在充放电循环时的发热及分布。

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

电解电容测试指导书

1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于IQC对电解电容器来料的检验。 3准备设备、工具: 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。 4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引岀端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况; 且其标识清晰牢固、正确完整。 4.5检查其引岀端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引岀端子无扭曲、变形和影响插拔的机械损伤。 4.6检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%勺误差范围),其损耗角 正切值tan 9 (即D值)大小是否符合国家标准(电解电容器tan 9 0.25 )。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按POWE!键开启测试仪的工作电压; 按LCR键选择测试类型(L:电感,C:电容,R:电阻)。 5.3按UP'与DOWN!选择测试量程(疗、nF、pF),按FREQ键选择测试频率(100HZ 120HZ 1KHZ,可根据厂商提供的技术参数来选择所需的测试频率,本试验选择100HZ'。

泄漏电流测量

实验二泄漏电流测量 一、实验目的 1.熟悉测量泄漏电流的试验设备及其接线。 2.学会测量电力设备绝缘泄漏电流及绘制伏安曲线的方法。 3.掌握通过绘制出的伏安特性曲线判断绝缘状况。 4.比较泄漏电流试验和绝缘电阻试验的异同 二、基本原理 泄漏电流测量试验的机理与绝缘电阻试验的相同,只是试验的方法不同。泄漏电流测量的试验电压有高压整流设备供给,试验电压可任意调节,所加电压比兆欧表的高,可用灵敏而准确度高的微安表来测量泄漏电流的大小。故测量值较兆欧表准确。并可根据所测出的泄漏电流与所加的试验电压绘制出一条伏安曲线,由曲线的变化规律可进一步分析被试品绝缘的状况。 对于绝缘良好的被试品,其泄漏电流与一定的外加电压成正比;若绝缘受潮或有缺陷则泄漏电流的增加与试验所加电压不再保持直线关系。 三、试验用仪器设备 电源部分:220V/0~250V 自耦调压变压器一台 高压试验变压器(K=200)一台 整流部分:高压硅堆一只 测压部分:电压表(150V)一只 测流部分:微安表(100μA)一只 被试品:绝缘套管一个 四、试验原理接线 AC T C x 1 说明: V1 :电压表,测量升压变压器低压侧绕组的电压;A1 :微安表,测量高压回路当中的电流 R1 :试验变压器上面的水电阻 R2 :球隙放电器上面的水电阻 Q1 :球隙器 ZL :整流器 C :滤波电容 C X:被试品(套管) 1~2:自耦变压器的原边输入 3~4:自耦变压器的副边输出

a~x:升压变压器的低压侧 A~X:升压变压器的高压侧 E~F:升压变压器的低压的测量绕组 注:在微安表上面有短路刀闸 五、试验步骤 1.按照试验原理接好试验电路。 2.检查接线,确认接线正确,接通高压电源,逐渐升高电压至电压表指示 35.4V(实际上加到高压部分为35.4*1.414*200=10000V),停止加压,打 开微安表的短路刀闸,待微安表指针稳定后读取10kV时的泄漏电流值。 3.按步骤2,读取电压表读数为70.7V(20kV)、106V(30kV)、141.4(40kV) 时的泄漏电流值。 4.数据记录完毕,调压器归零,切断电源。 5.用接地棒连接电容器的高电位端,进行放电。 六、注意事项 1.在整个试验过程中,要密切监视被试品、试验回路及有关表计。若有击 穿、闪络、气体放电等现象发生,尤其是在加到高压为30KV和40KV 时,此时应先将调压器归零,进行降压,然后再切断电源、放电。查明 原因,待妥善处理后,方可继续进行试验。 2.每次试验完毕后,都要进行充分的放电,然后才能进行下一次的试验, 放电的时侯必须确定要先切断电源。 3.每次加高压前必须检查调压器是否在零位,防止在未退至零位时就投入 高压电源而产生冲击,损伤试验设备的绝缘和得到不正确的试验结果。 每次切除高压时必须将调压器退至零位,这样可以防止下次通电时突然 加上高压。 七、实验报告 1.整理出各项试验结果,绘制出泄漏电流与试验电压的关系曲线。 2.根据绘制的伏安特向曲线判断被试品绝缘状况。

超级电容测试系统方案

超级电容测试系统方案 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削 峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的 要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 电子负载在测试超级电容时的特点, 精确度:电子负载有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。 完善的接口:RS232,USB,GPIB 口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功 率及电压适当)、示波器(长存储最好)、万用表(选用)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容放电测试 电子负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0 打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。 按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试:充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。 充电曲线,请链接上位机软件。 放电方式 接线方式:请确定电容正负极及确定连接方式。

铝电解电容的耐压测试方法

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

漏电流安规测试学习心得

泄露电流安规测试 泄露电流测试目的 IEC60990《接触电流和保护导体电流的测量方法》中提到接触电流是“当人体或动物接触一个或多个装置或设备的可接触零部件时,流过他们身体的电流。”如图1所示,接触电流也称之为泄漏电流,注意不要与耐压测试中的漏电流混为一谈。 个人理解:耐压测试中漏电流是3.5kV输入电压下板卡的漏电流总和,主要是衡量板卡绝缘能力;接触电流是市电输入电压下由整机设备与人体到大地形成回路,流经人体的电流值,主要是衡量对人体的伤害能力。 图1 泄露电流示意图 泄露电流分类 1) 对地漏电流 对于I类设备的电子产品可触及的金属部件或是外壳应具备良好的接地线路,以作为基本绝缘意外的一种防电击保护措施。但是我们也经常遇到一些使用者随意将I类设备当成II 类设备使用,或是说其I类设备电源输入端直接将地端拔除,这样就存在一定的安全隐患。即便如此,作为生产商有义务去避免这种情况对使用者造成的危险,这就是为什么要测试接触漏电流的目的。 对地漏电流是指在正常条件下由电网部分穿过或跨过绝缘流入I类设备保护接地导线的电流,即经由电源线上的接地线流回大地。在接地线良好的情况下,该电流不会对人造成点击伤害。对地漏电流与接触漏电流无关,其量值和测量方法也不同,对地漏电流的测量通常是在设备接地系统有缺陷的情况下,从设备泄露到地的电流。因此I类设备应保证接地连续性良好,接地电阻小于规定值0.1Ω,为故障电流提供低阻返回路径,从而保证可触及件不带电,人碰触才是安全。对地漏电流主要应用在I类设备测试,目前电视主板没有要求。 2) 接触漏电流 接触漏电流是指在正常或单一故障条件下,当人体接触到不同配电系统的I类或II类设备时,可能流过人体的电流。接触漏电流产生的路径有两种:a、电网电源——绝缘隔离系统——人体——大地,该电流的大小由绝缘隔离系统决定。b、设备的某一部分流经人体

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

关于变频器漏电的若干问题

关于变频器应用中漏电保护开关跳闸问题分析报告 一,漏电保护开关的工作原理 下图所示,漏电保护开关检测的是输入共模电流,也就是所说的对地漏电流,检测漏电流的电流互感器是同时穿过了 R/S/T三根火线和零线,在没有漏电流的情况下,不论接三相负载还是接单相负载,R/S/T和N线这4根线中流过的电流之和总是为零。当负载侧有对地短路现象或者对地有较大的电容时,输出侧的电流就会通过大地返回电网,此时流过电流互感器的电流之和不为零,这个电流就称之为漏电流。当检测到的电流大到一定程度就会触发保护开关脱扣。 二,对地漏电流的产生原因和电流通路分析 1,变频器应用中为什么会产生较大的漏电流 普通电机的绕组和机壳之间存在着较大的分布电容,在电网供电的情况下,电源线上只有50Hz的工频电压,由于频率很低,通过分布电容的漏电流很小。但在用变频器驱动电机时,由于变频器输出的是几kHz的高频脉宽调制的电压波形,输出电压是在0V到530V之间快速跳变的脉动电压,对于同样的电机同样的分布电容,漏电流会增大百倍以上,这是由变频器的工作原理决定的。

上图是实测的是输出零频时变频器输入端的漏电流波形,可以看出,主要成分是5kHz的开关频率。说明漏电流的主要是由于变频器输出的PWM波。 2,输入端安规电容的作用 输入端安规电容的作用主要是减小变频器内部对外部电网的干扰影响,由于变频器中安规电容取值很小(2200P),对于工频的阻抗很大(1.4M),对漏电流的贡献很小(每相约0.15mA ,且三相平衡时基波漏电流之和为零)。 但如果电网中的电压谐波很高时,电网灌入变频器的漏电流就会明显加大,且三相不会抵消,漏电流的值与电压谐波的频率成正比,与谐波电压的幅值成正比。 3,电机机壳接地的位置 为了减小输入的漏电流,可以调整电机机壳的接地位置:将电机机壳的接地线接至变频器上的PE端子,如下图所示,按照这种接法,变频器内部的安规电容提供了负载侧漏电流的一个循环通路,可以减小电网侧的漏电流。但由于电机侧很难与大地隔离,这一措施对减小漏电流有改善,但效果有限(尤其是当电机距离变频器较远时,变频器与负载电机之间连接的PE线对高频的阻抗变大,以至于大于电机机壳接地阻抗)

超级电容测试方案

10.备用电源系统测试 10.1测试工具及仪器 (1)数字万用表FLUKE 289 1台; (2)数字示波器Tektronix DPO3034 1台(含电流卡钳A622,高压隔离探头P5210);(3)数字兆欧表HIOKI 345 1台,VC60D 1台; (4)功率分析仪YOKOGAWA WT1600 1台; (5)耐压测试仪 TOS5101 1台; (6)输出可调超级电容充电机 BN-CDJ350V 1台; (7) 24V直流电源一台; (8)变桨距系统控制柜轴一柜; (9)变桨试验台SY_BJ_T_V3.1 1台; (10)调压器9KV A 1台; (11)PRODIGIT 3257电子负载; (12)滑动变阻器 BX8-27-2.5A 2台; 10.2.超级电容单体性能测试 10.2.1单体容量测试 ★测试方法: 采用恒流放电法测90V超级电容模块的总容量,由于90V超级电容模块含36个超级电容单体,将总容量乘以36即可得到超级电容单体的容量。 测试电路如图10.1所示。

图10.1. 容量测试电路图 放电电流I1及放电电压下降的电压U1和U2见下表。分级方法应根据分立标准。 ★测试步骤: (1)如图10.1进行接线,设定充电机充电电压为150V,闭合F1; (2)断开F3,闭合F2,对超级电容模块C充电。C达到额定电压后,保持充电机输出30min,以I2=1A电流充电,每15s记录一次150V超级电容模块端电压;以I2’=2A电流充电,每30s记录一次150V超级电容模块端电压; (3)将示波器电压探头接C的正负极端,将电子负载设置为恒流模式,电流值设置为I1=4A放电。断开F2并闭合F3对超级电容进行放电,每30s记录一次150V超级电容模块端电压。 (4)记录C的正负极之间电压U随时间的变化曲线(如图10.2示意);

如何测试电容器质量的好坏

如何测试电容器质量的好坏? 在没有特殊仪表仪器的条件下,电容器的好坏和质量高低可以用万用表电阻档进行检测,并加以判断。容量大(1μF以上)的固定电容器可用万用表的电阻档(R×1000)测量电容器两电极,表针应向阻值小的方向摆动,然后慢慢回摆至∞附近。接着交换测试棒再试一次,看表针的摆动情况,摆幅越大,表明电容器的电容量越大。若测试棒一直碰触电容器引线,表针应指在∞附近,否则,表明该电容器有漏电现象,其电阻值越小,说明漏电量越大,则电容器质量差;如在测量时表针根本不动,表明此电容器已失效或断路;如果表针摆动,但不能回到起始点,则表明电容器漏电量较大,其质量不佳。 压力表对于容量较小的电容器,用万用表来测量往往看不出表针摆动,此时,可以借助一个外加直流电压和用万用表直流电压档进行测量,其方法如图1所示,即把万用表调到相应的直流电压档,负(黑)测试棒接直流电源负极,正(红)测试棒接被测的电容器一端,另一端接电源正极。 一只性能良好的电容器在接通电源的瞬间,万用表的表针应有较大摆幅;电容器的容量越大,其表针的摆幅也越大,摆动后,表针能逐渐返回零位。如果电容器在电源接通的瞬间,万用表的指针不摆动,则说明电容器失效或断路;若表针一直指示电源电压而不作摆动,表明电容器已被击穿短路;若表针摆动正常,但不返回零位,说明电容器有漏电现象,所指示的电压数值越高,表明漏电量越大。需要指出的是:测量容量小的电容器所用的辅助直流电压不能超过被测电容器的耐压,以免因测量而造成电容器击穿损坏。要想准确测量电容器的容量,需要采用电容电桥或Q表。上述的简易检测方法,只能粗略判断压力表电容器的好坏。 方法一:指针式万用表测量。 1、用万用表电阻档检查电解电容器的好坏 电解电容器的两根引线有正、负之分,在检查它的好坏时,对耐压较低的电解电容器(6V或 l0V),电阻档应放在R×100或 R×1K档,把红表笔接电容器的负端,黑表笔接正端,这时万用表指针将摆动,然后恢复到零位或零位附近。这样的电解电容器是好的。电解电容器的容量越大,充电时间越长,指针摆动得也越慢。 2、用万用表判断电解电容器的正、负引线 一些耐压较低的电解电容器,如果正、负引线标志不清时,可根据它的正接时漏电电流小(电阻值大),反接时漏电电流大的特性来判断。具体方法是:用红、黑表笔接触电容器的

华为终端电源安全测试规范V1.0

DKBA 华为技术有限公司内部技术规范 DKBA 7684-2014.07 终端电源安全测试规范V1.0 2014年xx月xx日发布2014年xx月xx日实施 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有侵权必究 All rights reserved

修订声明Revision declaration 本规范拟制与解释部门:终端可靠性实验室 本规范的相关系列规范或文件:无 相关国际规范或文件一致性:无 替代或作废的其它规范或文件:无 相关规范或文件的相互关系:无

终端电源安全测试规范V1.0 范围Scope: 本规范为了降低终端电源的市场安全失效率, 降低电源的FFR, 规定了终端电源常规安规测试的要求和测试方法,同时结合电源在市场上的不良安全失效案例,规定了电源非常规安全测试项目及测试方法, 其目的在于根据标准要求,统一测试方法,提高测试结果的准确性和可复现性,最终达到改善电源质量的目的. 简介Brief introduction: 本规范针对终端电源依据安规标准IEC/EN/UL60950-1, GB4943.1, IEC/EN/UL 60065, GB8898 在安规认证、摸底测试过程中,各项测试的目的、方法、结果判定进行统一的规范和指导,其目的在于让相关人员在安规测试业务上形成共识,以确保安规测试方法的正确性,提高测试结果的准确性和可复现性,从而提升工作效率。 关键词Key words: 终端电源、适配器、充电器、安规测试。 引用文件: 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 术语和定义Term&Definition: <对本文所用术语进行说明,要求提供每个术语的英文全名和中文解释。List all Terms in this document, full spelling of the abbreviation and Chinese explanation

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

各品牌变频器输入漏电流对比测试

各品牌变频器输入漏电流对比测试 深圳市汇川技术有限公司实验报告 密级:机密 一、实验相关信息: 1. 实验名称:各品牌变频器输入漏电流对比测试 2. 实验日期:2007-07-27——07-28 3. 实验人员:廖湘衡、叶辉 4. 实验地点:研发部实验室 5. 实验仪器:漏电流互感器,FLUKE187万用表 6. 实验目的或者背景: 二、实验过程及记录: 1、测试方法: 变频器三相输入相线穿过漏电流互感器,将FLUKE187万用表打到交流uA档接到漏 电流互感器输出端进行测试,变比:1000:1。 2、输出频率固定,不同载频时,输入端漏电电流的测量: 变频器运行状态输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,电机通过配电箱接地,变频器 未接地,电机在实验台上运行。 载频频率(KHz) 0.5 1 2 3 4 5 6 8 9 10 12 15 汇川MD320T15GB- - 27.4 - 37.3 - 45.2 52.0 - 58.5 - - 输入漏电流(mA)

变频器运行状态输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,电机通过配电箱接地,变频器 未接地,电机在地面上运行。 汇川MD320T15GB18.5 24.3 28.0 33.5 38.1 42.2 46.3 53.3 - 60.5 - - 输入漏电流(mA) 输出频率40Hz固定,驱动1.5Kw的电机空载运行,V/F控制,变频器接地,电机接变频器的 地,电机在地面上运行。 汇川MD320T15GB24.3 33.2 37.3 46.2 53.3 58.8 65.2 70.4 74.7 77.3 - - 输入漏电流(mA) 台达- - - 31.1 - - 45.1 - 55.8 - 65.1 72.6 VF0007A43A(0.75K w) 输入漏电流 (mA) 汇川-台达输入漏电 15.1 20.1 18.9 流差(mA) 深圳市汇川技术有限公司实验报告 密级:机密 3、不同设置状态,汇川MD320T15GB对比实验测试漏电电流: 变频器运MD320T15GB驱动1.5Kw的电机空载运行,V/F控制,载频:6KHz。行状态 条件设置电机在实验台上运行电机在地面上运行一 变频器未变频器接变频器接地,电机通过变频器接变频器接变频器接变频器未条件设置接地,电地,电机地地,电机地,电机接地,电机二机通过配未接地接变频器未接地通过配电未接电抗输入接电输出接电

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

电解电容漏电流测试仪操作规程示范文本

电解电容漏电流测试仪操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电解电容漏电流测试仪操作规程示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时 针方向调至最低端。如果220V电源的地线接地性能不良, 应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压 调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预 置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择 合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时

间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结

相关主题
文本预览
相关文档 最新文档